
DublinCity

University

Ollscoil Chathair Bhaile Átha Cliath

Computational Darwinism, or

Who Teaches the Teacher?∗

Barry McMullin

September 1989

School of
Electronic Engineering

Technical Report: bmcm8901

c©1989 Barry McMullin,
School Of Electronic Engineering,
Dublin City University,
Dublin 9,
IRELAND

Telephone: +353-1-704 5432
Fax: +353-1-704 5508
E-mail: McMullin@EENG.DCU.IE

∗This is a re-formatted version of a paper presented at the conference AI and Cognitive Science ’89, Dublin, 1989.



Abstract

The “homunculus” problem is discussed, in the context of machine learning. Aris-
ing from this, a class of adaptive computational systems (“D-machines”), based
on darwinian principles, is defined. A D-machine consists of a computing substrate
(“interpreter”) supporting a dynamic population of diverse computational structures
referred to as demons. Demons interact with each other and with an “external” envi-
ronment. Interactions include the possibility of reproduction (genetic or otherwise).
Demons must compete for finite resources.

It is conjectured that a D-machine, as a whole, may “adapt” to its environment (i.e.
“learn”) in novel and interesting ways.

D-machines and related prior systems are compared and contrasted. A research
program, involving both theoretical and empirical investigation, is outlined.



1 Introduction

AI has had some considerable successes—as an En-
gineering discipline. That is, there are a number of
AI tools and systems which are in widespread use,
solving practical problems in the “real” world. How-
ever, AI has been much less successful in elucidating
the essential nature of intelligence, and there is a
significant, and growing, scepticism as to whether,
in its conventional form, it ever will (e.g. [Searle,
80], [Hofstadter, 83]). The (re-)birth of “connection-
ism” can be seen as a manifestation of this ([Rumel-
hart et al, 86]); however there is considerable debate
as to whether, or what, connectionism has to offer
which is genuinely new or distinctive (e.g. [Fodor &
Pylyshyn, 88]).

In this paper I will focus on that philosophical
criticism of AI usually known as the “homuncu-
lus” problem. The proposed resolution (the D-
machine) is neither a conventional AI system, nor
a connectionist network; rather, it is a distinctive
architecture, deriving elements from both of these
paradigms, but also from a number of other, sepa-
rate, prior developments.

2 Who Teaches the Teacher?

The homunculus problem in AI is this: how can
symbols in an AI system acquire “genuine seman-
tics”, unless we postulate some “inner” entity (the
homunculus) who interprets them; but then, of
course, it would be the homunculus who is intel-
ligent, not the AI system. The näıve response
is to replace the homunculus with another AI
(sub)system—but then we have to ask how its sym-
bols acquire meaning. The homunculus has been
displaced, not removed, and an infinite regress opens
up. In practise, it is suggested that AI symbols have
meaning only in the eye of the (human) beholder
(usually the programmer), who is therefore playing
the role of the “ultimate” homunculus.

One might seek a resolution to this problem by
studying artificial “learning”: for surely if a system
constructs its own symbols then it must be giving
meaning to them, rather than some original pro-
grammer or non-existent homunculus.

Consider then, the conventional, canonical, model
of a learning machine, shown in Figure 1. It com-
prises a “performance” element, and an adaptive
or “teaching” element. The performance element is
charged with implementing the task or skill which
is to be learned; the teaching element is to mod-
ify (teach) the performance element to achieve this.
The teaching element typically does this by com-

paring the behaviour of the learning element with
some target behaviour, and making modifications
which should reduce observed discrepancies (i.e. it is
fundamentally a negative feedback controller). The
model is conceptually straightforward, although im-
plementing it effectively in real task environments
is, of course, far from easy.

Clearly, if the system works, then, at the end,
there will exist symbols, in the performance ele-
ment, which designate objects in the task environ-
ment, and which have been spontaneously created
by the learning machine—surely these “genuinely”
designate, without appeal to any external agency?
Well no: their meaning derives from the interpre-
tation placed on them by the entity which created
them—the teaching element; but its ability to do
such interpretation derives from the meaning (or
lack of it) of its own symbols, which were not self
constructed, but supplied by its programmer(s). We
could, of course, introduce another layer of adap-
tation or teaching, but that would only displace
the problem, not solve it. The original homuncu-
lus problem has thus been recast as “Who teaches
the teacher?”.

