
Chapter 3

Artificial Knowledge

3.1 Introduction

This chapter moves on from the metaphysical consideration of what kind of a

thing a mind is, or might be, to the pragmatic consideration of building machines

(especially computers) that exhibit some or all of the behaviours associated with

mentality—which is to say, a consideration of Artificial Intelligence (AI) in what

Searle (1980) calls the “weak” sense. Alternatively this may be viewed as an

investigation of the hypothesis I have previously (Chapter 2, section 2.2) called

Turing Test Computationalism (Ht)—the claim that a suitably programmed uni-

versal computer could pass the Turing Test.

I start with a brief review of the Turing Test itself, and, in particular, some

novel criticisms of it proposed by French (1990). I shall consider these criticisms,

but argue that the Test still stands as a valuable focus for work in AI; nonetheless,

I shall go on to conclude that performance at this level is still so far beyond our

present theoretical understanding, that Turing Testing, as such, may of little

immediate or practical interest.

I next consider the general issue of cognitive architecture—what, if anything,

can we say about the overall structure which a (computational) system must have

if it is to exhibit behaviours indicative of intelligence. The essential point I make

is the negative one that universality (in the technical sense characterised by, for

example, Universal Turing Machines), per se, does not mean that a computational
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intelligence will admit of explanation in terms of a unitary “symbol level”, or

“language of thought”.

I then consider the notions of “meaning” and “knowledge” in more detail, in

an effort to show that a computational semantics is indeed possible (despite some

claims to the contrary), and I sketch out what it might look like. In particular, I

claim that computers can realise anticipatory systems (Rosen 1985a), and that, in

this case, they exhibit intentionality (Dennett 1978b), and instantiate subjective

knowledge in the sense that Popper admits for biological organisms generally

(e.g. Popper 1961). These claims are made independently of any commitment to

the idea that computers are able to realise “genuine” mentality—in the sense of

“conscious subjective experience”.

With this particular philosophical perspective, I then briefly consider method-

ological approaches to AI, in particular the notion of “Knowledge Engineering”.

I note that this approach has run into serious difficulties, typically identified with

the common-sense knowledge problem. It has proven extremely difficult to explic-

itly formulate common-sense knowledge (and thus incorporate it into computer

systems). There is little general agreement as to the nature of this problem; but

it seems that developing an explicit, brute force, stipulation or enumeration of

common-sense knowledge is currently an intractable problem, and may yet prove

to be completely impossible.

The alternative to the Knowledge Engineering approach is, of course, to de-

velop some kind of “adaptive” or “learning” system; which is to say, we turn from

the problem of knowledge in itself, to the rather different problem of its growth.

I shall argue, from several different points of view, but based particularly

on the evolutionary epistemology pioneered by Popper and D.T. Campbell, that

a kind of abstract generalisation of Darwinian processes, referred to as Unjus-

tified Variation and Selective Retention (UVSR), is an essential component in

the growth of knowledge. I conclude from this that the realisation of Artificial

Darwinism may a necessary, though certainly not sufficient, condition for the

realisation of Artificial Intelligence.
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3.2 The Turing Test

3.2.1 Definition

In his influential paper, Computing Machinery and Intelligence (Turing 1950),

Alan Turing set out to consider the question “Can machines think?” (p. 433);

ultimately, however, he concluded that, in this form, the question was “too mean-

ingless to deserve discussion” (p. 442). Instead, Turing proposed an operational

definition for “thinking”, and restricted “machine” to designate a suitably pro-

grammed digital computer. He then considered the new question of whether such

a machine could satisfy such a definition.

This operational definition of thinking was phrased in terms of what Turing

called the “Imitation Game”, and is now generally referred to as the Turing Test.

Briefly, the Turing Test involves a human interrogator, and two subjects. One

subject is the machine to be tested, the other is a human control. The inter-

rogator is restricted to interacting with the two subjects purely linguistically (for

example, via teletype), and has no other way of distinguishing between them. One

turn then consists of a fixed time—Turing suggests 5 minutes—in which the in-

terrogator is allowed to question the subjects, after which time he must nominate

which subject he judges to be the human and which the machine. The machine

is considered to have passed the Test if the interrogator’s probability of making

a successful classification is found to be below some specified threshold—Turing

suggests 70%. Turing omitted various details here: one presumes that the success

probability would be measured by playing out as many turns as are necessary to

get a statistically significant result, while varying the interrogators and control

subjects to achieve independence between turns. Turing does explicitly refer to

the use of an “average” interrogator (p. 442).

3.2.2 Sufficiency?

As discussed in Chapter 2, there is room for argument as to the sufficiency of the

Turing Test. That is, whether an entity’s ability to pass this Test is a sufficient

condition for saying that it exhibits mentality. If the Test were not sufficient in

this sense then that would certainly limit its interest. However I have already

53



stated, in Chapter 2, my opinion that the proposed arguments to such an effect

are far from compelling; and that I shall therefore proceed on the basis that, pro

tem, Turing Testing is a sufficient operational criterion for mentality.

3.2.3 Necessity?

French (1990) takes the position that the Turing Test is valid or sufficient for the

attribution of intelligence, but argues that it is in fact much more stringent than

Turing anticipated or intended. Specifically, he suggests that “. . . the Turing

Test could be passed only by things that have experienced the world as we have

experienced it” (p. 53). While he believes that in principle a machine could

indeed be built which would satisfy this constraint, he assumes that, in practice,

“no computer is now, or will in the foreseeable future be, in a position to do so”

(p. 56). It follows, of course, that there is no practical prospect of a computer

passing the Turing Test. French concludes that some alternative tests, or at least

criteria, are therefore needed for practical use in AI research.

I should emphasise that I agree with French on certain points which he raises.

For example, he suggests that the Turing Test is deficient in that it admits of no

“degrees” of intelligence, and is not applicable at all to non-linguistic behaviour

that might, in fact, be related to intelligence (such as exhibited by animals). I

agree with this as far as it goes: given that Turing Test performance is currently

an intractable problem, it is sensible to formulate lesser or entirely distinct criteria

which might, once achieved, represent progress toward that ultimate goal. In fact,

this is what goes on in practical AI research all the time.

Where I disagree with French is when he goes on to suggest that the Turing

Test should be dispensed with altogether, even as an ultimate goal against which

intermediate goals can and should be critically reviewed. Even here, I shall give

some ground, though not, I think, as much as French seeks.

French’s argument is that the Test, as formulated by Turing, admits the use

of so-called subcognitive probing by the interrogator, and that this makes the

procedure an unnecessarily harsh or severe test of general intelligence. That is,

French supposes that there could be systems (presumably including certain suit-

ably programmed computers?) which would be unable to pass the Turing Test,
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but which should, nonetheless, be labelled intelligent—indeed, “as” intelligent as

humans, if not more so.

The idea of subcognitive probing is to ask questions which, in some sense,

probe the underlying, subconscious, “structure” (the associative concept net-

work 1) of the putatively intelligent subject. French argues that this is possible

under the Turing Test conditions, and that it would allow specifically or uniquely

human aspects of intelligence to be detected—aspects which would be very dif-

ficult, if not entirely impractical, to duplicate in a computer, and which are, in

any case, inessential to general intelligence.

In fact, French concludes that the practical development of some entity such

that it could pass the Turing Test, given the use of subcognitive probing, would

require that the entity be capable of experiencing the world “in a manner in-

distinguishable from a human being—a machine that can fall off bicycles, be

scratched by thorns on roses, smell sewage, and taste strawberries. . . ” (French

1990, p. 56): that is, the system would have to be a more or less humanoid robot

or android. It is this scenario which French regards as being impractical (though

not, in principle, impossible) for the foreseeable future. More to the point, he

considers that this renders the Turing Test unsuitable for practical use.

French further claims that the Turing Test cannot be modified, in any reason-

able way, so as to eliminate the possibility of subcognitive probing, and should

therefore be simply discarded. He does not propose a specific, operational, al-

ternative, but suggests that we should consider intelligence in the “more elusive

terms of the ability to categorise, to generalize, to make analogies, to learn, and

so on” (p. 65).

I agree with French that the use of subcognitive probing, as he describes it,

would subvert the Turing Test; that, indeed, such probing is one of the general

kinds of thing Turing was trying to preempt in his design of the Test; and that only

some test which does not exploit such probing would be satisfactory. However,

I disagree with French that such probing cannot be eliminated from the Turing

Test, with little or no modification. I shall argue this on several grounds.

1French presumes that some such network necessarily underlies intelligence; I do not disagree
as such, but it might have been better if he had made his assumption explicit, and phrased it
as an hypothesis, rather than taking it as some kind of established fact.
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First, and most obviously, French is able to introduce subcognitive probing

in the first place only by effectively changing (or, at least, augmenting) the rules

of the original Test. Specifically he requires that the interrogator be allowed to

poll humans for the answers to some questions prior to posing them during the

Test itself. This is in order to allow statistical analysis of the “subcognitive”

characteristics of responses to these questions, as exhibited by people, so that

these could then be compared with the behaviours of the subjects in the Test

proper. French states that he feels “certain” that Turing would have accepted

this. I happen to disagree with this opinion, but it is irrelevant in any case. The

point is that if we disallow such polling (whether Turing would have approved

or not) the Test is effectively immunised against the use of subcognitive probing,

by French’s own admission.

But quite aside from this, I think French’s analysis is contrived and mistaken.

While Turing did not specify precisely what he meant by an “average” interroga-

tor, it seems absurd to suppose that he would have allowed interrogators who

are familiar with, and competent to consciously apply, the notion of subcognitive

probing. Again, of course, the question of what Turing’s own opinion might have

been is strictly irrelevant anyway: the important point is that, in response to

French’s criticism, we are quite free to add an explicit stipulation to the Test,

to the effect that persons having a competence in the technique of subcognitive

probing will not be allowed as interrogators—if that is deemed necessary in or-

der to eliminate subcognitive probing. In fact, I suggest that, for virtually any

practical purposes, it would be adequate simply to stipulate to interrogators, at

the start of any Test, that they must not attempt to use subcognitive probing in

their evaluation of the subjects.

French might still argue for the possibility of unconscious subcognitive prob-

ing having some statistically significant effect on the Test outcome. This would

obviously be, at best, a much weaker argument, and I don’t believe it could be

sustained in any case. Remember that the Test, as Turing specified it, is relatively

coarse (presumably deliberately?): the interrogators’ success rate only has to fall

below about 70% for the computer to pass. I doubt very much that a credible

argument could be made to the effect that subcognitive factors, alone, are likely
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to consistently, and unconsciously, bias the success rate by 30 percentage points

or more.

But even if, despite its intuitive implausibility, we suppose that French could

marshal enough evidence to show an effect of this magnitude due solely to un-

conscious subcognitive factors, I claim that the effect could still be nullified with

relative ease. This can be done by interposing what I shall call a subcognitive

scrambler between the interrogator and the subjects. This would simply be an-

other person, who relays all messages between the interrogator and the subjects.

The interrogator is now restricted to have direct access only to the scrambler,

and not to the subjects. The scrambler takes up the previous position of the in-

terrogator, having linguistic access to the subjects, via teletype or otherwise, but

otherwise having no knowledge of the identities of the subjects. The sole instruc-

tion to the scrambler is to paraphrase the messages passed from interrogator to

subjects, and back, in such a way as to maintain their essential semantic content,

but to otherwise modify them as much as he wishes. A particularly effective way

to achieve this might be to use interrogators whose native language is different

from that of the subjects, and thus have a translator act as the subcognitive

scrambler.2

I freely admit that such a scrambler would not be effective against all kinds

of deliberate or conscious attempts at subcognitive probing.3 However, I think

it would greatly attenuate any possible subconscious subcognitive effects, which

was the remaining point at issue.

In conclusion then, I consider that the deficiency in the Turing Test, alleged

by French (i.e. its supposedly excessive stringency), is either non-existent or easily

corrected, and the Test can therefore survive his attack more or less unscathed.

2In allowing, or even recommending, the use of such translation, I implicitly transgress,
to at least some extent, against another assumption which French allowed himself: that the
human subject and the interrogator “are all from the same culture and that the computer will
be attempting to pass as an individual from that culture”. Again, I see this as ad hoc and
contrived on French’s part, and not sustainable.

3I have in mind specifically what French calls the Category Rating Game technique.
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3.2.4 An Informal Test

And yet: while I disagree with French’s literal arguments, I cannot help but

believe that there is some core of truth about his ideas.

