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Abstract

John von Neumann’s seminal investigations into the theory of complex automata
(von Neumann 1951; Burks 1966b) arguably marked the original birth of the field
now called Artificial Life. In the years since, von Neumann’s work has been studied
and elaborated in many ways; but it is my view that it has also been, to a signif-
icant extent, misunderstood. One facet of this misunderstanding revolves around
von Neumann’s concept of the Universal Constructor. Von Neumann introduced
this concept as a preliminary step in tackling the problem of realising a spontaneous
and open-ended growth in automaton complexity. He formulated the concept by an
analogy with Turing’s earlier notion of a Universal (Computing) Machine (Turing
1936). This paper attempts to identify precisely what should, and, more importantly,
should not, be read into this analogy.



1 Introduction

The seminal work carried out by John von Neu-
mann in the theory of complex automata is usu-
ally characterised as having been concerned with the
problem of realising non-trivial self-reproducing ma-
chines, where “non-trivial” is interpreted as requir-
ing that the machine contain an embedded universal
computer. This interpretation of von Neumann’s
work seems to have originated with A.W. Burks,
in his “completion” of von Neumann’s unpublished
manuscript Theory of Automata: Construction, Re-
production, Homogeneity (Burks 1966a). In any
case, it has become canonical (e.g. Codd 1968, Burks
1970b, Moore 1970, Thatcher 1970, Herman 1973,
Langton 1984, Poundstone 1985, Smith 1992).

I, on the other hand, take the view that this in-
terpretation is (and probably always was) funda-
mentally mistaken. I view it as a self-perpetuating
myth.1

Firstly, as far as I can establish, this interpreta-
tion is nowhere to be found in von Neumann’s own
writings. But even as a myth, it is of dubious co-
herence, as has been known for at least 20 years.
Thus, Herman (1973) exhibited a self-reproducing
“machine”, meeting the technical desiderata of the
von Neumann myth, but which was, nonetheless,
manifestly trivial. Langton (1984) also indepen-
dently intimated that something must be amiss with
the conventional interpretation of von Neumann’s
work (though his diagnosis of precisely what seems
to have been orthogonal to that of Herman). De-
spite such difficulties, the myth has survived largely
intact—albeit Smith (1992), for example, is reduced
to an appeal to “historical precedent” for his con-
tinued advocation of it. However, I have detailed
my objections to the von Neumann myth elsewhere,
and at length (the reader with sufficient stamina
may wish to refer to McMullin 1992, Chapter 4);
this paper is not directly concerned with that, but
rather with a prolegomenon to it.

Nonetheless, it is necessary that I make clear
my rejection of the traditional interpretation of
von Neumann’s work at the outset, for that rejec-
tion provides an essential context for the matters I
will discuss. For example, Smith has recently con-
cluded that von Neumann’s concept of a universal
constructor is essentially redundant and can be dis-
pensed with (Smith 1992, p. 719); whereas my paper
is devoted to an analysis, and attempted clarifica-
tion, of this very concept. Now there can be little

1It is not my intention here, or elsewhere, to be merely
polemical; rather, by being forthright, I hope to facilitate
subsequent criticism (and, no doubt, correction) of my views.

point in further refining concepts which are already
otiose, so there is evidently something not quite
right here. The explanation for my apparent obdu-
racy is simply that Smith and I are operating within
different (perhaps even “incomensurable”!) problem
situations: Smith endorses the von Neumann myth
(and I will happily stipulate that his conclusions are
valid in that context); but I reject the von Neumann
myth, and this leads me to believe that von Neu-
mann’s concept of the universal constructor is not
only still useful, but absolutely pivotal to a proper
understanding of von Neumann’s real achievement.
Indeed, my belief is that this proper understanding
may be blocked if the concept is not very carefully
clarified; and providing such clarification is precisely
my objective here.