This problem is not new, and a proposed reso-
lution, in principle, is well known. It is presented,
in slightly different forms, in [Selfridge, 59], [Hof-
stadter, 79], and [Minsky, 87]. It is this: instead
of an hierarchical architecture, implement a tangled
hierarchy. Make the system, directly or indirectly,
self-referencing or reflexive. In effect, we require
meaningful symbols to bootstrap themselves into ex-
istence. That is, every element modifies another,
giving meaning to the other’s symbols, while being
also modified by some other, thus acquiring meaning
for its own symbols. In this way, The hierarchical
learning machine of Figure 1, turns into the reflexive
system of Figure 2; but now the distinction between
“teaching” and “performance” elements has disap-
peared, and any (static) decomposition of the sys-
tem into subsystems is contradictory—we are really
left with the unitary, self-modifying, architecture,
of Figure 3. I will refer to this model for intelligent
systems as the Reflexive Hypothesis.

We have now exchanged an abstract philosoph-
ical problem for a (mere?) engineering one: how
to actually design and build such reflexive systems.
More carefully: it is easy to design a system which
is reflexive—the problem is that it will tend to im-
mediately self-destruct. This phenomenon is famil-
iar to all who have had programs “accidentally”
treat their own instructions as data, and overwrite
themselves—a “crash” is the inevitable result. Thus
we need to identify what properties or constraints a

1



Figure 1: Canonical Learning Machine.

reflexive system should have so that it will spon-
taneously evolve toward greater internal organisa-
tion, and correspondingly sophisticated external be-
haviour. In short, a system which, even if not ini-
tially intelligent, can become intelligent.

2.1 D-machines

In response to this, I propose a somewhat new (and,
as yet, entirely hypothetical) class of adaptive com-
putational systems, referred to as D-machines (“D”
for “Darwinian”). It should be emphasised that “D-
machine” is intended as a collective term—it does
not refer to any single specific system.

The proposal is an elaboration of previous work
in DCU (then NIHED) into the application of dar-
winian adaptation to machine learning ([McMullin,
88]).

Briefly, a D-machine is a form of information pro-
cessing ecology. It consists of an underlying pro-
cessing substrate, which supports and constrains
a large collection of diverse, interacting, computa-
tional structures, or processes. These will be re-
ferred to as “demons” (following [Selfridge, 59]).

The key notion of the D-machine is to construct
a substrate which can support arbitrary (i.e. com-
putationally complete) demons, including (but not
limited to) self reproducing demons, and to “seed”

this substrate with some initial variety of demon
“species”. The demons are like (benign) “computer
viruses”, deliberately cultured. Thereafter, in the
face of competition (for finite resources), darwinian
adaptation may produce arbitrarily more elaborate
and organised demons, and, indeed, systems thereof.
Of course, at any time, new “handcrafted” demons
may be introduced into the system—they will then
survive or not in accordance with their abilities rel-
ative to the existing population.

If interface mechanisms are provided in the sub-
strate, such that demons can interact with the ex-
ternal environment, then the darwinian competition
between demons can be biased, in some sense, by
their contribution to external behaviour. In this way
it is anticipated that the adaptation of the internal
demon ecology may give rise to “external” machine
learning.

It should be emphasised that, although the un-
derlying mechanism is described as “darwinian”,
this does not imply adaptation over evolutionary
timescales. A key requirement of the project is to
formulate effective darwinian mechanisms which op-
erate on timescales of the order of, say, months or
years, rather than millenia (cf. [Holland, 75]).

The conjectural nature of this position should be
reiterated: I hope that darwinian mechanisms may
cause useful adaptation of computational systems,

2



Figure 2: Reflexive Learning Machine.

but I cannot claim they necessarily will. The pur-
pose of the research program is to investigate pre-
cisely this - by trying to build D-machine(s), exper-
imenting with their behaviour, and trying to formu-
late effective mathematical models to support this
empirical work.

3 Prior Work

This section reviews a variety of published research
which, in one way or another, has influenced the D-
machine concept. This is a concise summary—for
details, see [McMullin, 89].

3.1 Pandemonium

Pandemonium ([Selfridge, 59]) was a seminal inno-
vation by Oliver Selfridge in the area of adaptive
computational systems. The primary contribution
of Pandemonium to the present work is its early
advocacy of a population of competing, concurrent,
processes as a model for an adaptive computational
system.