Let me suggest then that detailed, legalistic, discussion of the Turing Test

is pedantic, and essentially futile—notwithstanding the fact that I have just in-

dulged in such a discussion above. I indulged in it because that is the ground on

which French had chosen to mount his assault, so I wished to respond in kind;

demonstrating that, judged even in his own terms, his assault founders. However,

in many ways it was a pity that Turing gave a relatively precise description of

his proposed Test—for it is this spurious precision that prompts excessive con-

centration on the details, such as exhibited by French.

I suggest that the Turing Test should best be considered as a blunt (though

moderately effective) instrument, whose details are entirely unimportant. Its

point lies not in any detailed experimental set up, but in the principle that any

machine which can credibly, or meaningfully, participate in human conversation

should, regardless of what other attributes it may have (especially its physical

constitution), be regarded as a bona fide member of the community of sentient

beings.

I suggest especially that indistinguishability between machine and human con-

versation, which is at the core of much discussion of the Test, including that of

French, is actually a red herring. I think that this is implicit in the rather coarse

tolerance of 70% originally suggested by Turing for his Test.

The real issue is credibility : whether some putative machine intelligence can

sustain a conversation in such a way that we would be satisfied that it really

means what it says; this remains the case, even if what it is saying is obviously

and thoroughly non-human (and thus perfectly “distinguishable” from human

conversation). For example, the conversation that would be involved in actually

inviting a machine to act as a subject in a formal Turing Test would certainly

involve elements that would not arise in any normal conversation between human

beings; but I suspect that, on the basis of just such a conversation, one could

sensibly judge whether the machine meant what it was saying or not.

So, if French’s point is that the Turing Test, as stated, focuses on indistin-
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guishability from strictly human intelligence, and that this is unnecessary and

even misguided, then I am inclined to agree with him. French however, sees this

as an intrinsic defect of the Test. I think he is mistaken in this, as I have already

argued; but even if he were right, I think this conclusion would be contingent on a

very literal reading of the Test (which, I admit, overemphasises the issue of com-

paring machine with human intelligence), and a consequent failure to appreciate

the central, informal, idea being promoted by Turing.

What I take to be the proper view of the Turing Test has been previously

elaborated by Roger Penrose:

From my own point of view I should be prepared to weaken the require-
ments of the Turing test very considerably. It seems to me that asking
the computer to imitate a human being so closely so (sic) as to be in-
distinguishable from one in the relevant ways is really asking more of the
computer than necessary. All I would myself ask for would be that our
perceptive interrogator should really feel convinced, from the nature of
the computer’s replies, that there is a conscious presence underlying these
replies—albeit a possibly alien one. This is something manifestly absent
from all computer systems that have been constructed to date.

Penrose (1990, p. 11, original emphasis)

To be clear then, let me now propose what I shall dub the Penrose Test for

intelligence:4

Any entity is intelligent which understands and means what it says;

and any entity understands and means what is says if it can so con-

vince a competent human judge, purely on the basis of her conversa-

tion with it.

By a “competent” judge I mean someone who, inter alia, has a reasonable

understanding of the state of the art in AI, and is capable thereby of probing

past “canned” responses of the so-called ELIZA type (Weizenbaum 1984), etc.

Indeed the judge should probably have some specific familiarity with whatever

design principles may have been used in building the putative intelligence (in this

limited respect, the test I propose here is arguably more stringent than Turing’s).

4Perhaps this might equally be called the Asimov Test for intelligence; compare it with this
formulation: “There is no right to deny freedom to any object with a mind advanced enough to
grasp the concept and desire the state” (Asimov 1976, p. 174). The “grasping” and “desiring”
are apparently to be established by similar criteria to those which I have suggested: linguistic
cross-examination of the subject. In Asimov’s case a “competent” judge is, effectively, any
court of law having relevant jurisdiction.
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I have omitted any comment about the allowed or required domain of discourse

in the Penrose Test. This is deliberate. I consider that the demand that the entity

convince a competent judge, purely through conversation, that it really does

understand and mean what it says is already enough to guarantee a satisfactorily

wide ranging domain of discourse, without any additional stipulation.

My claim is that the Penrose Test captures the essence of Turing’s origi-

nal Test; and that, in particular, any honest researcher can judge perfectly well

whether his system should be labelled intelligent, in this sense, without ever hav-

ing recourse to the elaborate paraphernalia actually prescribed by Turing, and

without any significant danger of being confounded by irrelevant factors, subcog-

nitive or otherwise.

Furthermore, I suggest that this is in fact the way the “Turing Test” is em-

ployed by practical researchers. I think it is generally accepted that no AI system

yet developed has come remotely close to meeting Turing’s criterion, and this is

known without any attempts at setting up the kind of formal test conditions

actually described by Turing. The latter would only come into play if or when

we have a system which we already know, from the Penrose Test, to have the

depth of understanding required to participate in a meaningful conversation; but

even then the formal Turing Test would, at best, serve only to demonstrate the

objectivity of this claim. And of course, we should remember that the rôle of the

machine in the Turing Test is distinctly demeaning, if not positively insulting: it

seems to me that a prima facie mind might well refuse to participate in such a

charade!

For a more detailed discussion of the issues arising here, see Hofstadter’s

(1985, Chapter 22, Post Scriptum) account of actually attempting to apply Tur-

ing’s ideas on testing intelligence in practice (albeit the “intelligence” being tested

turned out to be a hoax—a gentle practical joke at Hofstadter’s expense). I con-

sider it significant that, in operation, this turned out to be much closer to my

description of the Penrose Test than a Turing Test proper. Hofstadter also,

incidentally, anticipates the notion of subcognitive probing, subsequently elab-

orated by French. Notwithstanding this, Hofstadter’s conclusion, at that time
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at least, was that he was (still) an “unabashed pusher of the Turing Test as a

way of operationally defining what it would be for a machine to genuinely think”

(p. 525).

So my final answer to French is to strictly disagree with his criticism, and

insist that the Turing Test is still essentially as satisfactory as when Turing first

proposed it; but I admit that the formal aspects of the Test are distracting, and

I actually propose the Penrose Test as a clarification of Turing’s central idea.

Indeed, while I shall continue to refer to “Turing” testing in what follows, this

should now be interpreted (where this makes any difference) as Penrose testing.

3.3 The Problem Situation in AI

Turing’s answer to his own reformulated version of the question of machine intelli-

gence was that he believed that a suitably programmed digital computer probably

could pass his Test. Indeed, he went so far as to predict that “at the end of the

century the use of words and general educated opinion will have altered so much

that one will be able to speak of machines thinking without expecting to be con-

tradicted” (Turing 1950, p. 442). This was perhaps somewhat rash. It is now

clear that the implied target of programming a computer such that it is capable

of passing the Turing Test, by the end of the century, will not be achieved; indeed,

there is little consensus as to when, if ever, a Test might (with any confidence)

be rescheduled for!5

To be fair to Turing, he was not at all dogmatic. He explicitly stipulated

that his claim (that a computer could be made to pass the Test) was conjectural

and speculative; that he had no decisive arguments to show that it was possible

(even in principle—never mind in practice); and that its truth could only be

definitively established by exhibiting a working example of such an “intelligent”

computer. Of course, it was an essential part of Turing’s paper to consider and

5Granted, the annual Loebner Prize Competition, launched in 1991, is derived from the idea
of the Turing Test (Campbell & Fejer 1991). However, it is based on an extremely impoverished
version of the Test, in that each subject can only be interrogated on a single, specified, topic, and
the interrogators “were told to hold normal conversations, not to try aggressively to unmask
the contestants with tricky questions” (Strok 1991). I note that the 1991 prize for the best
performing computer subject (whose topic was “whimsical conversation”!) was presented, with
no apparent sense of irony, not to the subject itself but to its programmer.
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discount arguments against even the possibility of a computer passing the Test:

for otherwise the formulation of the Test would have been pointless. By way of

conclusion, Turing admitted that, at the time of writing, it was very unclear how

best to go about trying to make a computer pass the Test, or even what the basic

hardware requirements might be. Thus, Turing’s achievement was in sharply

defining an interesting problem, rather than offering a substantive theoretical

insight into its solution. It is my view that the problem situation in Artificial

Intelligence can still be quite well characterised in the way outlined by Turing.

Specifically, I suggest that:

• The Turing Test has not been shown to be invalid (i.e. not a sufficient test

for intelligence). Indeed, I would argue that this question will not actually

become pressing until (or unless) some system other than a human being

(whether a programmed computer, or something else, as yet unimagined)

actually passes it.

• Turing Test performance has not been shown to be impossible, or inher-

ently impractical, for a computer (not even if we restrict attention to those

computers which are already technically feasible).

• Conversely, no essentially new argument has been forthcoming to suggest

that Turing Test performance definitely is possible (even in principle) for a

computer (either now or in the future).

• We still lack any comprehensive understanding (theory) of what, specifi-

cally, would be required to make a computer pass the test. There has, of

course, been a major research effort over the 40 years since Turing’s original

assessment of the situation. This has yielded considerable insights into the

problem. I review some of this work in subsequent sections. There is no

doubt that our understanding of the difficulties in achieving Turing Test

performance from a computer is now much more acute than when Turing

first formulated the problem; but it is certainly not the case that we now

know “in principle” how to achieve this performance, but only lack (say)

adequate hardware, or a sufficient software development effort, to bring it

about.
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3.4 On Cognitive Architecture

Turing, through the notion of the Universal Computer, provided an existential

argument for Artificial Intelligence: it seems that some (universal) computer,

running some program, should “surely” be able to pass the Turing Test. This is

the hypothesis of Turing Test Computationalism (Ht).

Turing Test performance would mean (by definition) that we impute “mental”

states and events to such a machine. This can be done even without a commit-

ment to the view that the machine “really” has any mentality: Dennett (1971)

refers to this process as the adoption of the intentional stance. More generally,

even for a machine which does not achieve full Turing Test performance, the be-

haviour may still be such as to justify a limited adoption of the intentional stance,

i.e. the imputation of mentality, albeit in some impoverished form. In this way

we sidestep, even if only pro tem, the metaphysical debate as what “genuine”

(human) mentality actually consists in.6

Since the un-programmed computer manifestly lacks mentality, we thus effec-

tively impute mentality to the computer program(s): that is, the general notion

that there can exist programmed computers which are intentional, or the more

particular notion that there can exist programmed computers which can pass the

Turing Test (Ht), implicitly asserts that the mental states and events of (or im-

puted to) such machines are, in principle, reducible to, or identifiable with, states

and events of their programs, which is to say of purely “computational” entities.

The point is that, whenever we adopt the intentional stance toward a pro-

grammed computer, we implicitly identify some reduction of mental entities to

computational entities.

It is the nature of these reductions that is actually of central interest—

particularly, though not exclusively, for whatever light this might ultimately cast

on human mentality. Admittedly, we would need to do a good deal more work

to justify any step from “machine” mentality to human mentality: we would, for

example, have to appeal to some convergence principle, to suggest that similar

6This is the distinction (insofar as there really is one) between Ht and the stronger doctrine
of (unqualified) Computationalism (Hc): Hc claims that a computer which passes the Turing
Test really does exhibit genuine mentality—that mentality just is some particular kind of
computational activity.
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reductions might be expected to apply to any systems, including human beings,

exhibiting the relevant behaviour (Harnad 1989). However, since the level of ma-

chine “mentality” which has been achieved to date is extremely limited (falling

far short of Turing Test performance) it seems a little premature to worry un-

duly about the ultimate scope of any such putative “machine psychology” at this

stage.

Now, computational universality (e.g. Lewis & Papadimitriou 1981) guaran-

tees that if a realisation of any abstract universal computer can pass the Turing

Test (exhibit intelligence) when suitably programmed then, in principle, some

(sufficiently “large” and/or “fast”) realisation of every abstract universal com-

puter can. Which is to say that the underlying programming formalism (which

defines the abstract computer), once it is universal, does not constrain the intel-

ligence of the machine. However, it will radically affect the reduction of mental

to computational entities; this reduction will, at best, be unique only relative to

a particular programming formalism.

Furthermore, we must at least recognise the possibility that the reduction

may therefore be much simpler relative to some formalisms compared to others;

and that which formalism is most illuminating may even be different depending

on the particular aspects of mentality under consideration at any given time.

My point here is to distinguish between the existential and the pragmatic as-

pects of the Artificial Intelligence research programme. From an existential point

of view, all (abstract) universal computers are equally powerful; if one can be

made intelligent, they all can. But, from the pragmatic point of view, in terms

of understanding or explaining intelligence (reducing the mental to the computa-

tional), there may be very substantial differences between universal computers,

and, indeed, the most pragmatically useful computer may be different in different

contexts.

