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Abstract

Symbolic AI is argued to be epistemologically and
ontologically necessary but insufficient for con-
structing robust AI. Two principles, embodiment
and situatedness, are elaborated which any global
theory of AI must incorporate. These principles re-
quire autonomous robotics to form a basis for AI.
Learning is the key to the development of more
autonomous robots. Artificial neural networks are
evaluated for their ability to learn to integrate ro-
bust sensory categorisation with motor control. The
future relationship of artificial neural networks to
symbolic AI is speculated on.

9.1 Thinking Machines

How do you swat a fly with your hand? Is intel-
ligence required for visually guided grasping of a
moving object? Given the complexity and fluidity
of your environment, how do you learn the appropri-
ate representations for performing a particular task
in a particular situation? Are explanations of men-
tal phenomena such as language understanding ul-
timately contingent on explanations of bodily phe-
nomena such as muscle control?

Philosophical attempts to cut through the Gor-
dian knot connecting mind to body have been sup-
plemented by two relatively modern methodologies.
Following a natural science program, psychology,
neuroscience, linguistics, anthropology, and ethol-
ogy gather experimental data on humans and an-
imals and construct accommodating theories. A
novel computational methodology investigates ob-
jects that are considered imitations of living sys-
tems and their behaviour. Computers can simulate,
at different levels of abstraction, the transformation
of information performed by nervous systems. From
the 1950s onwards, the success of the von Neumann
digital computer promoted the information process-
ing metaphor of mind as sequential software com-
piled onto nervous system hardware.

The metaphor implied that a computer could it-
self be artificially intelligent (AI). In a seminal pa-
per, Turing (1950) suggested two, not necessarily
exclusive, future directions for the development of
AI:

We may hope that machines will eventu-
ally compete with men in all purely intel-
lectual fields. But which are the best ones
to start with? Even this is a difficult de-
cision. Many people think that a very ab-
stract activity like playing chess would be

the best. It can also be maintained that
it is best to provide the machine with the
best sense organs that money can buy, and
then teach it to understand and speak En-
glish. The process would follow the nor-
mal teaching of a child. Things would be
pointed out and named etc.

Turing (1950, p. 460)

The “chess” or symbolic approach has dominated
attempts to theorise about and build intelligent sys-
tems. While the symbolic AI enterprise is heteroge-
neous, its essential premise is that processes similar
to introspected conscious reasoning underlie all in-
telligent behaviour.

9.2 Symbolic AI

Practitioners of symbolic AI maintain that intelli-
gent behaviour involves the appropriate manipula-
tion of discrete mental representations of the world
(e.g., see Stillings et al. 1987). Typically these rep-
resentations are viewed as linguistic symbols which
stand for the real-world entities that they repre-
sent, and their manipulation is regarded as compu-
tation akin to formal logic (e.g., Fodor’s Language
of Thought, 1976). Traditional formal logics ap-
ply rules of inference to statements formed by ap-
plying Boolean quantifiers and connectives to sym-
bols for individuals or classes. Classes (equating to
mental concepts) are defined by rules for classifying
symbols. Newell & Simon’s (1976) articulation of
the relationship of such logics to intelligence under
the Physical Symbol Systems Hypothesis (PSSH) is
adopted as exemplary. Physical symbol systems are
collections of symbols (discretely identifiable pat-
terns in a machine) with an associated syntax and
formal rules of manipulation. Such a system, as “a
machine that produces through time an evolving col-
lection of symbol structures” (Newell & Simon 1976,
p. 116), is hypothesised to have the necessary and
sufficient means for general intelligent action. It
is assumed that the symbols in such a system un-
problematically denote (refer to) things in the world.
System behaviour is described in terms of knowl-
edge, goals, and actions. Evaluation of the PSSH is
via verbal interrogation of a candidate system, the
so called Turing Test. Ex hypothesi, perception,
learning, memory, reasoning, language and action
involve only the construction and manipulation of
appropriate discrete symbolic representations of the
external world.