Selfridge proposed a hierarchy of adaptive mecha-
nisms for Pandemonium—variation of “weights” of
existing demons, generation of new demons by com-
binations of “good” precursor demons, and, possi-
bly, some mechanism for modifying the way(s) that

new demons are generated. Critically, Selfridge also
saw the problem implicit in this kind of hierarchical
architecture—that it admits of an infinite regress.
He comments as follows:

“Furthermore . . . some of the demons, pre-
sumably, will be in a position to change
themselves, for otherwise we should need
another level of possible change, and so
on.”

(Emphasis added)

This is the reflexive hypothesis as already dis-
cussed. Paradoxically, however, having made this
clear statement of the reflexive hypothesis, Selfridge
himself seems to back off from it immediately, by
going on to suggest another, distinct, layer of hi-
erarchical adaptation. Specifically, he suggests con-
structing a “crowd” of Pandemonia (?) which would
then be subject to some form of natural selection
en masse. These issues were, unfortunately, not ex-
plored further in this original and thought-provoking
paper. In particular, Pandemonium, as actually im-
plemented, was not, in fact, reflexive.

3.2 Genetic Algorithms

[Holland, 75] introduces an abstract mathematical
framework in which to discuss adaptive systems of

3



Figure 3: Unitary Reflexive Learning Machine.

all kinds. Within this framework, the notion of
a generalised “Genetic Algorithm” (GA) is intro-
duced, and it is demonstrated how, through “im-
plicit parallelism” a GA can produce adaptive im-
provement in behaviour many orders of magnitude
faster than could be expected based on näıve mech-
anisms such as exhaustive search or random muta-
tion.

GAs provide a very well characterised, simple, and
powerful, model for “darwinian” adaptation. This is
based on a form of genetic reproduction which is de-
liberately constrained to be in proportion to relative
fitness, coupled with competition for finite “living”
resources (essentially, slots in a finite population).

The state of the art in GAs is comprehensively re-
viewed in [Schaffer & Grefenstette, 88]. The crucial
point made explicit there is as follows:

“. . . This evolutionary approach to ma-
chine adaptation had been tried before
Holland . . . but with mediocre results.
The genetic operator most often used in
these earlier experiments was mutation,
which later analysis has shown is only ca-
pable of providing a random walk through
the space of possibilities...”

Thus, Holland rehabilitated the notion of artifi-
cial adaptation based on an evolutionary metaphor,

after it had previously been discredited, and largely
abandoned. The D-machine proposal relies on this
body of GA theory to provide a reasoned justifica-
tion for thinking that, in principle at least, a ma-
chine of this sort can exhibit useful adaptation on a
realistic time scale.

However, it is not proposed to include a GA, in
the conventional sense defined by Holland, in a D-
machine. GAs rely on the notion of a (programmer-
defined) “fitness” function. Such a function is, how-
ever, incompatible with the reflexive hypothesis. In-
stead, while we provide competitive mechanisms,
we do not constrain the ways they will be used
or combined—i.e. the specific competition(s) which
will emerge.

3.3 The Broadcast Language

In [Holland, 75], the homunculus problem is not
ignored, though it emerges in a slightly different
guise. Holland identifies the problem as being
that of “adapting the representation”. That is, he
presents GA as an effective method of adaptation
within the context of some particular representation
of the problem—but which is incapable of compen-
sating for any deficiencies of that representation. A
näıve answer would be to use a GA to adapt the
representation—but immediately we are led to con-

4



sider adapting the representation of the representa-
tion etc. Again we face the problem of an infinite
regress, and again, Holland, as with Selfridge, sug-
gests the reflexive hypothesis. That is, he suggests
a mechanism whereby the GA can be implemented
by structures that are, themselves, accessible to the
GA. He also seems to follow Selfridge in failing to
pursue this hypothesis to a satisfactory conclusion.

Holland presents his concept, in fair detail, under
the title of the “Broadcast Language”. A compu-
tationally complete, reflexive, programming formal-
ism is presented and Holland shows how programs
(strings) in this formalism can be used to implement
the basic functions required of a GA—in particular,
reproduction. However, Holland does not follow this
line through to a full blown, reflexive, GA based,
system. Instead the concept was transmuted into
what became known as Classifier Systems. Clas-
sifier Systems are separately discussed below. For
the moment, it is sufficient to note that Classifier
Systems do not retain the reflexive character of the
Broadcast Language model.