To put it another way, consider the case of a reasonably good computer chess

player—Dennett’s (1978b, passim) prototypical example of a machine to which

we can effectively adopt the intentional stance. One possible explanatory schema

would be to attempt a direct reduction of the intentional attributions to charac-

teristics of the program as expressed in the native instruction set of its processor.

At best this will be unintelligible; at worst it will be hopelessly impractical. In-
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stead, any effective explanation would certainly make use of a hierarchy of “levels”

which progressively reduces (or explains) the intentional attributes. It is quite

plausible that explanations at some of the different levels, or even within certain

levels, may be effectively expressed in different formalisms (i.e. in terms of dif-

ferent virtual machines). It would be quite sterile to then argue about which of

these formalisms is the “correct” one.

Compare also Dennett’s (1978a) own discussion of a similar mode of expla-

nation, which he describes in terms of progressively discharging homunculi, and

Dawkins’ (1986, p. 13) notion of hierarchical reductionism. While Dennett’s dis-

cussion is most naturally applied to the decomposition of a program within a

single programming formalism, similar principles would apply to transitions be-

tween different formalisms. More generally, while I have talked loosely about

distinct programming “formalisms” and “virtual machines”, the transitions need

not always be clear cut or precise. There are hierarchies and hierarchies (compare

also, the “Strange Loops” and “Tangled Hierarchies” of Hofstadter 1979).7

Converse arguments apply, of course, to the synthesis of intentional systems.

While, “in principle”, any abstract universal computer is as powerful as any other,

in practice (i.e. in terms of the ease of designing the required functionality) some

may be better than others, and a variety may be much better than any single

one. The latter point still holds even if, ultimately, a system is implemented by

simulating the required diverse computers on a single host. Note carefully that

the distinction I am drawing here has nothing to do with the relative speed or per-

formance of distinct, physical, computers: it is concerned purely with differences

between programming formalisms, or abstract computers.

I am arguing here against a tendency to adopt an extremely over-simplified

view of the computationalist thesis. Given Turing’s (1950) results on universal

computation, and the general notion of computationalism, there seems to be an

almost overwhelming temptation to interpret Hc as positing the existence of some

specific and unique (virtual) machine, or “language of thought”, which, implicitly,

7Note incidentally that, even when one has full access to the design of an artefact such as a
chess computer—i.e. when one can, in principle at least, adopt Dennett’s “design” stance—the
reduction of the intentional to the computational may still be a very difficult problem. For
example, consider Dennett’s comment on “innocently” emergent phenomena (Dennett 1977a,
p. 107), or Hofstadter’s discussion of “epiphenomena” (Hofstadter 1979, Chapter X).
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is realised in (all) human brains, and which is a sufficient formalism for the direct

explanation (reduction) of all cognitive phenomena. That is, that the architecture

of cognition consists of a single significant virtual machine level, and even that

this machine is of some particular class (such as, say, a LISP-like machine).

This kind of view can easily lead to essentially sterile argumentation about the

“absolute” claims of particular abstract machines—say procedural versus declar-

ative programming, or serial versus parallel programming, or “passive” versus

“active” symbols.

More recently, this kind of argument has become an element of the on-going

debate between “classical AI” and “connectionism”. Consider, for example, the

review of this debate presented by Fodor & Pylyshyn (1988). Their conclusion is

that a connectionist “architecture”, insofar as such a thing is well defined, is not

a viable candidate as the “architecture of cognition”. Now their arguments based

on “combinatorial syntax and semantics” seem to me conclusive in this regard. In

other words, contrary to some of the connectionist rhetoric, connectionism is not

(or, at least, not necessarily) an alternative to classical ideas on cognitive architec-

ture, but is, rather, complementary to it, particularly insofar as it may offer insight

into ways to effectively implement certain aspects of classical architecture.8 But

even here there is a risk that Fodor and Pylyshyn could be (mis-?)interpreted as

proposing that there does, in fact, exist some unique (though non-connectionist)

programming formalism (abstract universal computer) which is the “architecture

of cognition”. Such an interpretation (which, I stress, may not be intended by

Fodor and Pylyshyn) would be almost as bad as the position they attack: the

proposal of connectionist networks as the “architecture of cognition”.

This whole discussion is fraught with difficulty, and the possibility of misinter-

pretation. Thus, consider, for example, the Physical Symbol System hypothesis

of Newell & Simon (which I will denote Hpss):

A physical symbol system has the necessary and sufficient means for general
intelligent action.

Newell & Simon (1976, p. 41)

8Compare also Boden’s slightly earlier review of this debate, where she considered, and
ultimately rejected, the idea that connectionism might represent a Kuhnian “paradigm shift”
relative to “Good Old Fashioned AI” (Boden 1988, Chapter 8).
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Now Newell & Simon explicitly stipulate that a key element in their formu-

lation of Hpss was the invention of LISP by John McCarthy, which became the

prototypical example of a “symbol system”, and the demonstration that such a

system was “equivalent to the other universal schemes of computation”. But if a

symbol system is simply a particular class of (abstract) universal computer, and

a physical symbol system is simply a realisation of a member of this class, then

exactly how does Hpss go beyond the general computationalist hypothesis, Hc?

Alternatively, if we accept the literal interpretation that Hpss posits that only a

particular class of universal computers can exhibit general intelligence (i.e. the

claim that a member of this class is necessary) then the hypothesis is simply

false: by the definition of computational universality, as already discussed, if any

(abstract) universal computer can exhibit intelligence then they all can.

Now, as a matter of fact, I believe that what Newell & Simon mean to claim by

Hpss is (at least) that any intelligence system must have a “virtual machine” level

which is an implementation of a symbol system (of a more or less LISP-like sort).

This would a perfectly good qualification of Hc, i.e. a perfectly good additional

hypothesis about the nature of “cognitive architecture”, though it would need

considerable clarification. But there again, Newell & Simon’s claim may, in fact,

be even stronger than this: it is simply very difficult to establish, unambiguously,

what exactly they intend.

As evidence that this confusion is not merely an individual failing on my own

part, consider Hofstadter’s attempt at a critical evaluation of Newell & Simon’s

position (Hofstadter 1983); Newell dissented from this sharply in his accompany-

ing commentary (Newell 1983), stating inter alia that Hofstadter was “mistaken,

absolutely and unequivocally” (p. 293) in at least some of his interpretation;

but Hofstadter has since repeated and reinforced his criticism, albeit with some

clarification (Hofstadter 1985, Chapter 26, Post Scriptum).

There the direct argument currently rests, to the best of my knowledge. How-

ever, indirect reverberations continue. Thus, Fodor & Pylyshyn (1988, p. 59)

are dismissive (verging on the sarcastic) in relation to the following particular

passage from Hofstadter’s original paper:

The brain itself does not manipulate symbols; the brain is the medium
in which the symbols are floating and in which they trigger each other.
There is no central manipulator, no central program. There is simply a
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vast collection of “teams”—patterns of neural firings that, like teams of
ants, trigger other patterns of neural firings. The symbols are not “down
there” at the level of the individual firings; they are “up here” where we
do our verbalization. We feel those symbols churning within ourselves in
somewhat the same way we feel our stomach churning.

Hofstadter (1983, p. 279)

Yet: precisely the same passage has been quoted, apparently favourably, by

Boden (1988, p. 247).

As another example of ambivalence about the notion of an architecture of cog-

nition, consider Fodor’s book The Language of Thought (Fodor 1976). Reflecting

the definite article used in the title, the book is dominated first by the attempt

to establish that “the” language of thought exists, and then by the examination

of what some of “its” properties must be.

Fodor starts off his argument with the statement that “representation presup-

poses a medium of representation, and there is no symbolisation without symbols

. . . In particular, there is no representation without an (sic) internal language”

(p. 55). This could be interpreted simply as a variation on Hc, and, as such, is

hardly objectionable; it is equivalent to the claim that a computer (generally)

has a single native instruction set (language), in which every aspect of its be-

haviour can (in principle) be explicated. But: Fodor also claims that “a little

prodding will show that the representational system . . . must share a number

of the characteristic features of real languages” (p. 31), and later he speculates

specifically that “the language of thought may be very like a natural language

. . . It may be that the resources of the inner code are rather directly represented

in the resources of the codes we use for communication” (p. 156). This kind of

discussion strongly suggests that Fodor has in mind a single, unitary, language,

distinct from any natural language, but not all that different, which is sufficient

for the more or less direct reduction of mental phenomena. Now I emphasise that

this simplistic view is only suggested by Fodor’s treatment. Nowhere does he ex-

plicitly state anything to this effect; and there are at least some occasions when

he appears to explicitly reject any such interpretation, such as the following:

It is probably a mistake to speak of the system of internal representations
that the organism has available for the analysis of environmental events or
behavioral options. Rather, in the general case, organisms have access to a
wide variety of types and levels of representation, and which one—or ones—
they assign in the course of a given computation is determined by a variety
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of variables, including factors of motivation and attention and the general
character of the organism’s appreciation of the demand characteristics of
its task.

Fodor (1976, p. 157)

. . . we can see that ‘the’ representation that gets assigned to an utterance
in a speech exchange must be a very heterogenous sort of an object. It
is, in effect, the logical sum of representations drawn from a number of
different sublanguages of the internal language. It is an empirical question

what, if anything, these sublanguages have in common . . .

Fodor (1976, p. 159, emphasis added)

Now I agree wholeheartedly with this position; but I confess that I find it

difficult to interpret the rest of the book in this light. Given such a view, it would

seem that a sensible first step would be to emphasise distinctions between different

systems of representation, rather than doing as Fodor does—which is to talk of

a single system of representation (the language of thought) which encompasses

everything.

In conclusion, I suggest that the application of the notion of universal com-

putation in Artificial Intelligence could usefully be reversed from its usual formu-

lation. It is usual to think of computational universality as indicating that arbi-

trary intentional phenomena can be “explained” in terms of a single mechanism—

implicitly, that there is some theoretical gain (“parsimony”?) in doing so. By con-

trast, my view is that computational universality legitimises explanations which

invoke arbitrarily complex combinations of different (computational) mechanisms,

because we are guaranteed that, provided these are all effectively defined, they can

all ultimately be “reduced” to a single mechanism (should there be any benefit

in doing so).

That is, in considering the architecture of cognition, we need not conceive

of that architecture as fundamentally identified with a particular computer (i.e.

a particular “system” of representation, or homogenous “language of thought”);

rather we may think in terms of an heterogenous network of (abstract) machines

(homunculi) specialised for different tasks, which, in aggregation, might yield

something approaching human intelligence.

This is not, of course, an original idea. For example, it is very similar to

Minsky’s Society of Mind (Minsky 1986), or Hofstadter’s “soup cognition” (Hof-
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stadter 1983). Similarly, Boden has recently emphasised the need to take a plu-

ralistic view of computationalism, and to avoid over-simplification (Boden 1988,

p. 232). Dennett has also ventured to provide a schematic design of computer

“consciousness” which exemplifies these ideas (Dennett 1978c). Perhaps then I

have laboured the issue unduly; and yet, I think it is clear from the literature

I have reviewed above that this central point—the potential for a programmed

universal computer to simultaneously admit descriptions both of trivial simplic-

ity, and almost inconceivable complexity—has not been consistently recognised,

or clearly enunciated.

The point is, in any case, crucial for my purposes here. Specifically, the work

to be presented in subsequent chapters may seem, by comparison with AI research

generally, to be of a relatively primitive sort; but my claim is that the problem of

building, and understanding, an artificial intelligence is of unknown, but certainly

vast, proportions, and that it is only with an appreciation of this that the need

for the kind of fundamental research described here can be properly understood.

To underline this, I close this discussion of cognitive architecture with a final

quotation from Fodor:

On the one hand, internal representations are labile and the effectiveness
with which they are deployed may, in given cases, significantly determine
the efficiency of mental processing. On the other hand, we know of no
general constraints on how information flows in the course of the computa-
tions which determine such deployments: To say that we are dealing with
a feedback system is simply to admit that factors other than the proper-
ties of the input may affect the representation that the input receives. In
particular, what internal representations get assigned is sensitive to the
cognitive state—for all we know, to the whole cognitive state—of the stim-
ulated organism. Perhaps there are bounds to the options that organisms
enjoy in this respect, but if there are no one now knows where to set them.
Psychology is very hard.

Fodor (1976, p. 166)

3.5 On Computational Semantics

The essence of the Turing Test, as already discussed, is to judge whether a system

means what it says, or knows what is being talked about—in a comparable sense

to the way we use these terms for human beings. This is considered to be diag-

nostic of intelligence, subsuming other aspects, such as consciousness, creativity,
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imagination, etc.—presumably because these latter things would, implicitly, be

tested anyway: they are so central to our granting that the system understands

our conversation at all that we would surely, inter alia, insist on testing whether

it understands these particular concepts themselves.

