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Abstract — A novel forward backward iterative
scheme for solving the 3D electric field integral equa-
tion is presented. This method postulates the use of
a local buffer region to suppress spurious edge effects
that would otherwise grow to dominate the result.
Results are presented illustrating the convergence of
the algorithm.

1 INTRODUCTION

The Electric Field Integral Equation (EFIE) of-
fers a full wave formulation to the problem of elec-
tromagnetic wave scattering from a perfectly con-
ducting object. However numerical solution of the
EFIE results in a dense linear system which, for
large problems, is impossible to store let alone in-
vert. Instead iterative solutions are used which
do not require the explicit inversion of the ma-
trix but rather sequentially build the solution. Re-
cently there has been much research into what can
be termed physically inspired iterative solutions, or
informally ’current marching’ methods. Examples
include the Method of Ordered Interactions of [1]
and the forward/backward method of [2], both of
which were applied to two-dimensional problems.
A three-dimensional version was presented in [3]
for application to a Magnetic Field Integral Equa-
tion (MFIE) formulation of a scattering problem.
However the MFIE is only applicable for scatter-
ing from closed bodies and one must use the EFIE
if one wishes to consider scattering from an open
body. This paper presents a current marching algo-
rithm which is applicable to the three dimensional
EFIE.

2 ELECTRIC FIELD INTEGRAL EQUA-
TION

We consider a perfectly conducting scatterer is il-
luminated by a source which induces currents on
its surface S. We define the incident electric field
Ei as the field that would exist in the absence of
the scatterer. The total field anywhere in space is
then given by the sum of the incident and scattered
electric fields where the scattered field, Es is given
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by the following integral expression

Es = −ωA−∇φ (1)

where A and φ are the magnetic vector potential
and scalar potential respectively. Applying the re-
quirement of zero tangential fields at a point on the
surface of the scatterer results in the EFIE which
can be converted to a matrix equation by the intro-
duction of basis functions and a testing procedure
[4]. The resultant equation is

ZI = V (2)

where Z is a dense complex valued N ×N matrix,
where N is the number of basis functions used to
discretise the surface current. V is a vector of size
N containing information about the incident field
on the scatterer while the vector I represents the
(unknown) amplitudes of the N basis functions.

3 FORWARD/BACKWARD ALGO-
RITHM FOR THREE DIMENSIONAL
SCATTERERS

The necessity to sample the current at a high rate
(typically around ten basis functions per wave-
length) means that for problems of practical size
it becomes impossible to store, let alone invert the
impedance matrix Z. Instead the matrix equation
is typically solved using an iterative procedure such
as the method of conjugate gradients. Recently
there has been much interest in the concept of phys-
ically inspired iterative solvers. These solve for the
unknown current amplitudes I in a manner that at-
tempts to mimic the physical processes that create
the current. Specifically this involves decomposing
the scatterer into sub-regions and ’marching’ a so-
lution for the current along the scatterer surface
from sub-region to sub-region. The solution at pro-
cessed sub-regions is used to set up the problem to
be solved at the next sub-region and so on. Math-
ematically the process involves decomposing the Z
matrix into blocks, the Z̃ij block containing the in-
teractions between the basis functions residing in
the ith and jth sub-regions on the scatterer. Each
iteration of a forward/backward algorithm involves
solving two equations. The first equation is solved
for i = 1 . . . N in turn and is termed the forward



sweep.
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where Ṽi and Ĩi are the appropriate sub-vectors
of V and I respectively. Equation (3) is a matrix
equation for the currents on sub-region i where the
right hand side incident fields have been modified
by including the effects of the currents already com-
puted on the other sub-regions. As it involves a
matrix of relatively low order it can be efficiently
solved using a conjugate gradient solver. The sec-
ond equation is solved for i = N . . . 1 in turn and
corresponds to a backward sweep.
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Again this can be efficiently solved using a conju-
gate gradient solver. We deem an iteration to be
one complete forward sweep followed by a complete
backward sweep.