In brief then, my approach will be this. I first
introduce some specialised terminology. This may
represent a degree of overkill for the limited pur-
poses of this paper: but it is essential to the more de-
tailed discussions the paper potentially leads on to,
elsewhere, and I therefore prefer to retain as much
consistency as possible—even at the risk of compli-
cating this preliminary presentation. I then state my
own view of the problem von Neumann was actually
originally attempting to solve (which, of course, dif-
fers fundamentally from the von Neumann myth);
and I go on, in the context of this (admittedly icon-
oclastic) view of von Neumann’s problem, to review
and re-present his concept of the universal construc-
tor.

2 Some Terminology

I shall refer to some particular formalisation of ab-
stract automata as defining an A-system. Within
the context of such a particular A-system I shall re-
fer to the entities which are to be regarded as “au-
tomata” as A-machines. The possible “primitive”
(irreducible) parts of an A-machine will be called
A-parts. Some A-machines may operate so as to ac-
quire further A-parts, and assemble them into new
A-machines. I shall call these A-constructors. Some
A-constructors may, in turn, be capable of con-
structing offspring which are “identical” to them-
selves. I shall call these A-reproducers.
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3 Von Neumann’s
Problem (Pv)

Everyone knows that a machine tool is more
complicated than the elements which can be
made with it, and that, generally speaking, an
automaton A, which can make an automaton
B, must contain a complete description of B

and also rules on how to behave while effect-
ing the synthesis. So, one gets a very strong
impression that complication, or productive
potentiality in an organization, is degenera-
tive, that an organization which synthesizes
something is necessarily more complicated, of
a higher order, than the organization it syn-
thesizes.

von Neumann (1966a, p. 79)

If this were really so it would represent, at the very
least, a severe difficulty for the continued application
of mechanistic theories in evolutionary biology—it
is evidently an issue of considerable importance.
Von Neumann proposed to resolve this issue by a
“proof-of-principle” argument: i.e. by demonstrat-
ing the possibility of a spontaneous, open-ended,
growth of automaton “complexity” within a rigidly
mechanistic, and completely formalised, framework.
The problem of achieving this is what I refer to as
Von Neumann’s Problem or Pv . It seems to me that
Von Neumann’s crucial insight was to recognise that
there is a way whereby Pv can be solved (at least in
principle), and solved relatively easily at that. How-
ever, in this paper, I concentrate only on one prelim-
inary step in von Neumann’s solution schema: the
concept of a universal constructor.

4 The AT -system

Von Neumann’s attempted solution to Pv was heav-
ily, and explicitly, influenced by Turing’s formu-
lation and analysis of a certain formalised class
of “computing machines” (Turing 1936). Turing’s
analysis had the following general structure. He
first introduced a basic formalisation of the notion
of a computing machine. In my terms, this cor-
responds to the definition of a (more or less) spe-
cific A-system. I shall distinguish references to this
with a subscript T , thus: AT -system, AT -machine
etc. What I term an AT -machine is, of course, what
is more commonly referred to as a Turing Machine
(e.g. Minsky 1967).

One of Turing’s major results was that, in a per-
fectly definite sense, certain particular AT -machines
can be so configured that they can simulate the

(computational) operations of any AT -machine—
and can thus, in a definite sense, realise the same
“computation” as any AT -machine.

Turing called any AT -machine having this prop-
erty a universal (computing) machine. Von Neu-
mann referred to this same property as “logical uni-
versality” (von Neumann 1966b, p. 92). It should
be clear that this concept (though not any partic-
ular automaton) can be generalised across any A-
system which supports a notion of “computing au-
tomaton”, in the following way. Call any “computa-
tion” which can be carried out by some A-machine
an A-computation; then, a “universal logical (com-
putational) machine”, which I shall call a ULM, is
a single A-machine which, when suitably “config-
ured”, can carry out any A-computation.

Note carefully that (so far, at least), there is no
claim about any relationship which might exist be-
tween A-computations (and thus ULMs) in different
A-systems. The ULM concept is well defined only
relative to a particular A-system (and especially the
particular notion of A-computation incorporated in
that A-system).