So, the key question which arises in relation to a programmed computer which

passes the Test, is: what is the relationship between its knowledge and the formal

entities (tokens) making up its program?9 Or, equally: which of these tokens

mean anything at all, and, of those which do mean something, just what do they

mean? Or, in the terms of the discussion of the previous section, we are asking:

how are the mental entities meaning or knowledge to be reduced to the tokens

constituting the computer’s program?

Note again that any answer to these questions must be contingent on the

definition of the computer itself: on its being the particular universal computer

postulated by the program. To this extent, the reduction of meaning or knowledge

to aspects of the program would not represent the complete reduction to physical

terms: however, I take it that the reduction of the computer itself to physical

terms will not be problematic.

We should feel much happier in attempting to answer these questions if we

already had available to us a detailed specification of a programmed computer

which can pass the Turing Test. Unfortunately, of course, we do not. Indeed,

the fact is that the very design or construction of such a system presupposes, to

some extent, that we already know what the answer to these questions is. More

precisely, we must hypothesise answers to these questions as a prerequisite to

building a computer system which could pass the Turing Test.

So, we need a theory of meaning or semantics, applicable to computational

systems in general.

On the face of it, there is no shortage of competing theories for this purpose. I

shall certainly not attempt a comprehensive review here. However, I shall suggest

9I use “program” without prejudice to the programming formalism, and eschewing any
distinction between “instructions” and “data”; to put it another way, to the extent that any
practical digital computer has finite storage, “program” can conveniently be interpreted as
synonymous with the state (of this finite state machine). I use “token” to denote any arbitrary
component of a program. It need not, and generally does not, imply any kind of “atomic” or
“primitive” component of a program: indeed the entire program will be considered to constitute
one particular token.
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that, despite differences in vocabulary and emphasis, there is a common core to

several of the theories of meaning which are in practical use within AI. I shall try

to identify, and make more explicit, this common core, and to then use it as a

foundation for subsequent developments.

I must consider first the view that there cannot be a “computational seman-

tics” at all—that computers (and/or their programs) simply are not the kinds

of things to which, in whole or in part, meaning can be ascribed. This position

has been put forward by a number of writers. The basic idea is that a com-

puter program is no more and no less than a formal, or syntactic object, and, as

such, cannot intrinsically refer to anything. It may (or may not) be possible to

systematically interpret it as referring to something, but this meaning, or under-

standing, is entirely in the mind of the person doing the interpretation—it is not,

and cannot be, a property of the program “itself”.

There is, of course, a grain of truth in this view. Thus, we may compare a

computer program to a book; the book has meaning only insofar as people read

and understand it. The book does not understand itself.10 Or we may identify

a program with its information content—in the sense of the formal theory of in-

formation; such information content would be independent of the meaning of the

program (if any). Indeed, one might underline this by arguing that any partic-

ular arbitrary sequence of characters, of the same length as the program, would

literally have the same information content (relative to an implicit, equiprobable,

ensemble of all such sequences).

I said that there was a grain of truth in this view, and it is this: a program

cannot be given meaning simply by wishing it so. In particular, one cannot cause

a program token to mean something merely by giving it a particular label—i.e.

the use of what McDermott (1976) calls “wishful mnemonics”. This also applies

of course mutatis mutandis to the tokens output by a program—as artfully, if

accidentally, demonstrated by Weizenbaum with his infamous ELIZA program(s)

(Weizenbaum 1984; see also Dreyfus & Dreyfus 1986, Chapter 3).

10Popper diverges somewhat from this common-sense view, with his idea of the World of
objective knowledge (World 3). However, I do not think this is critical for the issue at hand
here: while Popper would challenge the view that the only kind of knowledge is (subjective)
knowledge of organisms, especially people, he certainly would not claim that a book literally
understands itself.
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Equally of course, the fact that a token of a program has a particular label does

not necessarily mean that it is devoid of meaning: it merely says that whatever

(if any) meaning it has is not by virtue of the label.

The formalist idea—that a computer program, being a purely formal object,

cannot really mean anything—has been reviewed in detail, and rejected, by Boden

(1988, Chapter 8). I consider that her analysis is correct, and I do not propose to

repeat her detailed arguments here. The essential point is that, although a com-

puter program per se may be viewed as a purely formal object, one cannot say

the same for a programmed computer. The computer does actually do something

(as a consequence of its program—but also depending on its inputs). This is just

to repeat the point made earlier that, when one ascribes mentality to a program,

this is always shorthand for referring to the system consisting of a (compatible)

computer which is actually running the program. The shorthand is reasonable

because we assume that the computer itself can be “easily” reduced to a lower

(physical) level, should one wish to do so: the really complicated or interest-

ing phenomena are evidently related to the particular program, rather than the

computer. But while the shorthand is reasonable, it is open to misinterpretation:

specifically as being a claim that a program has intrinsic meaning, of and in itself,

independently of any particular computer. This latter idea is certainly mistaken,

and, insofar as this is the object of the formalist’s attack, the attack is justified.

But the point remains that this cannot be turned into a general attack on the

idea that programmed computers can have “genuine” semantics.

To return now to this main theme: following Boden, I discount the suggestion

that the formal tokens making up a computer program (embedded in a suitable

computer) cannot have “intrinsic” meaning. So far so good, but I have not yet

made any positive suggestion as to what it could or should mean (!) to say that

a program token does mean something in this intrinsic sense.

To progress this, let me first consider a terminological point. I have gener-

ally used the word token to refer to the constituents of programs (regardless of

what the programming formalism might be), rather than the word symbol (except

where I was citing other authors who have, or at least seemed to have, adopted

the latter usage). My reason is, of course, that token doesn’t prejudice the issue

of semantic content, whereas once we describe something as a symbol we are im-
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plying that it has meaning, that it refers to something, that it serves to symbolise,

as least with respect to some interpreter.

Now the conventional notion of a symbol places some emphasis on its arbitrary

or conventional character: a symbol is viewed as a vehicle of communication (or,

perhaps, of memory), and, as long as the communicating parties are agreed as to

its meaning (even if only approximately), then the exact nature of the symbol is

largely irrelevant. Of course, it is admitted that a symbol may, in some sense,

“resemble” the thing symbolised, but this is not considered necessary or criterial

for its being a symbol. This is all true and valid, but I think it may be misleading.

It puts the emphasis entirely in the wrong place. While it is true that the symbol,

viewed in isolation can be entirely unrelated to its referent (which is merely to

reiterate yet again that the symbol, in isolation, is meaningless), the symbol,

viewed in context, must be related to the referent. That is, a symbol is a symbol

because it is related (somehow) to the referent.

Informally, my general claim is that what makes a token a symbol is that it

interacts with some system(s) in a manner which is related, in some more or less

definite (though perhaps very complex) way, to the manner in which the referent

interacts with the same system(s). More concisely, a token is a symbol when it

is used by some system to model something.

There is, of course, nothing novel or original in this; it is merely an attempt to

spell out the implication of calling something a symbol—namely that a token is

only ever a symbol in relation to some system, and that, further, its referent must

bear, in some (identifiable) sense, a similar relationship to the system. Dennett

puts it thus:

. . . nothing is intrinsically a representation of anything; something is a
representation only for or to someone; any representation or system of
representations thus requires at least one user or interpreter of the repre-
sentation who is external to it.

Dennett (1978b, Chapter 7, p. 122)

This is worth spelling out in detail because, in dealing with computer pro-

grams, it is all too easy to confound two senses in which a token can symbolise:

it can symbolise something to the programmer and it can symbolise something

to the (rest of) the computer. The former sense of symbolisation is, of course, the
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basis for the formalist argument that program tokens have no “intrinsic” mean-

ing. The argument is wrong, but it is a very natural misunderstanding. Consider,

as a more or less random example, the following quotation from Boden:

No one with any sense would embody list-structures in a computer without
providing it also with a list-processing facility, nor give it frames without
a slot-filling mechanism, logical formulae without rules of inference, or
English sentences without parsing procedures.

Boden (1988, p. 249, original emphasis)

While Boden is here arguing for exactly the same point as I am attempting to

make, it seems to me that she can easily be misunderstood. My point is that list-

structures (say), in the absence of a list-processing facility, are only list-structures

by courtesy; that is they are only list structures relative to a human interpreter

(the programmer or otherwise). But, in the presence of a list-processing facility,

then they become list-structures relative to that facility. To avoid confusion one

should ideally always consistently refer to the meanings of the tokens only relative

either to the computer or to a human interpreter; but, in any case, one should not

switch between these two viewpoints without warning or comment, as Boden does

here. The situation is not, as Boden puts it, that no one “with any sense” would

embody list-structures without a corresponding list-processing facility; rather, in

the sense in which Boden evidently means (i.e. relative to the computer) no one,

sensible or otherwise, could do it—it is absolutely not a matter of choice. The

idea of “embodying” list-structures in a computer without a corresponding list-

processing facility is literally a contradiction in terms. The tokens in question,

whatever they might symbolise to the programmer, cannot be said to symbolise

(or to be) list-structures relative to the computer except in the case that it treats

them so: i.e. that it has corresponding list-processing facilities.

Boden’s version seems to be intelligible only if we interpret her to mean that,

in the absence of a list-processing facility, the meaning of the relevant tokens

(i.e. that they are inter alia list structures) should be interpreted relative to a

human interpreter; but that, in the presence of a list-processing facility we can

(and should?) change our viewpoint and interpret their meaning relative to the

computer instead. But, if this is the interpretation Boden intends, it is poorly

expressed.
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Again, let me stress that this example was picked virtually at random, and

I do not intend any particular or individual criticism of Boden. The problem

is intrinsic to the nature of software engineering, and is very difficult to avoid.

McDermott’s idea of the “wishful mnemonic”, already discussed, is obviously

closely related to this.

I doubt that this point can be overemphasised. In any discussion of the

“meaning” of the tokens associated with a computer program it seems that the

only way to stay properly honest is to consistently ask “meaning relative to

whom?”; and to then absolutely restrict our attributions of meaning to those

which are valid or demonstrable relative to the (programmed) computer (or some

subsystem thereof—such as some (other) specified tokens of the program). That

is, we must constantly resist the temptation to, as it were, anthropomorphize

meaning into a token.

I may add that I consider that this discipline, properly applied, seems to yield a

unitary basis for a computational semantics, which resolves, or at least neutralises,

the so-called dual-calculus view of computer programming. This view posits a

sharp division of a program into active “instructions” and passive “data”. Such

a view leads to entirely misguided attempts to more or less exclusively or inde-

pendently attribute meaning to specific aspects of instructions or data separately.

But in fact, this distinction, while of considerable practical value in conventional

software engineering (i.e. the development of software to exhibit particular, effec-

tively specified, behaviours), lacks any intrinsic theoretical foundation.11 That is,

whether a human observer chooses to describe a particular token as “instruction”

or “data”, or as being “active” or “passive”, or “declarative” or “procedural”, is

strictly irrelevant to its meaning (if any) to the computer. The latter meaning

(which is the only meaning of interest in the AI context) can only be established

11As discussed by Hodges, in his biography of Turing, this point was already implicit in
Turing’s invention of the Universal Turing Machine, though it was not explicitly recognised by
Turing until he set about designing his first practical digital computer (Hodges 1983, Chapter 6,
pp. 324–327). It was documented in Turing’s report on the Automatic Computing Engine, or
ACE (c. 1945). As Hodges put it: “It was . . . a small step to regard instructions . . . as grist
to the ACE’s own mill. Indeed, since so much of his [Turing’s] war work had depended upon
indicator systems, in which instructions were deliberately disguised as data, there was no step
for him to make at all. He saw as obvious what to others was a jump into confusion and
illegality.” Hodges also notes that this insight was not explicitly pointed out “on the American
side” until 1947.
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by reference to the objective interactions or effects of the token on the rest of the

system (i.e. the programmed computer) in which it is embedded.12

In any case, to return to the question of what a token means (as opposed

to the question of to whom? ), we may distinguish two cases. Trivially, we may

identify the meaning of the token with its direct effect on its interpreter. Thus we

might say that a particular token “means” precisely that its interpreter should

do whatever it is it does in response to that token. This notion of meaning

is possible (if not very helpful) for very simple, determinate, interactions. But

in more complicated cases we want to identify the meaning of the token, to its

interpreter, with some aspect of the interpreter’s environment. This is the normal

usage of symbol or reference: the token refers (in the sense of being taken by the

interpreter to refer) to some (other) thing in the interpreter’s environment. And

this brings us back to the notion of the symbolic token as a model.