We can examine the convergence or otherwise of
the iterative process thus defined by computing how
well the governing matrix equation (2) is satisfied
at each iteration. We define the boundary condi-
tion percentage error associated with the ith basis
function after completion of the nth iteration by
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The convergence or otherwise of the method can be
monitored by computing the average value of this
error ē(n) after each iteration.

Whilst appealing in its intuitive underpinning
the iterative process described above fails when ap-
plied to a relatively easy three dimensional prob-
lem. Indeed we applied it to a simple example in-
volving scattering from a metallic square plate of
side 2λ centred at (0,0,0) being illuminated by a
half-wave wavelength z oriented dipole located at
(0,−10

√
3, 10) and radiating at 300MHz. For this

example the sub-regions consisted of 6 rectangu-
lar groupings of basis functions running along the
whole width of the plate as shown in figure (1).
Table (1) contains the average boundary condition
error at each iteration step and illustrates how the
iterative method as applied above quickly diverges
To understand the failure of the iterative process
as described above we must appreciate that each
subregion is effectively considered in isolation when
computing the currents on it on any given sweep.
Consider the first step in the first forward sweep.

Iteration n Average error
1 282.7
2 13270.8
3 758249.4
4 43163263.5

Table 1: Average error at the boundary condition
as a function of iteration number for naive for-
ward/backward approach.

The current estimate I(1) is initialised to zero and
(3) reduces to

Z̃11Ĩ
(1)
1 = Ṽ1 (6)

Essentially we are treating sub-region one as a phys-
ically isolated scatterer. As a consequence the
computed current Ĩ(1)

1 will display the singular be-
haviour which characterise the current at the edge
of scatterers. While this edge effect is correct and
desirable for any edges of the subregion which co-
incide with the actual edges of the entire scatterer
any edge effect at the boundary with subregion two
is undesirable. Were the scatterer problem solved
as a whole no such effect would appear and so its
appearance is spurious and should be suppressed.
However the naive iterative method as suggested by
equations (3,4) fail to do this. Consider the next
problem to be solved in the initial forward sweep.
We have

Z̃22Ĩ
(1)
2 = Ṽ2 − Z̃21Ĩ

(1)
1 (7)

Here the inaccuracy due to the spurious edge effect
is allowed propagate and distort the computation
of Ĩ(1)

2 . In addition Ĩ(1)
2 will also manifest spuri-

ous singularity effects at any edge which does not
correspond to a physical edge of the scatterer.

However we can circumvent this problem quite
simply by introducing a certain amount of redun-
dancy into our computations. These extra calcula-
tions will be shown to dramatically improve the sta-
bility of the iterative process at the cost of a slightly
higher computational burden. We identify for each
sub-region ’buffer regions’ (see figure (1)) which are
those areas of the scatterer immediately adjacent to
the boundary of the sub-region in the direction that
we are marching the solution. Note that the defini-
tion of the buffer region thus depends on whether
we are on the forward or backward sweep of the
iterative process. The idea is to include the in-
teractions with the basis functions in this buffer
region to suppress the unphysical current singulari-
ties which, as we saw, are introduced by the abrupt
termination of each sub-region. Mathematically we
replace the previous forward and backward sweeps



with revised versions

ỸiiJ̃
(k)
i = W̃i −

i−1∑

j=1
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where b(i) represents the appropriate buffer region
(depending on whether we are marching forward or
backward). Ỹii supplements Z̃ii with information
about the interaction between basis functions in i
and those in the appropriate (forward or backward)
buffer region.
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[
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while Ỹij supplements Z̃ij with information about
the interaction between basis functions in j and
those in the appropriate buffer region.
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Ṽi
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This modification ensures that local information
from basis functions in the buffer region suppresses
any spurious edge effect that would otherwise be
present. Computationally it is a little more cum-
bersome to solve equations (8,9) due to the fact
that the matrices are of higher order. The currents
calculated in the buffer region Ĩb(i) are redundant
in the sense that they are only computed to keep
the currents in sub-region i under control. They are
overwritten when we move to the next sub-region.
However in practice the buffer region is quite small
and the increased computational overhead is offset
by the rapid convergence of the algorithm.