Symbolic AI is competence oriented, modelling
specific, often very advanced, human abilities (e.g.,
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chess playing, medical diagnosis). The PSSH in-
duces a top-down engineering methodology. First,
a problem domain is selected. Then, formal mod-
els of this micro-world are defined, typically based
on axiomatic (frequently introspected) outputs of
sensory systems. It is assumed that sensory sys-
tems can deliver these in a straight forward man-
ner. Top-down versions of planning problems, learn-
ing problems, etc. are solved in these formal micro
models. The resulting problem representations, in-
geniously crafted by AI programmers, are task spe-
cific and not readily generalisable to other domains.
Nevertheless, the great success of symbolic AI at
modelling serial conscious reasoning in clean precise
problem domains, especially inherently formal ones
like chess, has sanctioned certain fundamental as-
sumptions about constructing AIs.

The PSSH and Turing’s universal theory of com-
putation (cf. Davis & Weyuker 1983) have perpe-
trated a doctrine of implementation independence.
Given that all computers can be simulated by a spe-
cial universal Turing machine and given that soft-
ware ideally compiles on different hardware plat-
forms, formal models are widely conceived to be suf-
ficient to determine mental computation. However
it is also well recognised that Turing’s formalisation
of computation is disengaged from the space/time
complexity constraints on real-world computation
imposed by finite memory, physical instability of
different classes of computers, etc. The severance of
formal models from implementation under the PSSH
occludes the impact of implementation on gener-
ation and selection of appropriate formal atoms.
Worse still, PSSH style attemps to explicitly for-
malise intelligence operate within a restricted con-
ception of natural intelligence.

9.3 Insufficiency of
Symbolic AI

9.3.1 Epistemological Insufficiency

Human cognition only approximates the ideal ratio-
nality of logic (e.g., Gelman 1988). Is this evidence
of some sort of weakness of the processing system
or the result of the underlying human processing
mechanism? While our capacity to reason is vital
for intelligent behaviour, it is probably more akin to
pattern recognition than formal logic. Rumelhart
et al. (1986b) argue that mental logics (e.g., iconic
and analogical reasoning) are contingent on internal-
isation of external notation systems appropriate for
a particular inferential task. This important aspect

of human reasoning, development and selection of
appropriate formalism, is peripheral to much sym-
bolic AI.

Among the most impressive and powerful results
of thirty odd years of research in symbolic AI are ex-
pert systems. These are formal codifications of tech-
nical domains which serve as important tools for en-
hancing naive human decision-making. They func-
tion as special-purpose intelligently organised infor-
mation repositories. However, the obvious limita-
tions of expert systems as a theory of general natural
intelligence foregrounds the centrality of representa-
tional autonomy for any genuine AI. The develop-
ment of autonomous intelligence using symbolic AI
persistantly receeds. Nevertheless, negative results
are valuable for hardening many issues pertinent to
AI. Perhaps the most sustained symbolic attempt
is the 10 year program of Lenat et al. to construct
an AI system by encoding encyclopaedic knowledge
into a very large knowledge base (Lenat & Feigen-
baum 1991). Despite their periodic claims to be
on the verge of breakthrough, Smith (1991) argues
that what the project has in fact demonstrated is
that making explicit aspects of knowledge which re-
sult from bodily participation in the world is the
most intractable barrier to the formalisation of hu-
man knowledge.

The engineering shortcomings of the PSSH par-
allel philosophical cracks in the rationalist assump-
tions underpinning the hypothesis. During the eigh-
teenth century enlightenment, it became widely ac-
cepted in Europe that reason applied to the control
of mechanical nature resulted in progress. The ratio-
nalist conception of Truth elaborated Platonic and
Cartesian dualism by requiring that:

. . . there is a unique set of concepts and a
unique set of propositions employing these
concepts that adequately express the na-
ture of the world, and that these proposi-
tions form a system and could ideally be
recognised as a set of [a priori ] necessary
truths.

Willams (1972, p. 73)

This may seem eminently plausable and it is the
modus operandi of many logicians but it is also
hotly disputed by subsequent romantic and mod-
ern philosophers. The most devastating epistemo-
logical critique of rationalism or transcendental ob-
jectivism is due to Hilary Putnam (1981). Model
theories are formal frameworks for objectivism. For
model-theories, the meaning (semantics) of a sen-
tence is a function that assigns a truth value to the
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sentence in each possible situation. The meaning
of each term in a sentence is that which it refers
to in each possible situation. Thus, summation of
the truth values of a sentence’s elements results in
a sentence’s truth value. However, for any success-
ful theory of meaning, changing the meanings of the
components must alter the meaning of the whole
sentence. If this requirement is violated by even
one valid sentence governed by a candidate theory
of meaning, it negates the theory.