This general notion of model based semantics is well established; but there

is some room for debate, if not disagreement, as to what we should admit as

a “model”. For my purposes it is not essential to tie this down too precisely.

Instead, I shall review and compare some selected ways in which it has previously

been applied.

The most comprehensive, and mathematically rigorous, review of the mod-

elling relationship of which I am aware is that of the mathematical biologist

Robert Rosen (1985a). I shall therefore base my presentation of a computational

semantics on Rosen’s concept of an anticipatory system:

An anticipatory system S2 is one which contains a model of a system S1

with which it interacts. This model is a predictive model; its present states
provide information about future states of S1. Further, the present state
of the model causes a change of state in other subsystems of S2; these
subsystems are (a) involved in the interaction of S2 with S1, and (b) they
do not affect (i.e. are unlinked to) the model of S1. In general we can
regard the change of state in S2 arising from the model as an adaptation,
or pre-adaptation, of S2 relative to its interaction with S1.

Rosen (1985a, p. 344, original emphasis)

Where a relationship of this sort exists, I shall say that the subsystem of

S2 which is the predictive model of S1 means or refers to S1; and that, in this

12This dual calculus issue has again been thoroughly reviewed by Boden (1988, Chapter 8,
pp. 248–250), though not from quite the perspective suggested here.
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sense, S2 understands or has knowledge of, S1. I take it that, in the case of

direct interest here, i.e. where S2 is a computational system, then the relevant

subsystem of S2 (the predictive model of S1) will be identifiable with a particular

token of S2’s program (although this need not be the only function of this token,

or all its components). I repeat that such “tokens” will, in general, be composite,

dynamic, objects. This token then means or symbolises S1 (to S2); it is, genuinely

or intrinsically, a symbol.

I do not insist that these are absolutely necessary conditions for meaning or

grounding; but it seems to me that they may be sufficient.

Consider now Newell & Simon’s description of what it is for a formal token

to refer to, or mean something:

A symbol structure designates (equivalently, references or points to) an
object if there exist information processes that admit the symbol structure
as input and either:

(a) affect the object; or

(b) produce, as output, symbol structures that depend on the object.

Newell & Simon (1972, p. 21)

Condition (a) here is comparable to the requirement that S2 (which encom-

passes at least the symbol structure in question and the specified information

processes) must be capable (potentially, at least) of interacting with S1; condi-

tion (b) is comparable to the requirement that S2 does, in fact, contain a model

of S1. Now Newell & Simon state only these two conditions, and state them as

alternatives; whereas I require both conditions, and additionally stipulate that

the putatively symbolic token (“information process”) must be predictive. Thus

it is seen that my conditions for meaning or grounding are compatible with, but

rather more severe than, those suggested by Newell and Simon.

I now turn to an early discussion by Dennett, in his Content and Conscious-

ness (first published in 1969), where he considers the problem of the ascription of

content to (physical) states and events in brains (see Dennett 1986, Chapter IV).

While Dennett’s concern here is mainly with human psychology, or “real” mental-

ity, rather than with the putative mentality of a suitably programmed computer,

his concepts are presented as being applicable to any “intentional” system, and
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should thus carry over more or less directly. Dennett’s treatment is quite technical

and involved, but is roughly summarised by the following extract:

The content, if any, of a neural state, event or structure depends on two
factors: its normal source in stimulation, and whatever appropriate further
efferent effects it has; and to determine these factors one must make an
assessment that goes beyond an extensional description of stimulation and
response locomotion. The point of the first factor in content ascription,
dependence on stimulus conditions, is this: unless an event is somehow
related to external conditions and their effects on the sense organs, there
will be no grounds for giving it any particular reference to objects in the
world. At low enough levels of afferent activity the question of reference is
answered easily enough: an event refers to (or reports on) those stimulus
conditions that cause it to occur. Thus the investigators working on fibres
in the optic nerves of frogs and cats are able to report that particular
neurons serve to report convexivity, moving edges, or small, dark, moving
objects because these neurons fire normally only if there is such a pattern
on the retina. However mediated the link between receptor organ and
higher events becomes, this link cannot be broken entirely, or reference is
lost.

The point about the link with efferent activity and eventually with be-
haviour is this: what an event or state ‘means to’ an organism also de-
pends on what it does with the event or state . . . Where events and states
appear inappropriately linked one cannot assign content at all, and so it is
possible that a great many events and states have no content, regardless
of the eventual effect they have on the later development of the brain and
behaviour.

Dennett (1986, Chapter IV, pp. 76–77)

I suggest that this position of Dennett’s is closely related to the position I have

already described in relation to anticipatory systems, although Dennett provides

some useful complementary insights also.

Taking first Dennett’s discussion of the relationship between neural entities

(or tokens, in a computational system) and “stimulus conditions”, this mirrors my

earlier requirement that the token be a model of the thing referred to. Dennett’s

version is somewhat more restrictive, and I would argue that it is unnecessarily so:

for a subsystem might, conceivably, operate successfully as a model without any

ongoing linkage to the thing modelled (i.e. without any ongoing linkage to “stim-

ulus conditions”). However, I would grant that some such linkage to stimulus

conditions may be a necessary factor in the original development or establish-

ment of any modelling relationship; my point is simply that, once the modelling

relationship is established, it may successfully persist, even if the original linkage
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to stimulus conditions is broken. It may also be that, given the context of Den-

nett’s discussion, he was primarily making a pragmatic rather than a theoretical

point: i.e. that only modelling relationships which (still) have extant linkages to

stimulus conditions would be retrospectively identifiable in practice. Even this

would be a debatable claim however. A separate point arises from my claim

that the model should be predictive; Dennett certainly makes no explicit state-

ment of this sort. However, his requirement that the ultimate efferent effects be

appropriate might, conceivably, be argued as amounting to the same thing.

Moving on to the efferent effects, Dennett’s general requirement that there

must be some such effects, and that they must be appropriate corresponds quite

well in my formulation to Rosen’s stipulation that the predictive model embedded

in the system S2 must actually affect the interaction between S2 and S1. That is,

the model must have some effect (S2’s behaviour must depend on the model), and

a minimal constraint on the appropriateness of the effect is that it be concerned

with the interaction with S1. Crudely, if S2 has a model of S1, but only actually

“uses” it in its dealings with some other (unrelated) system S3, then we could

hardly describe such usage as “appropriate”. Again, Dennett’s position may

be somewhat more restrictive than is captured by the notion of anticipatory

system: in particular, Dennett may well have in mind some more stringent tests

of the appropriateness of behaviour (i.e. stronger than that the behaviour just

be directed at the “right” target). I would accept that some such stronger tests

might be useful in the case of biological systems, but I am not convinced that

they are necessary in the general case.

In any case, it should be clear that the discrepancies, such as they are, be-

tween Dennett’s view of the ascription of content and my discussion based on

anticipatory systems, all rest on rather fine distinctions, and are not fundamen-

tal. In fact, I would suggest that the general notion of an anticipatory system

satisfactorily captures Dennett’s own idea of an intentional system, but in rela-

tively more formal terms; that is, it seems to me that modelling a system as being

anticipatory (relative to some environment in which it is embedded) is virtually

synonymous with adopting the intentional stance toward it.
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Next I shall consider Boden’s (1988) review of the issue of computational

semantics. She considers, in particular, Montague’s (1974) model-theory :

Model-theory deals with how meaning can be assigned to an uninterpreted
formal system. Broadly, it says that such a system can be interpreted as
being about a given domain if that domain can be systematically mapped
onto it. If there are two such domains, the formal system in itself is about
the one just as much as it is about the other.

Boden (1988, p. 131)

It is clear that the general principle here is compatible with the view I have

been describing in relation to anticipatory systems. However, it embodies only

the condition that a modelling relationship must exist: it does not stipulate a

predictive model, and, more importantly, does not require that the model must

have effects on the interaction with the thing modelled. It is precisely this latter

omission which introduces an unnecessary extra degree of ambiguity in the as-

cription of meaning. That is, if S2 has a model which, in fact, models both S1

and S3, but which affects only the interaction between S2 and S1 (indeed, it may

be that S2 does not interact with S3 at all), then I would argue that the model

should only be said to be about S1, and is definitely not about S3—whereas Mon-

tague’s theory would appear to admit both ascriptions equally. This is not to

suggest that the anticipatory model eliminates all ambiguity of meaning: there

certainly may be cases in which a model is about (affects the interaction with)

more than one referent. Rather, I am saying that the conditions I propose for

admitting such ambiguity are significantly more restrictive than those accepted

by Montague.

It seems to me that, although this discrepancy is not too serious in itself, it

may actually be symptomatic of a more fundamental difference. The fact is that,

despite the suggestive overlap in vocabulary between Montague and myself, and

the fact that Boden introduces Montague’s work in the context of computational

psychology, Montague is actually dealing with a different problem from that with

which I am concerned.

My reading of Boden is that Montague is concerned with whether, in general,

isolated formal systems can be said to mean anything. This is the problem to

which his model-theory offers an answer. If I am correct in this interpretation,

then I should argue that the answer is incomplete, if not actually mistaken.
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This comes back to the question of meaning to whom? If we are really dealing

with a completely isolated formal system, then I assert that it really is meaning-

less, regardless of what mappings may arguably exist between it and arbitrary

domains. If, on the other hand, we do not really mean that the formal system is

isolated, but are simply saying that it could (potentially) be interpreted as map-

ping onto certain domains (although it is not, as it were, currently or actively

being so interpreted), then the theory becomes coherent but incomplete: it could

only be completed by stipulating a set of (potential) interpreters.

The point is that, in the former case, if Montague is dealing with truly isolated

formal systems, then his model-theory (whether right or wrong) is irrelevant—

its application in my context would involve a throwback to seeing a computer

program as being purely a formal object, a perspective I have already rejected.

Conversely, in the latter case, if Montague is dealing with meaning relative to sets

of interpreters, then, for my purposes, the theory is too general—for there is only

one interpreter with which I am immediately concerned, and that is the specific

system (the programmed computer) in which the formal system is embedded.

With respect to that interpreter, I argue that the more specific (and restrictive)

theory of meaning based on anticipatory systems, which specifically takes account

of this particular interpreter, subsumes whatever applicability Montague’s theory

might otherwise have had.

Boden does not pursue this issue in depth, but it seems that her ultimate con-

clusions are, at least, not incompatible with my analysis. Thus, Boden ultimately

merges this discussion with a more general discussion of whether a computational

semantics is possible at all. There she comments that “some writers [argue] that

computer programs have an intrinsic causal-semantic aspect (to be distinguished

from any abstract isomorphism there may be between programmed formalisms and

actual or possible worlds)” (Boden 1988, p. 238, emphasis added). This seems to

me to be essentially the same point I have tried to make above in relation to the

applicability of Montague’s theory. Boden concludes:

In a causal semantics, the meaning of a symbol (whether simple or complex)
is to be sought by reference to its causal links with other phenomena.
The central questions are “What causes the symbol to be built and/or
activated?” and “What happens as a result of it?”

Boden (1988, p. 250)
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At this point, Boden’s review is completed, but it should be clear that it has

more or less met up with Dennett’s discussion, already dealt with above. The

relationship with the theory based on anticipatory systems is therefore similar,

and I shall not detail it again.

I should now like to consider Harnad (1990), who introduces what he calls the

symbol grounding problem. This is closely related to, but not identical with, my

problem of the conditions under which computational tokens may be said to have

meaning or reference. Harnad’s problem is not identical with mine because Har-

nad accepts Searle’s Chinese Room argument, and concludes from this that there

are certain relatively severe constraints on symbol “grounding”. I, on the other

hand, reject Searle’s argument (see Chapter 2 above, section 2.4.1), and therefore

also reject the inferences made by Harnad from that argument. Notwithstand-

ing this difference between us, I think it worthwhile to review Harnad’s actual

grounding proposals.

In this discussion, it is important to note that Harnad uses symbol in the spe-

cial sense of a token embedded in a system of tokens which admits of “semantic

interpretability” or systematic interpretation. That is, the meaning of any com-

posite token (symbol) can be effectively established in terms of the meanings of

its atomic components. In Harnad’s terms then, the problem is that while both

people and “symbol systems” can analyse the meaning of a composite token in

terms of the meanings of its components, and may (via a “dictionary” or other-

wise) be able to further analyse this in terms of the meanings of some (smaller)

set of primitive atomic tokens, these primitive tokens are then, in themselves,

meaningful for people but not for symbol systems. For these tokens their mean-

ing is not (by definition) a consequence of some “definition” in terms of other

tokens, so what can it be?