3.1 Recursive algorithm

Initial implementations of our algorithm proceeded
by breaking a scatterer into rectangular groups of
basis functions which spanned the whole width of
the scatterer as illustrated in figure (1). However,
with this approach, as the scatterer size increases
the size of each subregion grows accordingly. When
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Figure 1: Subregion along with ’buffer regions’ to
ensure stability of current marching method.

one adds in the extra computational burden im-
posed by the buffer region interactions the solution
of the matrix equations (8,9) quickly becomes quite
onerous. However it is possible to recursively apply
the ideas presented in the previous section to the ef-
ficient solution of these equations also. As depicted
in figure (2) each sub-region can in turn be further
subdivided into smaller sub-regions and the ma-
trix equations (8,9) are solved by marching currents
back and forth within sub-region i and its buffer.
Essentially the scattering problem is solved by a
process of forward and backward sweeps, where
the local problems within each forward/backward
sweep are solved by a process of sweeping left and
right. Again we must be careful to define suitable
buffer regions to suppress unwanted edge effects.
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Figure 2: Subregion i can be further subdivided
facilitating efficient current marching solution of
equations (8) and (9).

4 RESULTS

We have applied the techniques described in this
paper to a number of problems. First we consider
the problem of scattering by metallic square plate
of side 15λ centred at the point (0, 0, 0) contain-
ing an aperture of side 1λ centred at (−2,−2, 0).
The plate is illuminated by a dipole located at



(0,−10
√

3, 10) radiating at 900MHz. For the pur-
pose of applying the algorithm the plate was subdi-
vided into 10 rectangular subregions each of which
spanned the width of the plate. The currents
were then marched forward and backward along the
plate surface. Currents within each subregion were
obtained by marching left/right as per section (3.1).
At this level each sub-sub-region (see figure(2)) was
a square section of plate of side 1.5λ. The buffer
zone was such that the entire computational region
for each problem was a square of size 2λ. Table (2)
shows the average boundary condition error versus
the iteration number.

Iteration n Average error
1 13.6146
2 2.27561
3 0.42557

Table 2: Average error at the boundary condition
as a function of iteration number for example one.

The second example involves a right angled fi-
nite wedge composed of two perfectly conducting
plates of side 2λ meeting along a common edge.
The first plate is centred at (0, 0, 0) while the second
is centred at (0, 1, 1) Again the source is a half-wave
dipole located at (0,−10

√
3, 10), this time radiat-

ing at 300MHz. Each plate was subdivided into 6
rectangular subregions each of which spanned the
width of the plate. The currents were then marched
forward and backward along the wedge structure.
As in the previous example currents within each
subregion were obtained by marching left/right as
per section (3.1). Again each such computational
region was a square section of plate of side 2λ. The
scattered fields along a straight line running from
(1.5,−20, 10) to (1.5, 20, 10) were calculated after
each iteration. We note the rapid convergence of
the scattered fields, the solution after 3 iterations
being essentially identical to a reference solution
obtained using a conjugate gradient method. The
algorithm was also applied to a larger finite right
angled wedge with sides equal to 5λ. Again rapid
convergence was observed with the average bound-
ary error falling to 6% after only three iterations.

5 CONCLUSIONS

We have presented a modified forward/backward
algorithm for iteratively solving the three-
dimensional EFIE. Stability was achieved by
the adoption of buffer regions which suppress
spurious edge effects which would otherwise grow
to dominate the solution. Future work will see
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Figure 3: Convergence of scattered fields over
wedge.

the use of acceleration schemes such as the Fast
Far-Field Algorithm [5] to expedite the scattered
field computations that represent the bottleneck in
the solution.
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