Using this requirement as leverage, Putnam
proves that model theories refer inconsistently to
entities in the world. Given any model theory, he
demonstrates that the truth value of a sentence like
a cat is on a mat can remain constant while the ref-
erent of cat changes from cats to cherries and the ref-
erent of mat changes from mats to trees (using judi-
cious definitions of cat and mat). But . . . if the ref-
erence of the elements changes while sentence truth
is preserved, then meaning evaporates. PSSH, also
characterisable as the pairing of meaningless strings
of symbols with meaningless model structures, thus
does not qualify as a theory of meaning. The logical
inadequacy of an objective representational inter-
language is supported by evidence on natural cate-
gories in language (Lakoff 1987, 1987, see below) and
arguments from evolutionary biology (Maturana &
Varela 1980, see below).

Consideration of the above leads me to make a
strong claim: The post-enlightenment failure to ex-
plicitly articulate and encode the totality of human
knowledge results from the absence of a fixed, objec-
tive universal description of the world. If a stable
general representation of the world independent of
a given task is unavailable for encoding into formal
representations to be operated on by symbolic AI
systems, then a critical problem for such systems is
their extra-referential status outside their program-
mer’s mind. This appears to be the basis for Searle’s
(1980) Chinese Room argument that strong sym-
bolic AI is devoid of semantic content.

What nonetheless accounts for the intuitive per-
suasiveness of combining discrete symbols according
to rules to explain our rational behaviour? When
people are asked to give retrospective reports of
their mental processes, they tend instead to provide
a justification for their actions. Rationality is essen-
tially this type of social justification (Harrè 1983).
What is labelled rationality/logical reasoning, and
attributed to the working of the individual mind, is
a public reconstruction meant to legitimate a con-
clusion by showing it can be derived by procedures
recognised as valid. According to this viewpoint,
rules are part of the regulative framework for the so-

cial construction of rationality. Personal rationality,
results from turning the social process of justifica-
tion inward upon one’s own thoughts. The cognitive
apparatus is increasingly constrained to output ac-
cording to what is publicly justifiable rather than
driven by any intrinsic formal system. Rules, thus
may play an important role as knowledge that enters
into behavioural computations but do not constitute
the computational algorithms themselves. Once it
is accepted that rules operating on discrete symbols
are insufficient for generating intelligent behaviour,
then we may wonder just what is?

Extant successful biological algorithms take into
account that action is essentially situated (i.e., con-
tingent on actual unfolding situations). It appears
that a priori prescriptions can not anticipate all
contingencies that could arise during a given inter-
action of a system with the real world. Further-
more, a posteriori rationalisations of actions often
suppress details that are critical during an action.
Agre & Chapman (1987) conclude, based on analysis
of the inadequacy of rule-based robot motion plan-
ning, that rule-based representations are useful for
post hoc communication about intelligent behaviour
rather than mechanisms underlying such behaviour.
The kernel of intelligent behaviour is the ability to
adapt to dynamic environments. An agent engaged
in ongoing interaction with her environment contin-
uously adjusts to the changing internal and external
circumstances of that interaction in such a way as to
achieve her objectives. Maturana & Varela (1980)
argue that adaptive animal behaviour only requires
such structural congruences between the dynamics
of an intelligent animal’s internal mechanism and
the dynamics of the external world. There is no ne-
cessity that an observer be able to distinguish dis-
crete internal structural configurations, or complex
functions of such representations which correspond
to the animal’s environment (à la PSSH).

From these perspectives, the impressive perfor-
mance of many symbolic AI systems has limited rel-
evance for understanding natural intelligence. Sym-
bolic AI emphasises algorithmic processes like search
or exact reasoning while neglecting such basic nat-
ural adaptive abilities as perception and categorisa-
tion. Perception and motor control are the hard
problems that any autonomous intelligent system
must solve. Input/output representations constrain
greatly the engineering of aspects of intelligence,
like inference, that are contingent on categorisa-
tion. Rosch’s (1981) investigation of natural lin-
guistic categories indicates that many are structured
probabilistically and interconnected in a manner not
amenable to intensional definition. Problems con-

140



Reconstructing AI Conor Doherty

necting the arbitrary PSSH symbols used in inter-
nal reasoning with external physical stimuli, “sym-
bol grounding” (Harnad 1992), and resulting AI sys-
tem failure in domains even a little different from
the ones they were programmed for, “brittleness”
(Holland 1986), highlight the need for bottom-up
design. During evolution, environmental demands
channeled sensor and effector design which in turn
structured adaptive control architectures. Neglect
of the effect on categorisation of sensor and effector
structure leads to symbolic AI’s second deficiency.