In a sense then, the D-machine might be viewed
as simply a return to Holland’s original Broadcast
Language idea. However, it is necessary to go be-
yond this. Holland implies that reflexivity of the
language, alone, permits a reflexive GA to be im-
plemented; whereas I claim that the payoff function
requirement (of GAs) makes it impossible to actu-
ally implement such a reflexive GA.

It is important to isolate the problem here. It is
not that the Broadcast Language is not reflexive;
nor is it that a GA cannot be implemented within
the Broadcast System; nor even that the GA cannot
be so constructed that it will (attempt to) apply
to itself. The problem is that for any of this to
make any sense (even initially) some all embracing
mechanism for determining the fitness of the (parts
of the) GA itself must be provided—and this seems
to be an intractable problem.

The resolution proposed in the D-machine is that
there will be no fitness function. There will be no set
of strings “implementing” the Genetic Algorithm—
on themselves or anything else. Instead, we pro-
pose to introduce strings (demons) which can (self-
)reproduce and compete for finite resources. Repro-
duction rates will be determined by open competi-
tion for resources—not by some hypothetical fitness
function.

This is perhaps a reasonable point at which to em-
phasise that the D-machine is not being presented as
some form of panacea. It is not suggested that pre-
vious approaches are, in some absolute sense, “in-
ferior” to D-machines. Rather, it is the thesis of

this paper that the D-machine is a natural progres-
sion from certain other systems, but one that has
not previously been specifically explored. It may be
better, it may be worse, it may be simply irrelevant.
For the moment, the only strong claim being made
is that it merits investigation.

3.4 α-Universes

[Holland, 76] attempts to estimate how long it would
take for self reproducing systems to emerge in an
initially unorganised “chemical soup”. Holland’s
contention is that, even before self-reproducing
structures emerge, the evolution of such a system
can exhibit implicit parallelism, in much the same
sense described in [Holland, 75]. As a result, self-
reproducing systems can emerge much more quickly
than might otherwise be expected.

Of course, any realistic model of the original
primeval soup of planet Earth would be far too
complex to admit a closed form analysis. Instead,
Holland formulates a family of much simpler model
“universes”—which he dubs the “α-Universes”—
which are used to develop a proof of the principle
that implicit parallelism can greatly speed the emer-
gence of self reproducing systems.

A detailed description of the α-Universes, and the
theorems that can be proven for them, will not be
presented here. For the present purposes it is suffi-
cient just to note certain of the key characteristics.
Primary among these is that there is no Genetic
Algorithm being applied, and no fitness function
being computed. Rather, there is an unstructured
competition for certain finite resources, mediated by
low level stochastic “operators” roughly analogous
to diffusion and random activation in real, chem-
ical, systems. “Molecules” which are “fit” in the
sense of being more stable, or able to persist for
longer in the face of these disturbing effects, achieve
higher densities and have a greater effect on the sub-
sequent evolution or development of the system—
but this emerges rather than being explicitly “pro-
grammed in”. It is assumed that certain molecules
(should they emerge) have “special” properties that
make them roughly analogous to such substances as
catalysts, enzymes, and antibodies. The effect of
these so-called “emergent operators” is to produce,
or encourage the production of, molecular fragments
which would be quite rare under the action of the
primitive operators alone.

The significance of the α-Universes is that they
suggest that implicit parallelism is a more general
concept than Genetic Algorithms, and that it can
exist and be effective even where there is no fitness

5



function, and no extant reproductive process.
While α-Universes exemplify certain defining

characteristics of the D-machines, they are too id-
iosyncratic to serve as direct “D-machine proto-
types”. The α-Universes are at once both simpler
and more complex than D-machines. They are sim-
pler in that the set of defined operators is restricted
to the minimum useful for demonstrating the emer-
gence of self-reproductive systems; in particular,
α-Universe molecules are not computationally com-
plete. This is not a defect of the α-Universes—
they were not intended as “computational” systems.
Similarly, there is no concept of an environment “ex-
ternal” to an α-Universe, with which it interacts,
as this is irrelevant to its purposes—whereas such
an external environment is a key aspect of the D-
machine concept. On the other hand, α-Universes
are more complex than D-machines in that the oper-
ators were intended as analogs of practical chemical
operators and, as such, may be more sophisticated
than are actually required in a D-machine. In par-
ticular, all the α-Universe operators are defined to
be “conservative” in terms of the “elements” of the
universe: it is not clear that this is a necessary or
even desirable constraint on related computational
systems (such as D-machines) in general.