Harnad’s outline answer is that such tokens will be meaningful or well

grounded if they are derived from, or causally related to, “non-symbolic” rep-

resentations of their referents, specifically in the form of what he terms iconic

and categorical representations.

Iconic representations are “internal analog transforms of the projections of

distal objects on our sensory surfaces” (Harnad 1990, p.342). It is quite difficult

to tie this kind of idea down precisely—one immediate problem is specifying
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how far into the nervous system we can still speak of a “sensory surface”. But

roughly speaking, Harnad means something like an image in the case of vision,

and something analogous to this for other sensory modalities. So, an icon is

something that more or less matches the sensory projection which an object

would make (whenever present in the “immediate” environment) at some more

or less well specified “level” or “locus” in the nervous system.

Iconic, or imagistic, representations are a well established notion in theories

of mentality. I believe that it is now generally accepted that such representations

(and processes constrained by them) certainly cannot account for all aspects of

mentality, but it seems, equally, that they do play some important roles (however,

see Dennett 1986, Chapter VII, and Dennett 1977b, for some critical discussion

of the issue). And, of course, that is exactly the scope of Harnad’s proposal—not

that iconic representations are the sole vehicles of mentality, but that they do

play at least one critical role, namely being an essential step in the grounding of

(primitive) symbols (in Harnad’s sense of that word).

A categorical representation of an object is then a derivative of an icon, which

has been “selectively filtered to preserve only some of the features of the sen-

sory projection: those that reliably distinguish members from nonmembers of a

category” (Harnad 1990, p.342).

Harnad argues that iconic representations are necessary to allow discrimina-

tion of sensory inputs; that categorical representations are necessary to allow

identification of objects (categorisation) in sensory input; and that both of these

are necessary, though not sufficient, underlying processes affecting a “symbol”

in order for that symbol to be well grounded. The further conditions that are

sufficient for the symbol to be well grounded are that the complete system em-

bodying the symbol must be able to “manipulate”, “describe”,13 and “respond

to descriptions” of the objects referred to. He does not go into detail of how this

might be achieved, but appears to suggest that general symbol manipulation ca-

pabilities (universal computation ability operating upon the grounded symbols?)

13Harnad specifies that human beings can both “describe” and “produce descriptions of”
objects; he clearly intends some distinction between these two, but I have been unable to
understand what it is.
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are the only additional facilities required, together with an assumption that “ap-

propriate” processing is realised by these facilities (i.e. they have been suitably

programmed?).

In terms of my own presentation of meaning in the context of anticipatory

systems, these ideas of Harnad’s fit in reasonably well. Iconic representations cer-

tainly are a kind of model, particularly suited to certain kinds of usage (namely

discrimination); categorical representations are another kind of model, partic-

ularly suited to other kinds of usage (namely identification). To this extent,

Harnad’s proposals are compatible with mine, but are more detailed. However,

Harnad appears to insist that these are essential components in the grounding of

any symbol (whether directly, as in the case of primitive symbols, or indirectly for

all others). I suggest that this condition is too strong: certainly, some modelling

relationship is essential to grounding (to establish reference at all), but I don’t

see that certain particular forms of such relationship, such as those singled out

by Harnad, are uniquely necessary.

More generally, I would argue that iconic and categorical representations are

a very crude and limited form of model, and I suggest that they are, at best, the

tip of the iceberg of general “symbol grounding”.

To the extent that Harnad emphasises modelling relationships most closely

related to processing of sensory input, his position is, perhaps, not dissimilar to

that of Dennett. As we have seen, Dennett emphasises the need for linkage with

sensory input as a basis for ascribing content. So, again, the point I wish to make

is that while a close relationship to sensory input is one particularly plausible basis

for establishing and/or recognising modelling relationships, it seems to me that

it is not generally a necessary condition for the existence of such relationships.14

I emphasise, of course, that I do not rule out the involvement of sensory input in

modelling relationships; I simply stress that, in general, it may not be essential.

As to Harnad’s remaining criteria for grounding (manipulation, description

etc.), I suggest that these can be viewed as specific forms of my general require-

14Indeed, an undue reliance on sensory linkage might pose serious problems about the devel-
opment of coherent mental activity despite very limited sensory ability (see Popper’s remark
regarding Helen Keller, quoted below). More speculatively, this is related to the persistence
(at least for limited periods) of mental activity despite sensory deprivation (compare also the
science fictional “brain in a vat” kind of question—e.g. Dennett 1976). However, these are
extremely complex issues which I shall not attempt to discuss in detail here.
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ment for the token (the predictive model) to affect the interaction with the object

referred to.

As a final comment here on Harnad’s discussion of symbol grounding, I note

that he specifically cites Fodor (1976) as introducing semantic interpretability as

criterial (or perhaps even sufficient?) for a “token” to be a “symbol”. The sub-

sequent thrust of Harnad’s analysis is to reject such a purely “symbolist” view of

symbol grounding, culminating in his introduction of iconic and categorical repre-

sentations as alternatives to this view. Now, I have already noted, in the previous

section, that Fodor could be misinterpreted in his book as proposing a unitary

language of thought, at least on a superficial or cursory reading; and this seems

to be precisely what Harnad has done. But, that it is a misinterpretation (or, at

least, an oversimplification) should be clear from the fact that Fodor included,

in the book, an extended and positive discussion of the use of images (icons?)

and discursive descriptions of images (categorical representations?) (Fodor 1976,

Chapter 4, pp. 174–194). This closely parallels Harnad’s discussion, yet Harnad

makes no reference to it.

To complete this sketchy review of computational semantics, I turn finally to

Popper. As discussed in Chapter 2, Popper is no friend of physicalism, or, more

especially, of computationalism. However, notwithstanding this, I wish to argue

that Popper’s general epistemology is compatible with the theory of meaning or

reference being propounded here (contrary perhaps, to Popper’s own wishes and

beliefs), and can, indeed, serve to illuminate this theory further. This is a rather

important point to establish, since I shall be drawing heavily on Popper’s work

in subsequent sections, particularly in relation to the growth of knowledge.

Popper’s concepts of the Worlds 1, 2, and 3 have already been introduced

in Chapter 2. The point argued there related to the reducibility or otherwise of

World 3 to World 2 (and, in turn, of World 2 to World 1). Popper argues for

their irreducibility, and in this sense, he envisages that there exists some form of

“knowledge” which is not accessible to, or realisable by, computers. By contrast,

I have claimed that Popper’s argument is flawed, and thus it does not follow that

what I call “computational semantics” is necessarily impoverished in some sense.

However, I do not want to reopen that particular debate here; my immediate

objective is more modest, and will be pursued separately. I wish to establish,
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firstly, that there is some sense in which Popper admits that machines, such as

computers, can realise or embody “knowledge”; and secondly, that this kind of

knowledge is essentially equivalent to the various formulations of a computational

semantics which I have already discussed above.

Popper himself has not, as far as I am aware, given detailed consideration to

the question of whether, or how, his epistemology can be applied to machines in

general, or computers in particular; that is, he has not dealt very explicitly with

the application of “knowledge” or “knowing” to computers and/or their programs.

However, we may glean a satisfactory insight into his views by examining a variety

of his writings.

There is first a discussion (dating originally from the period c. 1951–1956) in

which Popper introduced the idea of a “predicting” machine, and spoke loosely

in terms of its being “endowed” with, or being an “embodiment” of, knowledge

(Popper 1988, pp. 68–77); granted, within that same discussion, Popper explicitly

cautioned that he should not be taken as subscribing to the doctrine that “men

are machines”; but, to repeat, that is not the issue just here.

Popper has consistently stressed the continuity of the biological world—that

his idea of subjective knowledge (at least) allows for some kind of continuum,

linking all living things. For example, he notes that subjective knowledge “should

better be called organismic knowledge, since it consists of the dispositions of

organisms” (Popper 1970b, p. 73). Now he has not explicitly used this phrase

(subjective knowledge) in relation to machines, but he has, in a discussion of

biological evolution, which relates specifically to the development of subjective

knowledge, actually used a machine, in place of a living organism, to illustrate his

argument (Popper 1961, pp. 274–275). Granted, Popper there emphasises that

he leaves open the question of whether “organisms are machines”; but it is clear

that, to some extent at least, he allows that his notion of subjective knowledge

may be applicable to machines.

An underlying issue here is the (apparent) distinction between computers and

robots. Thus, while Popper is dismissive in general of the “intelligence” of com-

puters per se, he seems less definite about robotic systems. Specifically, the

hypothetical machine referred to above, which Popper actually describes, inter

alia, as a “complicated organism”, is, in fact, a robotic aircraft. Popper even
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goes so far as to refer to this machine’s “ ‘mind’ ” (the inner scare quotes are,

however, Popper’s own).

This notion—that there is some fundamental distinction between the capabili-

ties of computers per se and (computers embodied in) robots—is not uncommon.

As already mentioned in section 3.2.3, French (1990) has viewed android ca-

pability as essential even to the passing of the conventional, strictly linguistic,

Turing Test. For somewhat different reasons, relating to Searle’s Chinese Room

argument, Harnad (1989) has proposed what he calls the Total Turing Test which

explicitly calls for full android imitation of human abilities. Boden (1988, pp. 242–

245) has also taken robotic embodiment (of a computer) as a decisive element

in responding to the Chinese Room argument (though her response is somewhat

different from that of Harnad). A variety of other workers have, on more general

grounds, advocated some form of robotic embodiment as a more or less essential

aspect of realising AI (e.g. Dennett 1978d; Brooks 1986; Beer 1990; Cliff 1990).

This is a difficult issue, which I do not propose to discuss in depth here. I

shall, however, state a position. It seems to me that any given system (computer

or otherwise) may, potentially, be linked or coupled with its environment in an

indefinitely large number of distinct ways or modalities, perhaps even with a con-

tinuum of alternatives in between these modalities. I do not doubt that the exact

nature of these linkages affects the potentialities of the system. But I hold that we

have, as yet, very little if any theoretical understanding of these phenomena; and,

in particular, we have not yet got any basis for making a fundamental distinc-

tion between systems having only, say, a purely “linguistic” (VDU or teletype)

interface, and systems having more extensive “human-like” or “robotic” linkages.

Returning to Popper, I may say that the apparently suggestive implication

of his choice of a robotic machine rather than something closer to an isolated

computer is, in any case, largely nullified by his constant rejection of “sense

data” as critical for, or (worse) constitutive of, knowledge. Thus, for example,

we have the following analysis:

According to psychological sensualism or empiricism, it is the sensory input
of information on which our knowledge and perhaps even our intelligence
depend. This theory is in my opinion refuted by a case like that of Helen
Keller whose sensory input of information—she was blind and deaf—was
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certainly far below normal, but whose intellectual powers developed mar-
vellously from the moment she was offered the opportunity of acquiring a
symbolic language.

Popper & Eccles (1977, Chapter P4, p. 124)

Incidentally, Turing made much the same point at an earlier date, also citing

the example of Helen Keller, and specifically applied this in the context of AI

(Turing 1950, p. 456).

Thus far, I have simply argued that Popper should not be read as claiming

that his theories of knowledge cannot be applied (at least to some extent) to

programmed computers. It remains to actually apply them in this manner. I

think the following quotation shows fairly clearly how this may be done:

Because all our dispositions are in some sense adjustments to invariant or
slowly changing environmental conditions, they can be described as theory

impregnated, assuming a sufficiently wide sense of the term ‘theory’. What
I have in mind is that there is no observation which is not related to a set of
typical situations—regularities—between which it tries to find a decision.
And I think we can assert even more: there is no sense organ in which

anticipatory theories are not genetically incorporated. The eye of a cat
reacts in distinct ways to a number of typical situations for which there are
mechanisms prepared and built into its structure: these correspond to the
biologically most important situations between which it has to distinguish.
Thus the disposition to distinguish between these situations is built into
the sense organ, and with it the theory that these, and only these, are the

relevant situations for whose distinction the eye is to be used.

Popper (1970b, pp. 71–72, original emphasis)

While this quotation centers on subjective knowledge relating to sense organs,

I take it that the general principles espoused here can be applied quite generally.