9.3.2 Ontological Insufficiency

Historically, symbolic AI ignored neuroscience as
largely irrelevant to its goals because of an im-
plementation independence doctrine. Marr (1982)
elaborated the most sophisticated version of this au-
tonomy thesis. He argued that vision can be anal-
ysed into three loosely coupled functional levels:

1. A Computational Theory level characterises the
goal of a computation.

2. This goal is realised by an input output repre-
sentation and algorithm level.

3. A physical hardware implementation level re-
alises the algorithm that realises the goal.

Marr’s analysis of operation levels is complete for
stable systems not undergoing morphological trans-
formation as a result of processing, unlike adaptive
biological systems. Considering similar neurbiologi-
cal evidence, Arbib (1987) concludes that:

. . . Marr’s (e.g., [Marr 1982]) notion of an
independent computational level of analy-
sis as mistaken—for example, one cannot
give an a priori analysis of depth percep-
tion because different animals (or different
subsystems of a given animal) may make
different uses of different cues that cannot
be discovered until ‘implementational de-
tails’ (the data of neuroscience) are taken
into account.

Arbib (1987, p. 407)

Arbib’s claim is that a biological system’s imple-
mentational details contribute centrally to the way
it’s task is conceived and described at the functional
level. Additionally, structural network levels of de-
scription provide a compact way of encompassing
large classes of symbolic algorithmic descriptions of
the behaviour of a system where a network with

a particular learning algorithm can generate many
specific algorithms to solve large classes of problems.
Current neuroscientific data indicates that:

. . . software and hardware are one [and]
the same in the nervous system. . . . Ex-
tensive evidence indicates that the brain is
not an immutable series of circuits of in-
variant elements; rather it is in constant
structural and functional flux. The digital
computer analogy is fatally misleading.

Black (1988, pp. 2–3)

At the other end of the mind/body continium,
the consequences for mental functioning of bodily
structure have been investigated by Phenomenology.
Phenomenologists claim that meaning is located at
the intersection of a person’s social, historical, bod-
ily and spatial situation. Merleau-Ponty (1964) ar-
gued that whenever a person perceives or acts on
the world, it is articulated in perspectives centrally
related to the body, such as within or beyond reach,
above or below, etc. Dreyfus’s critique of symbolic
AI (e.g., Dreyfus 1979) is grounded in phenomeno-
logical theories of meaning and since these in turn
are derived from continental European dialectical
and hermeneutic modes of inquiry, it is not sur-
prising that Anglo-American logico-empiricists re-
ject the claim that the frame problem results from
representational context sensitivity all the way down
to the sensorimotor foundations of cognitive activ-
ity.

Weaving epistemological and ontological strands
together, Lakoff (1987) argues that the development
of linguistic natural categories depends on a sub-
conceptual layer of bodily experiences and imagery
that are directly meaningful, with concepts draw-
ing their meaning from their relations to the sub
conceptual meanings. Such a functional semantics,
in contrast to symbolic AI’s model-theoretic seman-
tics, assigns internal representations their meanings
by virtue of their causal role in the mental processes
of the instantiating organism. In other words, what
you know depends on what you do.

Mechatronics concurrently integrates mechanical,
electronic and informatic constraints to produce op-
timal structures, communication and control in ma-
chines. It provides engineering support for the ben-
efits of tighter interrelation of functions and struc-
tures. Projected miniaturisation technologies en-
abling processes such as 3D molecular computing
(Hansson 1991), will accelerate the collapse of the
present software/hardware distinction. As molec-
ular computers are developed, we may hope that
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computation will become more brain like and even
beyond. However, how can such molecular machines
be released into constantly changing environments if
explicit programming is inadequate?