We may restate Turing’s claim then as a specific
claim for the existence of at least one ULM within
the AT -system—i.e. the existence of a ULMT .
Again, what I call a ULMT is now most commonly
referred to as a Universal Turing Machine (Minsky
1967). An essential concept in Turing’s formula-
tion of his ULMT is that its operations are “pro-
grammed” by a list of “instructions” and that, as
long as a fairly small basis set of instructions are sup-
ported, it is possible to completely describe the com-
putational behaviour of an arbitrary AT -machine in
terms of a finite sequence of such instructions. That
is, a ULMT is made to simulate the computations
of any arbitrary AT -machine simply by providing
it with an appropriately coded description of that
machine.

In itself, Turing’s claim for the existence of at least
one ULMT is neutral as to whether ULM’s can or do
exist in any other A-system, or whether “computing
machines” in general share any interesting proper-
ties across different A-systems. These are important
issues, which were central to the problem which Tur-
ing was attempting to solve. They will be taken
up again in due course. For the moment, however,
note that although von Neumann was inspired by
Turing’s work on the AT -system, his problem was
entirely different from Turing’s problem; and, as a
result, these issues prove to be more or less irrele-
vant to von Neumann’s work.
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5 Universal the First

Turing formulated the AT -machines specifically as
computing machines; the things which they can ma-
nipulate or operate upon are not at all the same
kinds of things as they are made of. There are
no such things as AT -constructors or, more partic-
ularly, AT -reproducers.

Von Neumann’s basic idea was to generalise
Turing’s analysis by considering abstract machines
which could operate on, or manipulate, things of the
“same sort” as those of which they are themselves
constructed. He saw that, by generalising Turing’s
analysis in this way, it would be possible to solve
Pv in a very definite, and rather elegant, way. In
fact, von Neumann considered a number of distinct
A-systems, which are not “equivalent” in any gen-
eral way, and which were not always completely for-
malised in any case. However, a key thread running
throughout all this work was to introduce something
roughly analogous to the general concept of a ULM,
but defined relative to some notion of “construc-
tion” rather than “computation”. Von Neumann’s
new concept refers to a particular kind of A-machine
which he called a universal constructor ; I shall call
this a “universal constructing machine”, or UCM.

The analogy between the ULM and UCM con-
cepts is precisely as follows. Like a ULM, the be-
haviour of a UCM can be “programmed”, in a rather
general way, via a list of “instructions”. In particu-
lar, these instructions may provide, in a suitably en-
coded form, a description of some A-machine; and
in that case, the effect of “programming” the UCM
with that description will be to cause it to construct
the described A-machine (assuming some suitable
“environmental” conditions). Thus, just as a ULM
can “simulate the computation of” any A-machine
(when once furnished with a description of it), so a
UCM should be able to “construct” any A-machine
(again, when once furnished with a description of it,
and, of course, always working within a particular
formalisation of “A-machine”, which is to say a par-
ticular A-system). We may trivially note that since
there do not exist any AT -constructors at all, there
certainly does not exist a UCMT , i.e. a UCM within
the AT -system.

I emphasise strongly here that it was precisely,
and solely, the spanning of all A-machines in a par-
ticular A-system that mandated Turing’s original
usage of the word “universal” (in “universal ma-
chine”, or ULMT in my terms), and which there-
fore also mandated von Neumann’s analogous usage
(in “universal constructor”, or UCM in my terms).
The typical operations of the two kinds of machine

(computation and construction, respectively) are, of
course, quite different.