Given this, I suggest that what Popper calls an “anticipatory theory” can be

identified with what I have called a “predictive model”. What he calls a “dis-

position” thus exists only in the context of an anticipatory theory (or predictive

model), and can be identified with the contingent interaction of an anticipatory

system (S2) with the system of which it has a model (S1). But these are pre-

cisely the conditions under which I have said that the model refers to the object

modeled, or that the anticipatory system has knowledge of it. Thus, I claim that

the knowledge which I propose to ascribe to (tokens of) computer programs is a

bona fide case of subjective knowledge in at least one sense which Popper would

allow or recognise.
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While it is not crucial for my purposes here, I may say that Popper seems

to distinguish this limited or impoverished kind of subjective knowledge (which,

evidently, a computer may realise) from the more general kind (which, on Pop-

per’s view, a computer cannot realise) by reference to a hierarchy of linguistic

functions. Specifically, Popper allows that both animals (including the human

one) and machines can support two “lower” functions (the “expressive” and “sig-

nalling” functions), but he goes on to argue that there exist (at least) two further

functions (the “descriptive” and “argumentative”) which seem to be exclusively

human achievements. Popper has discussed these ideas in a number of publica-

tions, but the clearest and most pertinent to the question of “machine” knowl-

edge, is probably his paper on Language and the Body-Mind Problem (Popper

1953). In any case, the arguments for this hierarchy of language functions, and

for the resulting cleavage of Popperian “subjective knowledge” into a kind that

computers can realise and a kind that they cannot realise, seem to me to be

largely equivalent to Popper’s more general arguments against the causal closure

of World 1. So, once again, I shall not pursue these questions further here.

This covers the application of subjective knowledge to computational systems.

It leaves open the relevance, if any, of what Popper has called objective knowledge.

Popper has generally identified objective knowledge with World 3, and I use the

terms synonymously. As already noted, Popper has argued that this World 3

is not completely reducible to World 2. Still without reopening that debate, I

want to emphasise that Popper accepts that in many cases World 3 objects can,

in some sense, be identified with (if not reduced to?) World 2 or even World 1

objects. That is, objective knowledge can be physically embodied.

In general, in speaking of embodiments of World 3 objects, Popper has in

mind linguistically expressed theories (which can then be subject to discussion and

criticism). If this were the only case of the embodiment of objective knowledge,

then it might have little immediate relevance to Artificial Intelligence—given the

limited linguistic capabilities of existing computer systems. However, Popper also

considers the concept of objective knowledge in a more general sense:

. . . all the important things we can say about an act of knowledge consist of
pointing out the third-world objects of the act—a theory or proposition—
and its relation to other third-world objects . . .

Popper (1970a, p. 163)
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It seems to me that the implication here is that subjective knowledge, as such

(as opposed to other World 2 objects, such as hopes and fears and pains etc.)

should, quite generally, be viewed strictly in terms of its relationship to some

World 3 object (the object being “grasped”, in Popper’s terms). In terms of my

discussion of Anticipatory Systems then, I suggest that the predictive model itself

(separately from the token which embodies or realises it) can be identified as an

example of objective knowledge. That is, any systems (including computational

ones) which can be ascribed subjective knowledge can also be said to grasp, even

if only in a rudimentary fashion, some objective knowledge. They have, as it were,

a toehold (at least) into World 3. This is a significant point, to the extent that

Popper has stressed that, as a methodological guideline for scientific research, one

should concentrate on the World 3, objective knowledge of a system, rather than

its subjective World 2 realisation. He makes this kind of argument explicitly for

non-linguistic (biological) organisms in (Popper 1968, p. 112–114).

In the present case, the significance of this is simply that, if we wish to ascribe

meaning to a token (of a program) we can only do so by reference to the model

which (we claim) it embodies. That is, the (tentative) identification of the World 3

object which a token embodies would be a crucial methodological step in any

practical application of the computational semantics presented here.

That completes my review of computational semantics, or of the idea of ar-

tificial, computational, knowledge. In conclusion, then, let me just reiterate the

central theme, which I have tried to view from a number of different perspectives.

This is, firstly, that a programmed computer is a dynamic system, which must not

be confused with the static, formal, object, which is its program; and secondly

that such programmed computers can and should be said to be knowledgable

precisely to the extent that they embody predictive model(s) of the reality in

which they are embedded and that they use these predictions to condition their

confrontation with that reality.

91



3.6 On the “Engineering” of Knowledge

At this point I have more or less identified the problem of Artificial Intelligence

with the problem of artificial knowledge, and I have elaborated what I intend

by that latter phrase in some detail. To be sure, for our computer to (say)

pass the Turing Test, it must not only know about the world, but also be able

to communicate (linguistically) about it; and to be sure, the specific problems

associated with relating its knowledge to linguistic expression are far from trivial;

but I suggest that the primary problem, in the current state of the AI art, is not

that computers cannot talk, but rather that they have nothing worthwhile to say.

For example, as far as computer linguistic performance goes, we may consider

Winograd’s SHRDLU system to be a climax of sorts (Winograd 1973; Hofstadter

1979, pp. 627–632). The emphasis in the development of SHRDLU was on language

“interpretation” or “understanding”, rather than on language “production”, but

perhaps this is the harder of the two. In any case, viewed purely in terms of its

ability to use language, SHRDLU was a considerable achievement—it could indeed

maintain quite a creditable and coherent conversation.

Unfortunately, the conversation turns out to be extremely monotonous, or

even boring. SHRDLU’s “knowledge” of the world is limited to an extremely narrow

and restricted domain, or a microworld. SHRDLU’s particular microworld may be

thought of as a table top with various kinds of toy-like blocks on it—cubes,

pyramids, etc. in various colours. There is also an arm (belonging to, or operated

by, SHRDLU) which can be used to move these objects around. I say that the

microworld may be thought of in this manner, but, as always, one must be careful

about who (or what) is doing the thinking here. SHRDLU’s knowledge certainly

encompasses some of the most salient aspects of the microworld I have described;

but it also lacks all of the background ramifications that the description I have

given would have for a human. Thus, not only is the scope of SHRDLU’s knowledge

very limited, but so also is the depth. It might be more accurate to describe

SHRDLU’s microworld as consisting of a ‘table top’, with ‘blocks’ ‘on’ it, of various

‘shapes’ and ‘colors’ etc.—using the scare quotes to emphasise that, although

SHRDLU may use these terms in conversation, its understanding of them is, at

best, a pale shadow of the normal human understanding of them.
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So, it seems that the central problem is knowledge. It may, or may not, be a

difficult problem to “hook up” an already knowledgable subject, so that it could

communicate linguistically; but this problem hardly even arises until the system

is quite knowledgable to start with: until it shares enough knowledge of the world

with us that it might conceivably have something substantive to communicate.

I emphasise this distinction between knowledge and the ability to linguistically

communicate it, because there is sometimes a danger of confusing language and

its content. This is closely related to the issue dealt with in the previous sec-

tion, of the difference between a program per se (which knows nothing) and a

programmed computer (which may or may not know something).

Now, the simplest conceptual approach to the problem of artificial knowledge

is to engineer it. That is, one attempts to explicitly formulate model(s) of reality,

and then instantiate them in a computer program; in other words, one builds an

anticipatory system by actually designing and building the requisite predictive

model(s) and using the output of these models in some (more or less) rational

or appropriate way to condition the behaviour of the system—in particular, to

condition its interaction with the object(s) modelled.

Knowledge Engineering is thus a brute force, or stipulative, approach to re-

alising AI. It is the approach which has dominated AI research until relatively

recently. It is (in effect) the way SHRDLU’s knowledge was created, and is charac-

teristic of AI’s principle commercial success, the notion of the Expert System.

The question which now arises is: what is the scale of this (knowledge engi-

neering) task? How much knowledge15 does a typical human being have? Or,

perhaps slightly less demandingly, how much knowledge would be required to

pass (or even come close to passing) the Turing Test?

Turing himself attempted this kind of analysis. He first estimated the “storage

capacity” of the brain at about 109 bits, and then comments:

At my present rate of working I produce about a thousand digits of pro-
gramme a day, so that about sixty workers, working steadily through the
fifty years might accomplish the job, if nothing went into the waste-paper
basket. Some more expeditious method seems desirable.

Turing (1950, p. 455)

15I pretend, for the sake of the discussion, that there could be some meaningful quantitative
measure of knowledge—say something like “person-years of development effort” to realise the
corresponding artificial predictive model(s).
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With the benefit of forty years experience of the problems of large scale soft-

ware engineering, we might be permitted some wry amusement at Turing’s even

contemplating the idea of developing roughly 100 MByte of software, without

anything going in the “waste-paper basket”; furthermore, Turing admits that 109

bits is a low estimate for the storage capacity of the brain. However, the point is

that these factors only serve to further strengthen Turing’s conclusion that, even

supposing the knowledge engineering approach to be theoretically tractable, it is

not practical.

While we might now be more reticent about doing this kind of calculation,

nothing in the past forty years has served to suggest that Turing may have se-

riously under-estimated the effort required. That is, the knowledge engineering

approach has proved more or less successful in narrow domains of knowledge,

but it has remained limited to such domains. In terms of the original objec-

tive of general intelligence, at the Turing Test level, the approach has largely

stagnated.16

The apparent limitations of knowledge engineering have been recently docu-

mented by Hubert and Stuart Dreyfus (Dreyfus & Dreyfus 1986). They identify

two related difficulties: the common sense knowledge problem, and the frame

problem.

The common sense knowledge problem refers to the extreme difficulty which

has been encountered in attempts to systematise common sense knowledge. This

is generally agreed to be a very severe problem, though there is room for debate

as to its exact nature—specifically, whether it is “merely” a matter of scale, of

the sheer quantity of knowledge involved, or whether there are more fundamental

problems not yet properly recognised. Thus, for example, Hayes (1979) proposed

a research programme to systematise or formalise “a large part of ordinary ev-

eryday knowledge of the physical world”—what he dubbed näıve physics. Drew

McDermott was originally an enthusiastic advocate of Hayes’ approach, but sub-

sequently (McDermott 1987) reported that very little progress had been made,

and concluded that the programme faced very fundamental and substantial dif-

ficulties.

16One major exception is Lenat’s Cyc project (Lenat & Guha 1990). However, substantive
results (one way or the other) are not expected from this project before about 1994.
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The frame problem refers to the fact that, even if a system has been provided

with a great deal of knowledge (without, for the moment, trying to quantify this),

it is very difficult to integrate this successfully—especially to ensure that the most

relevant knowledge is available and applied at any given time; and, of course, the

more knowledge is provided, the worse this problem becomes. Dreyfus & Dreyfus

describe the frame problem as follows:

In general skilled human beings have in the areas of their expertise an
understanding that enables them, as events unfold, to distinguish what
is relevant from what is not. However, during the first three phases of
AI research, from cognitive simulation up through work on micro-worlds,
computers, like beginners, advanced beginners, and competent performers,
were programmed to confront all facts as isolated from each other and
goals as just further facts. Thus whenever a change occurred the whole
set of facts that made up the computer’s representation of the current
state of affairs had to be recalculated to update what had changed and
what had remained the same. The attempt to capture human, temporal,
situated, continuously changing know-how in a computer as static, de-
situated, discrete, knowing that has become known as the frame problem.

Dreyfus & Dreyfus (1986, p. 82)

It is interesting to compare this with Popper:

At every instant of our pre-scientific or scientific development we are living
in the centre of what I usually call a ‘horizon of expectations’. By this I
mean the sum total of our expectations, whether these are subconscious or
conscious, or perhaps even explicitly stated in some language. Animals and
babies have also their various and different horizons of expectations though
no doubt on a lower level of consciousness than, say, a scientist whose
horizon of expectations consists to a considerable extent of linguistically
formulated theories or hypotheses.

Popper (1949, p. 345)

My point here is that while Popper has never explicitly addressed the frame

problem, it is clear that his theory of knowledge encompasses the issues it raises.

To the extent that I have argued in the previous section that computers can,

in principle at least, realise knowledge in Popper’s sense, this can be taken as a

claim that computers can, in principle, be programmed to overcome the frame

problem. This is worth stating explicitly because Dreyfus & Dreyfus are frankly

skeptical about it.

However, the point remains that, to date, the brute force method of knowledge

engineering has proven to be extremely limited as an avenue toward the realisation

of artificial intelligence. It seems that some alternative should be sought.
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3.7 Building a Baby

Turing himself had, of course, anticipated that what I now call the knowledge

engineering approach might prove impractical. His proposed alternative was to

develop a machine which would be capable of learning. In this way, he hoped, the

initial programming requirement could be reduced to manageable proportions:

Presumably the child-brain is something like a note-book as one buys it
from the stationers. Rather little mechanism and lots of blank sheets.
(Mechanism and writing are from our point of view almost synonymous.)
Our hope is that there is so little mechanism in the child-brain that some-
thing like it can be easily programmed. The amount of work in the educa-
tion we assume, as a first approximation, to be much the same as for the
human child.