Finally, before leaving [Holland, 76], we should
note that Holland abstracts a set of properties
which, in his words, “we would expect to find
in most interesting models of evolving universes”.
Holland dubs these the “Omega” properties. The
α-Universes do, of course, possess these properties,
and we would expect that any D-machine will also
have to have them. Thus, they are likely to form
the foundation for any theoretical treatment of the
D-machine.

3.5 Classifier Systems

Classifier Systems were originally introduced in
[Holland & Reitman, 78], specifically as a model for
“cognitive systems”. Holland has described Classi-
fier Systems as a successor to the Broadcast Systems
([Holland, 87]). Classifiers (the components of Clas-
sifier Systems) are clearly related to the strings of
the Broadcast System—the fundamental operation
of both is to do a form of pattern matching and
recoding, with interactions based on “messages” ex-
changed through a globally accessible message list
or string environment. Classifiers however are a
much simplified version of strings in the Broadcast
Language—they are fixed length with a more re-
stricted syntax. In contrast to broadcast strings,
individual classifiers are not computationally com-

plete, though arbitrary sets of them are.
Classifiers can be viewed as very simple condi-

tion/action rules, or productions, and the “basic”
Classifier Systems can be viewed as a form of pro-
duction system. This basic system may be thought
of as the “performance” element of a learning ma-
chine, in the terms previously discussed.

The first level of adaptation comes by way of vary-
ing “weights” or “strengths” attached to the classi-
fiers. This affects which classifiers are actually acti-
vated when too many are simultaneously matched,
and thus affects the overall behaviour of the system.
This is very roughly analogous to the basic adaptive
mechanism in Pandemonium also. The mechanism
used to modify the weights is called the “Bucket
Brigade Algorithm” (BBA).

The problem with the BBA method of adapta-
tion is that it is limited to the context of the Clas-
sifiers which are already in existence. If appropriate
Classifiers are lacking then BBA can never correct
for that. Therefore, BBA is normally complemented
with a higher level adaptive mechanism which gener-
ates “plausible” new Classifiers. In the early imple-
mentations of Classifier Systems this was achieved
by a GA operating on the population of Classi-
fiers, with fitness equated to the weight accumulated
under BBA. Experience with this arrangement has
been mixed and, more recently, there has been in-
creased interest in alternative mechanisms for gen-
erating new Classifiers, and, in particular, encourag-
ing the development of useful sequences of coupled
Classifiers. The difficulty with the usage of GA in
this context is that the GA effectively tries to opti-
mise individual Classifiers, implicitly assuming that
fitness is well defined and independent of the other
Classifiers present. In practise fitness is not well de-
fined, because it does critically depend on the other
classifiers present, so a GA simply applying to the
population of Classifiers has severe limitations.

Holland has identified the question of generating
new Classifiers (or rules) as a prime area for further
investigation ([Holland, 87]). It is worth quoting his
comments:

“In a precursor of classifier systems, the
broadcast language ([Holland, 75]), provi-
sion was made for the generation of rules
by other rules. With minor changes to
the definition of classifier systems, this
possibility can be reintroduced . . . With
this provision the system can invent its
own candidate operators and rules of in-
ference. Survival of these meta- (operator-
like) rules should then be made to depend

6



on the net usefulness of the rules they gen-
erate . . . ”

(Emphasis added)

Superficially this is again the reflexive hypothesis:
to avoid an infinite regress in the hierarchy of adap-
tive systems, make the adaptive mechanisms reflex-
ive. On closer inspection this proposal falls short of
a truly reflexive system in precisely the same way
as its named precursor (the Broadcast Language):
the requirement for a well defined fitness function.
Holland addresses this in the highlighted phrase—
but this suggestion plainly only advances a single
level up a hierarchy, and implicitly requires a de-
marcation between “rules” and “meta-rules” which
confounds the purpose of making the system reflex-
ive in the first place. Thus it should be clear that
Classifier Systems, even in this hypothetical reflex-
ive form, are not at all the same class of objects as
D-machines.