In Turing’s original paper (Turing 1936) he ar-
gued, inter alia, that there exists a ULMT . This
is a technical, formal, result—a theorem in short—
which Turing proved by actually exhibiting an ex-
ample of a specific AT -machine having this property.
We shall see that von Neumann sought to achieve
an essentially analogous, perfectly formal, result for
a UCM—i.e. to prove the existence of such things,
at least within some “reasonable” A-system, and to
do so by precisely paralleling Turing’s procedure,
which is to say by actually exhibiting one. At this
level, the analogy between these two developments
is very strong and direct, and the word “universal”
has a clearly related implication in both “UCM” and
“ULM” within their respective domains. However,
a problem arises because the “universal” in “ULM”
actually admits of a number of quite distinct in-
terpretations or connotations—only one of which is
the one described above as being legitimately pre-
served in von Neumann’s intended analogy. If one
mistakenly supposes that any of the other conno-
tations should be preserved (as well as, or instead
of, the correct one) then the result can be serious
confusion, if not outright error.

6 Universal the Second

The second interpretation of “universal”—and the
first which it would be erroneous to impute to the
UCM—revolves around the idea that what makes a
ULM “universal” is not just that there exists some
relationship between it and some complete set of
A-machines, but that there exists a very particu-
lar relationship—namely that of being able, when
suitably programmed, to carry out the same A-
computations. To put it another way, the “univer-
sality” of the ULM is seen to be inseparably bound
up with the idea of “computation”, so that it is not
so much a matter of spanning a set of (A-)machines,
but rather to be specifically about spanning a set
of (A-)computations. Now this is not an entirely
unreasonable interpretation of “universal”—as long
as we restrict attention to ULM’s; because, in that
case, it is entirely compatible with the original in-
terpretation. However, in the case of a UCM this
interpretation is deeply problematic. If we try to
force it, we come up with something like this: given
any (A-)computation, a UCM can, when suitably
programmed, construct an A-machine which could,
in turn, carry out that (A-)computation.

Now this is a most abstruse, and unlikely, inter-
pretation. After all, von Neumann’s whole point
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is to talk about automata which can construct au-
tomata like themselves; whereas, under this inter-
pretation the definition of a UCM would make no
reference at all to its ability to construct automata
“like itself” (i.e. which could, in their turn, also
construct further automata “like” themselves), but
would instead talk about the ability of a UCM
to construct automata of a different kind—namely,
“computing” automata. Nonetheless, precisely this
interpretation has been adopted in some of the liter-
ature, as we shall see. To explain how, and perhaps
why, this arises, it is first useful to distinguish three
variants on the idea, which differ in exactly how the
“universal” set of “computations”, which is to be
spanned by the offspring of the UCM, is defined:

• In the simplest case, we assume that the A-
system, in which the putative UCM exists, it-
self supports some definite notion of computa-
tion, which is to say it defines some set of A-
computations. We then require only that the
offspring of the UCM span this set. We place
no a priori constraints or requirements on what
should qualify as an “A-computation”.

• In the second case, we require that the set
of A-computations of the A-system be such
that, in some well defined sense, for every
AT -computation there must be at least one
“equivalent” A-computation. Assuming that
such a relationship could somehow be estab-
lished, we then require that the offspring of the
UCM span some set of A-computations which
is “equivalent” to the set of AT -computations
(this may, or may not, be the complete set of
all A-computations). On this interpretation, a
UCM is related not to the “general” notion of
a ULM, but to the specific case of a ULMT .

• Finally, we might require that the set of A-
computations of the A-system be such that, in
some well defined sense, for every “computa-
tion” of any sort, which can be effectively car-
ried out at all, there must be some “equivalent”
A-computation. Assuming, again, that such a
relationship could somehow be established, we
then require that the offspring of the UCM span
some set of A-computations which is “equiv-
alent” to the set of all effective computations
(and again, this may, or may not, be the com-
plete set of all A-computations).

I refer to all three of these (sub-)interpretations of
the “universal” in UCM as being “computational”.
The first two of these could, in principle at least,
be completely formalised in particular A-systems,

so that the existence of a UCM in these (some-
what peculiar) senses would, at least, be a matter of
fact, which might admit of proof or disproof. How-
ever, the third computational interpretation relies
on the informal notion of what constitutes an “ef-
fective computation”, and will always be a matter
of opinion or convention rather than fact; there is
no possibility of the existence (or otherwise) of a
UCM, in this sense, being decisively established for
any A-system.