Turing’s second suggested AI research avenue in-
corporated situatedness and embodiment. He rec-
ommended placing a robot, tabula rasa, in a real
sensory environment where it could learn by experi-
ence and interaction with a teacher. Some early re-
search in artificial neural networks (ANNs) followed
such a program.

9.4 Numerical AI

ANNs are computational systems loosely inspired by
information processing in nervous tissue. In 1943,
McCulloch & Pitts published a landmark paper on
computation in the nervous system that implied
that the brain computed logical functions using net-
works of simple threshold logic units (McCulloch &
Pitts 1943). In 1958, Rosenblatt developed the Per-
ceptron, an algorithm which by changing numeri-
cal values of connections between a pattern input
layer and a classification output layer learns to as-
sociate input patterns with output patterns (Rosen-
blat 1958). In 1969, Minsky & Papert proved the
Perceptron incapable of learning non linear classi-
fication and surmised (incorrectly it subsequently
transpired) that a multi-layer learning algorithm did
not exist which could learn such tasks (Minsky &
Papert 1969). Their analysis precipitated the as-
cendancy of symbolic AI and the refraction of the
first ANN phase.

ANNs are massively parallel processing architec-
tures characterised by properties such as the ability
to adapt and learn, to cluster or organise data, and
to generalise. While the electrochemical dynamics
of real neurons are only partially understood, they
can ideally be considered as switching elements that
sum their inputs and output a signal if the sum ex-
ceeds a threshold. Excitatory and inhibitory input
connection “strengths” are represented by positive
and negative numbers. Actual neural signals, which
are pulse trains, are represented by a single average
real value. This numerical style of computation does
not assign a discrete referential meaning to connec-
tion values unlike symbols under the PSSH.

ANNs can be regarded as generalised tensor maps
that transform input vectors to output vectors (Pel-
lionisz & Llinas 1985). If a cost function is asso-
ciated with the output vectors, it can be optimised
by changing the “strengths” of network connections.
Such optimisation is called learning. Learning is
central to the construction of robust intelligence.

The revival of ANNs during the 1980s depended on
new learning algorithms such as backpropagation
(Rumelhart et al. 1986a), and cheap serial work-
stations for simulation. The backpropagation algo-
rithm overturned Minsky & Papert’s (1969) specu-
lation that a multi-layer Perceptron learning algo-
rithm could not be developed which was capable of
learning non linear classification.

ANNs have demonstrated themselves capable of
learning variable binding (Touretsky 1990), albeit
operating inefficiently compared to symbolic AI
parsers. ANNs have widened the definition of com-
positional structure1 to include functional as well
as spatial concatenative composition (Elman 1990;
van Gelder 1990). ANN’s ability to bind vari-
ables and recursively combine them counters Fodor
& Pylyshyn’s (1988) charge that they are funda-
mentally incapable of natural language processing.
ANNs promise adequate representational capacity
for sensori-motor mappings required by autonomous
robots. Autonomous robotics must form the basis
of any theory of AI which encompasses situated-
ness and embodiment. Since the internal structure
of representations learnt by ANNs reflects the im-
plicit processing semantics of a given task without
necessarily making a priori task assumptions (e.g.,
learning sample distributions), adaptation to envi-
ronmental demands can form a basis for non-brittle
categorisation and determinate reference. ANNs
as universal function approximators can potentially
learn the temporally convoluted functions that map
sensor inputs to motor outputs.

Nevertheless, while ANNs are among the few com-
putations that can automatically exploit an arbi-
trary amount of parallelism (Bleloch & Rosenberg
1988), an experimental disadvantage is that learn-
ing is NP-complete (Judd 1990) and prone to local
maxima (like all gradient descent algorithms). In
biological systems, natural selection has overcome
these problems by inducing relatively precise organ-
isation of the morphology and connectivity of neu-
rons, specified epigenetically (softwired), that chan-
nels search to relevant sections of problem spaces
during learning.