3.6 Active Symbols

Douglas Hofstadter has written extensively about
his view of the nature of intelligence, and, implic-
itly, the need for a reflexive architecture. Briefly,
Hofstadter’s view is summarised in this quotation
from [Hofstadter, 83]:

“It is my belief that until AI has been
stood on its head and is 100 per cent
bottom-up, it won’t achieve the same level
or type of intelligence as humans have.
To be sure, when that type of architec-
ture exists, there will still be high-level,
global, cognitive events—but they will be
epiphenomenal, like those in a brain. They
will not, in themselves, be computational.
Rather, they will be constituted out of, and
driven by, many many smaller computa-
tional events rather than the reverse. In
other words, subcognition at the bottom
will drive cognition at the top. And, per-
haps most importantly, the activities that
take place at that cognitive top level will
neither have been written nor anticipated
by any programmer.”

Hofstadter’s term for emergent structures with ef-
fective representational power is “Active Symbols”.
He conceives of these Active Symbols as arising from
the collective statistical properties of lower level
components which, in themselves, have no repre-
sentational power, and do not therefore constitute
symbols. He emphasises the word Active in contrast

to the conventional notion of a symbol in AI: Ac-
tive Symbols are not “formal tokens” manipulated
by some program—they, themselves, are capable of
active interactions with each other and (indirectly)
with the external environment.

In this view, the D-machine is simply a partic-
ular proposal for a substrate which might support
the kinds of emergent phenomena which Hofstadter
identifies. It should be stressed that the demons are
not identical with Active Symbols on this interpre-
tation. It will only be if, or when, particular demons
(or systems of demons) evolve which have represen-
tational power, in Hofstadter’s terms, that it will be
possible to say that Active Symbols have appeared.

4 Outline of Proposed
Research

The D-machine is not a unitary object; we cannot
simply build it and see what happens. Rather, it
is a concept or a framework within which any of an
infinite variety of examples might be chosen for in-
vestigation. Thus we must invest our resources with
circumspection, and in the context of some overall
plan.

First note that the definition of the D-machine
concept has been left distinctly (and deliberately)
vague. Through much of the review of section 4, I
emphasised what D-machine are not—without ever
being very explicit about what they actually are.
The crux of this definitional uncertainty lies in the
core aspect of the D-machines—the competition be-
tween demons.

The problem here is not the usual problem of
a synthetic exercise—that we have too many con-
straints to satisfy. Quite the opposite: it is not clear
what constraints exist at all, and so we hardly know
where to start, or how to weigh the possibilities, or
even what the space of possibilities is. This is prob-
ably the most fundamental issue to be addressed:
that is, we must translate the current, informal, no-
tion of D-machine into something much more for-
mal, and circumscribed, and which provides some
guidance in the construction of such devices (even
if it is only heuristic). Unfortunately, while this is
an excellent objective, it is, almost by definition, in-
tractable. It is certainly not amenable to a direct or
focused attack at this stage. For the moment then,
we simply relegate it to the status of aspiration, and
hope that progress will be made as a natural side-
effect of the concrete work we can suggest.

Given the open nature of the topic the proposal
is, in the first instance, to rely as much as possible

7



on previous work which addresses similar issues. It
is also proposed to approach the D-machine incre-
mentally, through lesser objects which are plainly
not D-machines in themselves, rather than in one
fell swoop—hopefully this will allow some useful in-
tuitions to emerge along the way.

How can we back off from a full D-machine, but
still make progress toward it? I envisage two worth-
while stepping stones. The initial backward step
is to eliminate the interaction with an external en-
vironment. The organisation of this interaction is
clearly a deep problem which will profoundly affect
whether useful adaptation to the environment oc-
curs; but unless we already have a system which, in
the absence of environmental interaction, exhibits
spontaneous evolution toward more complex and so-
phisticated structures, then the addition of such in-
teraction seems unlikely to have a beneficial effect.
Thus, it makes sense to examine this “isolated” D-
machine first.

The second backward step is to stop short of a
computationally complete substrate (in the sense of
individual demons and/or demon systems). Compu-
tational completeness is defined into D-machines to,
in some sense, guarantee their generality as adap-
tive computational systems. However, we can try
to establish darwinian competition, and evolution,
as such, on simpler structures first: once this is
demonstrated, full computational completeness can
be added.

5 Conclusion

The ideas presented in this paper are not static:
they have evolved even as the paper itself took
shape. The result is not entirely a coherent whole,
and certain points are perhaps not presented with as
much clarity as one would like. Nonetheless, I hope
that the central core of the D-machine concept, its
genesis, and its proposed development, have been
communicated satisfactorily.