Having said that, Turing (1936) argued (infor-
mally, of course) that the AT -system already cap-
tures everything that could “reasonably” be re-
garded as an effective computation. This proposal
is now referred to as the Church-Turing thesis. Due
to its necessarily informal nature, it is a thesis not
a theorem; nonetheless it is now widely regarded as
being well founded (e.g. Minsky 1967, Chapter 5).

Now if the Church-Turing Thesis is accepted,
then the third (computational) interpretation of
UCM becomes exactly equivalent to the second. In-
deed, one may say that the only reasonable basis for
introducing the second computational interpreta-
tion at all is on the understanding that the Church-
Turing thesis holds, because this implies that the
AT -computations provide an absolute benchmark of
all kinds of computation. If this were not the case,
then it would appear rather arbitrary to single out
this set of computations for special significance rel-
ative to the notion of UCM.

More generally, it seems to me that it is only in the
context of the Church-Turing Thesis that a strictly
computational interpretation of the “universal” in
UCM suggests itself at all. The point is that a
ULMT is (by definition) capable of carrying out all
AT -computations; and therefore, under the condi-
tions of the Church-Turing Thesis, a ULMT is, in
fact, capable of carrying out all effective computa-
tions. We should perhaps say that a ULMT is dou-
bly universal: it is firstly universal with respect to
all AT -computations (which gave it its original ti-
tle); but this then turns out (at least if the Church-
Turing Thesis is accepted) to mean that it is univer-
sal with respect to the computations of any effective
computing system whatsoever, not “just” those of
the AT -system. To make this completely clear, we
should perhaps refer to a UULM, or U2LM; but,
since there is apparently no conflict between these
two distinct attributions of universal (i.e. since the
Church-Turing Thesis asserts that they are synony-
mous) it has become conventional not to bother to
distinguish them; the single “U” in ULMT (i.e. in
“universal Turing machine”) is, today, flexibly in-
terpreted in either or both of these two senses, as
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the context may demand, without any further com-
ment. I suggest that it is only because these two
connotations of “universal” in ULMT are not nor-
mally distinguished, that a strictly computational
interpretation of “universal construction”, or UCM,
(i.e. any of the three such interpretations I have dis-
tinguished above) is typically entertained at all.

I stated that computational interpretation(s) of
UCM have appeared in the literature. It is not al-
ways possible to isolate exactly which of the three
identified sub-cases are intended. In any case, the
most explicit (and, to the best of my knowledge,
the earliest) advocate of a computational view of
the UCM concept is E.F. Codd, and his proposal is
quite precise, corresponding exactly to what I iden-
tified above as the second computational interpreta-
tion:

The notion of construction universality which
we are about to formalise demands of a space
the existence of configurations with the ability
to construct a rich enough set of computers
such that with this set any Turing-computable
partial function on a Turing domain can be
computed in the space.

Codd (1968, p. 13)

Codd’s interpretation of UCM has been explic-
itly repeated by Herman (1973). Langton (1984)
does not explicitly endorse Codd’s interpretation as
such, but does equate Codd’s concept with von Neu-
mann’s, which I consider to be mistaken.

I should admit that the position, typified here by
Codd, is not quite as perverse as I have painted
it. Codd had special reasons for his particular
approach,2 and, even aside from these, it can ul-
timately prove useful to say something about the
“computational” powers of A-constructors and/or
their offspring, in the overall solution schema for Pv

(McMullin 1992, Chapter 4). However, my claim is
that such powers need form no part of the essen-
tial definition of the UCM concept; in particular,
they seem to be no part of von Neumann’s analogy
between the ULM and the UCM. While Codd’s def-
inition cannot be said to be “wrong”, it is certainly
different, in a substantive way, from von Neumann’s;
more seriously, it seems to me that adopting such
an interpretation fatally undermines von Neumann’s
proposed solution to Pv . To see why this is so, note
that the Church-Turing thesis was proposed for a
very definite reason. Both Church and Turing were
attempting to solve the so-called Entscheidungsprob-
lem, the decision problem of (meta-)mathematics.