Similar techniques are required for designing
ANNs. Large problem spaces can be functionally
decomposed into smaller spaces which are searched
by network modules that are later assembled to solve
the larger task. Most successful contemporary appli-
cations of ANNs also invariably perform some form
of input/output feature coding to combat learning
complexity. Such problem decomposition into a pri-
ori representational spaces must proceed carefully

1The ability to recursively manipulate symbol structures.
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to avoid the indeterminacy of reference which we
have been alerted to by top-down AI’s limitations.
While ANN hardware developments rapidly increase
the ability of ANNs to deal directly with sensor
data (e.g., Mead 1989), substantial developments
in sensor and motor processing are contingent on
learning algorithms more isomorphic to the func-
tional/structural organisation of real neural compu-
tation.

9.5 Incremental AI

Sensory and motoric systems have mutually co-
evolved. Interacting with signals from sensory
sheets, motor ensembles provide the nervous system
with a mechanism for honing sensory feature cor-
relation. Based on feature detection, categorisation
occurs, in parallel and motor driven, of topological
invariances and continuities that are crucial for de-
tailed sensory abstractions. Edelman (1989) argues
that motor activity is the essential mechanism un-
derlying sensory categorisation and this in turn is
essential for motor learning. During development:

. . . action is fundamental to perception,
and sensory sheets and motor ensembles
must operate together to yield a sufficient
basis for perceptual categorisation . . . The
major and essential contribution of motor
ensembles to perception is feature corre-
lation, which arises out of the continuity
properties of motion and the continual fo-
cusing of sensory signals by creating pos-
tural and gestural movements.

Edelman (1989, p. 238)

Such a view of cellular reorganisation corresponds
well to Piaget’s theory of the construction of cogni-
tive functioning. While the precise details of Pi-
aget’s genetic epistemology are controversial, it is
widely accepted that individual language develop-
ment and abstract reasoning are critically contin-
gent on adequate early infant interaction with the
world. Observations of children convinced him that
during human development:

. . . concrete action precedes and makes
possible the use of intellect . . . As the
infant begins to manipulate the objects
which surround him, he gradually devel-
ops a practical ‘understanding’ of external
reality . . . Thus the acquisitions of the sen-

sorimotor period form the foundations of
the individual’s mental development . . .

Ginsburg & Opper (1969, p. 106)

During ontogenesis, Piaget argues that develop-
ment of spatial and self/body awareness is medi-
ated by active visually co-ordinated reaching for and
grasping of objects. At a phylogenetic level, rela-
tively specific cortical circuitry (a “module” roughly
equivalent to Broca’s area) underlies the hierarchi-
cally organised combination of elements in the devel-
opment of both speech and sequential manual action
such as tool use (Greenfield 1992).

For experimenters, there is a simulation trade-
off between niche behavioural complexity and sen-
sor complexity. Modelling complex behavioural pat-
terns of simple complete animats requires simplified
sensors which can interact with the data structures
of a simulated world. Complex (e.g., visual) sen-
sors require simple environments and thus restrict
the behavioural repertoire or restrict modelling to
behavioural sub-components. Such sub-components
must be self-contained and incrementally grounded
to minimise brittleness.

9.6 Conclusion

Symbolic reasoning is a cultural superstructure for
enhancing adaptation. Explanation of discrete sym-
bol manipulation probably requires explanation of
the large chunks of adaptive behaviour that are not
discrete-representational. The royal road to robust
symbolic AI is paradoxically contingent on simula-
tion of the neural mechanisms underlying the abil-
ities of simpler organisms to effectively cope with
the niches in which they are embedded. Robust au-
tonomous intelligence requires a system to create
its own task-driven representations grounded in the
environment. Roboticists such as Brooks (1991a)
argue that most intelligent control behaviour does
not need, and indeed is hampered by symbolic for-
malisms. The MIT group builds robots bottom-
up, enabling debugged sensor-effector competencies
to be subsumed into successively more complex be-
haviours. Such a method replicates evolution’s own
incremental design algorithm.

Emulation of higher level cognitive functions such
as reasoning and language evidently requires some
form of symbolic representation. In order for fu-
ture robots to autonomously perform complex tasks,
(e.g., deep sea repair, household hoovering), a
high level of symbolic reasoning will be nessesary.
Whether modular ANNs capable of low-level sen-
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sorimotor competences can be interfaced with pre-
programmed symbolic AI programs to produce hy-
brid systems (e.g. Dyer 1991) or whether robust AI
symbolic manipulation will ultimately require per-
ceptual internalisation of initially external symbol
systems as in humans remains to be seen.
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