In conclusion then, I simply reiterate that this
is a tentative proposal, which would surely benefit
from criticism, correction, refinement, and further
comparison with other contemporary work in AI; I
invite, and welcome, all such commentary.

Acknowledgments

I should like to express my thanks to DCU, partic-
ularly in the person of Dr. Charles McCorkell, for
generous support of this research; to John Kelly of
UCD, and Noel Murphy of DCU, for many stim-

ulating discussions; and to Professor John Holland
of the University of Michigan for his helpful corre-
spondence and comments. This does not, of course,
imply that any of these people necessarily endorse
the ideas presented here.

References

[Fodor & Pylyshyn, 88]
Fodor, J.A., Pylyshyn, Z.W., Connectionism
and Cognitive Architecture: A Critical Analy-
sis, Cognition, 28 (1988) pp. 3–71.

[Grefenstette, 87]
Grefenstette, J.J. (Ed.), Genetic Algorithms
and their Applications: Proceedings of the Sec-
ond International Conference on GAs, Hills-
dale, NJ: Lawrence Erlbaum Associates, 1987.

[Hofstadter, 79]
Hofstadter, D.R., Gödel, Escher, Bach: An
Eternal Golden Braid, New York: Basic Books,
1979.

[Hofstadter, 83]
Hofstadter, D.R., Artificial Intelligence: Sub-
cognition as Computation. In: [Machlup &
Mansfield, 83], pp. 263–285.

[Holland & Reitman, 78]
Holland, J.H., Reitman, J.S., Cognitive Sys-
tems Based on Adaptive Algorithms. In: [Wa-
terman & Hayes Roth, 78], pp. 313–329.

[Holland, 75]
Holland, J.H. Adaptation in Natural and Arti-
ficial Systems, Ann Arbor: The University of
Michigan Press, 1975.

[Holland, 76]
Holland, J.H. Studies of the spontaneous emer-
gence of self-replicating systems using cellular
automata and formal grammars. In: [Linden-
mayer & Rozenberg, 76], pp. 385–404.

[Holland, 87]
Holland, J.H., Genetic Algorithms and Classi-
fier Systems: Foundations and Future Direc-
tions. In: [Grefenstette, 87], pp. 82–89.

[Lindenmayer & Rozenberg, 76]
Lindenmayer, A., Rozenberg, G. (Eds.), Au-
tomata, Languages, Development, New York:
North-Holland Publishing Company, 1976.

[Machlup & Mansfield, 83]
Machlup, F., Mansfield, U. (Eds.), The Study of

8



Information: Interdisciplinary Messages, New
York: Wiley Interscience, 1983.

[McMullin, 88]
McMullin, B., Darwinism Applied to Ma-
chine Learning, Technical Report Number
NIHED/EE/88-11, School of Electronic Engi-
neering, NIHED, Dublin. 1988.

[McMullin, 89]
McMullin, B. Computational Darwinism: A
Research Proposal, Technical Report Number
NIHED/EE/89-11, School of Electronic Engi-
neering, NIHED, Dublin. 1989.

[Minsky, 87]
Minsky, M., The Society of Mind, London:
Heineman, 1987.

[NPL, 59]
(National Physical Laboratory), Mechanisation
of Thought Processes, (Proceedings of a sympo-
sium held at the National Physical Laboratory,
24–27th. November, 1958), London: HMSO,
1959.

[Rumelhart et al, 86]
Rumelhart, D.E., McClelland, J.L., (and the
PDP Research Group), Parallel Distributed
Processing: Explorations in the Microstruc-
ture of Cognition, Cambridge, MA: MIT Press,
1986.

[Schaffer & Grefenstette, 88]
Schaffer, J.D., Greffenstette, J.J., A Critical
Review of Genetic Algorithms, (Forthcoming
in “Critical Reviews in AI”, Cleveland: CRC
Press, 1988.)

[Searle, 80]
Searle, J., Minds, Brains, and Programs, The
Behavioural and Brain Sciences, 3 (September,
1980), pp. 417–57.

[Selfridge, 59]
Selfridge, O.G., Pandemonium: A Paradigm
for Learning. In: [NPL, 59], pp. 511–531.

[Waterman & Hayes Roth, 78]
Waterman, D.A., Hayes Roth, F. (Eds.), Pat-
tern Directed Inference Systems, New York:
Academic Press, 1978.

9