2He was inter alia interested in the the design of massively
parallel computers.

The statement of this problem explicitly referred to
the (informal) notion of a “definite method”, or an
“effective procedure” as it is now called; thus Tur-
ing’s work could conceivably be regarded as a solu-
tion of this problem only if the Church-Turing the-
sis were accepted. The thesis was thus absolutely
central and essential to Turing’s analysis. Von Neu-
mann’s problem, on the other hand (at least in my
formulation as Pv), makes no reference whatsoever
to computation, “effective” or otherwise; so I sug-
gest that the Church-Turing thesis, and computa-
tional universality as such, can have no essential
rôle to play in its solution.

7 Universal the Third

I now come (briefly) to a third conceivable inter-
pretation of “universal” (in UCM). This again in-
volves the Church-Turing thesis, but in a way which
is quite different from the strictly computational in-
terpretations just outlined. Roughly speaking, the
Church-Turing thesis says that the computations of
which AT -machines are capable are universal with
respect to all computational systems—regardless,
for example, of their “material” structure. We
could thus attempt to carry over this whole the-
sis, through von Neumann’s analogy, to say some-
thing, not about computational systems in general,
but constructional systems in general.

The point here is that the analogy between the
ULM and UCM concepts is so strong that one
might be easily lulled into supposing that there is
some obvious generalisation of the Church-Turing
thesis; which would imply, in turn, that a UCM,
in any “sufficiently powerful” A-system, captures
something important about the powers of all au-
tomata, in all formal frameworks, and, by implica-
tion, about the powers of all “real” (physical) au-
tomata. It is important to emphasise that von Neu-
mann himself never asserted, much less argued for,
any such thesis; and that, for what it is worth, it
seems unlikely (to me) that such a thesis could be
defended. Conversely, to assume that some such
thesis holds will be confusing at the very least, and
also liable to lead to actual error in interpreting the
implications of von Neumann’s work.

As far as I am aware, no worker has ever explic-
itly argued for such a generalisation of the Church-
Turing thesis—but there are some indications of
its having been at least implicitly assumed. Thus,
Thatcher (1970, pp. 153, 186) makes passing refer-
ence to such a possibility, though he does not ex-
plore it in any detail. More substantively, while
Tipler (1981; 1982) does not explicitly mention the
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Church-Turing thesis, he does interpret von Neu-
mann’s work as having extremely wide-ranging ap-
plicability, well outside anything actually mentioned
by von Neumann himself. In brief, Tipler cites
von Neumann as establishing that a “real”, phys-
ical, UCM, which can construct any physical object
or device whatsoever (given an appropriate descrip-
tion, sufficient raw materials, energy, and, presum-
ably, time), can be built. I suggest that such a
claim must implicitly rely inter alia on something
like a generalised Church-Turing Thesis; it is, in
any case, directly contrary to von Neumann’s com-
ment, in discussing the general nature of his theory,
that “Any result one might reach in this manner will
depend quite essentially on how one has chosen to
define the elementary parts” (von Neumann 1966a,
p. 70).

8 Conclusion

Von Neumann introduced the notion of a UCM,
by analogy with Turing’s ULMT , as a particular
kind of A-machine which could, when suitably pro-
grammed, construct any “machine”; but this notion
only becomes precise in the context of a particu-
lar formalisation of “machine”, i.e. a particular A-
system. I claim that the UCM concept, as originally
formulated by von Neumann, does not inherently in-
volve any comment about the “computational” pow-
ers either of itself or of its offspring, and does not
involve or imply any “natural” generalisation of the
Church-Turing Thesis.
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