Turing (1950, p. 456)

This possibility has certainly not been ignored in the intervening years. How-

ever, Turing’s “hope” that it might prove significantly easier to program a “child-

brain” compared to an adult has, so far at least, proved forlorn. As Charniak

and McDermott put it:

One idea that has fascinated the Western mind is that there is a general
purpose learning mechanism that accounts for almost all of the state of
an adult human being. According to this idea, people are born knowing
very little, and absorb almost everything by way of this general learner.
(Even a concept like “physical object,” it has been proposed, is acquired by
noticing that certain visual and tactile sensations come in stable bundles.)
This idea is still powerfully attractive. It underlies much of behavioristic
psychology. AI students often rediscover it, and propose to dispense with
the study of reasoning and problem solving, and instead build a baby and
let it just learn these things.

We believe this idea is dead, killed off by research in AI (and linguistics,
and other branches of “cognitive science”). What this research has re-
vealed is that for an organism to learn anything, it must already know a
lot. Learning begins with organized knowledge, which grows and becomes
better organized. Without strong clues to what is to be learned, nothing
will get learned.

Charniak & McDermott (1985, pp. 609–610)

Popper has made related claims in a different context:

. . . to every man who has any feeling for biology it must be clear that
most of our dispositions are inborn, either in the sense that we are born
with them (for example, the dispositions to breathe, to swallow, and so on)
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or in the sense that in the process of maturation, the development of the
disposition is elicited by the environment (for example, the disposition to
learn a language).

Popper (1970b, p. 66)

If it were not absurd to make any estimate, I should say that 999 units out
of 1,000 of the knowledge of an organism are inherited or inborn, and that
one unit only consists of the modifications of this inborn knowledge. . .

Popper (1970b, p. 71)

Boden (1988, p. 187–188) also discounts Turing’s original programme for sim-

ilar reasons. Somewhat more caustically, but making an essentially similar point,

the biologists Reeke & Edelman have said:

In fact, consideration of the magnitude of the problem with due modesty
suggests that perception alone is hard enough to understand, without at-
tempting to jump directly from perception to learning, through learning
to social transmission and language, and from there to all the richness of
ethology. At present, it is still a large challenge to understand how an
animal can even move, and it would be well for AI to look first to such
fundamental issues.

Reeke & Edelman (1988, p. 144)

I note that this criticism by Reeke & Edelman is directed just as much at the

recent revival of research in the field of artificial neural networks (“connection-

ism”) as at the approaches of conventional (so called “symbolic”) AI.

This result—that the realisation of an artificial “infant” intelligence seems

not to be significantly easier than the realisation of an “adult” intelligence—is

certainly disappointing, but it is by no means completely fatal to the AI enter-

prise. With my rejection, in the previous section, of the knowledge engineering

approach the problem had already changed from that of artificial knowledge in

itself, to the problem of the growth of (artificial) knowledge. That still remains

our problem, but now we recognise that this cannot be solved by restricting our

attention to the somatic time growth of human intelligence. We must take a more

comprehensive view, in which human knowledge is seen as being continuous with

animal or biological knowledge. In short, we must understand not only “learning”

but also “evolution”.
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3.8 The Growth of Knowledge

The development so far has indicated that, in attempting to realise artificial intel-

ligence, we must realise the growth of artificial knowledge; and that, furthermore,

we must be concerned not just with the somatic time “learning” of an individual,

but also with the evolutionary time growth of “inate” knowledge. That is, we

must ultimately seek to realise the growth of artificial knowledge in something

comparable to both of these biological senses.

I now wish to go beyond this result, and review a stronger, perhaps even a

radical, claim: this is that the growth of knowledge by learning and by evolution

are not fundamentally distinct processes in any case—rather, they are both forms

of a kind of abstract or generalised Darwinian process. This being so, it will follow

that the AI research programme may be identified with, or even replaced by, a

programme aimed at the realisation of Artificial Darwinism.

3.8.1 Evolutionary Epistemology

The doctrine that the processes underlying all growth of knowledge are of an

essentially Darwinian kind is now called evolutionary epistemology ; the concept

was pioneered by Popper, and it is fundamental to his overall philosophy, but

it has also been significantly expanded and developed by others—Radnitzky &

Bartley (1987) provide a comprehensive survey. I have very little to add to this

existing literature, so I shall restrict myself here to a relatively brief review.

Evolutionary epistemology derives, ultimately, from Popper’s analysis of the

problem of induction, and the implications he draws from this for the growth

of knowledge (e.g. Popper 1971). Popper denies that there can be such a thing

as certain knowledge (except in the trivial sense of a tautology); and, more im-

portantly, denies that there can be such a thing as a logic of induction. That

is: nothing that we know is necessarily true (including “observation statements”,

since these are, themselves, theory impregnated); and even to the extent that

what we know is, in fact, true, we cannot logically infer from it (consciously or

otherwise) any more general, or strictly new, knowledge.

To take a favoured example of Popper’s (e.g. Popper 1970b, p. 97) we know

that the Sun rises each day; but this is not certain knowledge (there are any
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number of reasons why the Sun may not in fact rise tomorrow); and our (tentative

or conjectural) knowledge that the Sun will, in fact, rise tomorrow, is not, and

cannot be, a consequence of, nor justified by, our experiences of the Sun rising

on previous days—no matter (for example) how many times this experience may

have been repeated.

It is important to emphasise here that, in this Popperian view, deduction as

such can never result in new knowledge or in the growth of knowledge. Deduction

is a tool which can be used (and most notably is used in science) to draw out

consequences of our existing knowledge; but this is (just) making explicit what

was already implicit, and, in itself, cannot increase our knowledge. Processes

weaker than logical deduction (e.g. so called fuzzy logic) cannot, of course, reliably

do any better in this particular respect.

Popper has called the näıve empiricist idea that knowledge is “derived” or

“extracted” or “distilled” from some accumulation of “experience” the bucket

theory of knowledge (Popper 1949). His central point is that, as long as knowledge

is interpreted in the sense of effective predictive models, the bucket theory is

untenable on purely logical grounds.

But if knowledge cannot grow through the analysis of experience, then how

does it grow?17

Popper’s answer is that knowledge grows, and can only grow, by a process

of conjecture and refutation. By “conjecture” he means the formulation, by any

means, of new models or assertions or theories, which make predictions about the

environment in which the knowledge agent is embedded. The only constraint is

that the predictions of these new models must potentially go beyond (or conflict

with) predictions made by the prior knowledge of the agent.

In effect, we must divide knowledge processes into two kinds. In the first,

truth conditions (or more strictly, belief conditions) are preserved. Such pro-

cesses clearly do not involve any growth of knowledge, but rather represent an

elaboration of existing knowledge; they include, for example, the operation or ex-

ecution of “predictive models”, as I have used the term (following Rosen 1985a)

17I discount here the relativist (non-)answer that the growth of knowledge is an illusion; what-
ever about the growth of human knowledge, the idea that the growth of biological knowledge,
in the evolutionary sense, is imaginary, seems to me to be quite unsustainable.
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in section 3.5 above. These processes correspond to the application of knowledge

which has been accepted or adopted (at least tentatively) by an agent. In the

second kind of knowledge process, truth (belief) conditions are not strictly pre-

served. Since these processes are not truth preserving, their output is inherently

conjectural (i.e. even relative to premisses which are assumed to be true). Regard-

less of the nature of these processes, we may say that they represent unjustified

variation. Such unjustified variation is clearly distinct from elaboration of al-

ready accepted knowledge—for it potentially produces conjectures transcending,

and especially contradicting, the previously (presumed) known. But unjustified

variation does not yet represent growth of knowledge, for these new conjectures

may be uniformly mistaken.

Knowledge can grow if and only if the agent’s predictions (“deductions”)

are frustrated ; that is, if the world does not behave in the way the model (the

knowledge) predicts; whenever expectations are defied in this way, there is an

opportunity for growth. But this opportunity can be exploited only if the failure

has the effect of selecting between competing models which were not all equally

bad at predicting the behaviour of the world.

In short, there must be some mechanism for generating new candidate models

of reality, which may compete with, and improve upon, the old ones; these may,

or may not, be derived in some sense from existing models; but their validity or

utility, is independent of their genesis. Knowledge can thus continue to grow only

to the extent that new models of aspects of the world, not logically (deductively)

entailed by prior knowledge, can be generated and tested. There can be no definite

method (or logic of induction) for the generation of such new models which would

guarantee their truth. For that matter, there cannot even be a definite method

for testing of competing conjectures.18

While Popper originally formulated this theory of the growth of knowledge

by conjecture and refutation in the context of scientific knowledge, the schema

18I may say that I fully accept that there is a concept being used implicitly here, of relative
“closeness” to the truth, or “verisimilitude”, which is a difficult and problematic one; but I
think it has, nonetheless, a clear and useful intuitive meaning—in this, I follow Newton-Smith
(1981), at least partially (compare also Popper 1974b, pp. 1011–1012). In any case, it must be
emphasised that the notion in question is always a relative one: we are always talking about a
comparison between competing conjectures rather than between an isolated conjecture and the
“naked” truth (the latter being strictly inaccessible—to us just as much as to our machines).
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clearly represents a kind of generalised or abstract Darwinian process. Campbell

(1974a, p. 49) points out that this Darwinian undertone can be found even in

Popper’s earliest discussions of the subject; in any case, Popper himself has since

(e.g. Popper 1961) explicitly emphasised the essential unity of all processes of

knowledge growth in both evolutionary and somatic time (and also, indeed, in

what we might call “cultural time”, in the case of linguistically formulated World 3

knowledge; but that further extension is not relevant to my purposes here).

Thus, under the doctrine of evolutionary epistemology, all knowledge (sub-

jective or objective, conscious or unconscious) consists in tentative hypotheses or

theories about the world (including theories about theories, and how to apply

them etc.). Growth of knowledge is possible (indeed, is only possible) through

the unjustified formulation of new, tentative, theories, and some form of testing

and selection between competing theories. In the special case that the theories

are linguistically formulated, are falsifiable, and selection is based on rational

analysis and critical testing, then Popper identifies this as scientific knowledge.

In the special case that the theories are inate or inborn, and selection is based on

differential reproduction arising through competition for limited resources, then

the process is conventional Darwinian evolution. But, in all cases, the growth of

knowledge involves an initial unjustified generation of new conjectures—i.e. con-

jectures whose truth is not logically entailed by the (tentatively accepted) truth of

previous knowledge—followed by a confrontation between these new conjectures

and the objective world, a confrontation in which the (more) false are rejected.

Campbell (1974b) has referred to this unified theory of knowledge growth as

Unjustified Variation and Selective Retention, or, as I shall say, UVSR.

3.8.2 On “Random” Variation

The variation which underlies Darwinian (UVSR) evolutionary processes is com-

monly referred to as being “random”, but it turns out that this has connotations

which can be deeply misleading. Campbell (1974a; 1974b) has previously re-

viewed this question quite comprehensively; I shall simply extract some details

which will be particularly relevant to my own objectives here.

Unjustified variation is an essentially logical notion. While it perhaps con-
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forms to one of the common-sense ideas of “randomness”, it is certainly not ran-

dom in the sense of the probability calculus. This should be clear, for example,

from the fact that the probability calculus relies on the possibility of a defined

event space, whereas to classify a variation as “unjustified” does not require any

reference to a “space” of “possible” variation. Lack of justification is, rather, a

logical relationship between new (tentative) knowledge and prior knowledge.

More generally, “randomness” implies the absence of predictability, (except,

perhaps, in a statistical sense) whereas “unjustified” variation may be arbitrarily

systematic and predictable. Note that this does not imply that the growth of

knowledge is predictable. As Popper (1988, pp. 62–67), for example, has pointed

out, any claim to be able to predict the future growth of knowledge is fundamen-

tally flawed; in the case at hand, such a claim must fail because the growth of

knowledge requires both the generation of unjustified variations (and we stipu-

late that this may be predictable, in isolation) but also the testing, and selective

retention, of some of the generated variations. This second step, of selective

retention, is not predictable.

This establishes that unjustified variation is not (necessarily) a “random”

process in the sense of the probability calculus, and that it need not even be

unpredictable. But the crucial distinction between the notions of “unjustified”

and “random” variation is rather more subtle than this. A key connotation of

“random” variation, in the context of knowledge processes at least, is that it is

“unbiased” with respect to the truth, or, more generally, the verisimilitude, of the

generated conjectures. That is, a “random” variation should be “just as likely”

to be false as to be true.

I should point out that, while this notion of randomness, in the sense of

a lack of bias between truth and falsity, seems to have a fairly clear intuitive

meaning, it can hardly be made formally respectable at all. To say that a process

of generating conjectures is “random” in this sense requires that we be able to

categorise all possible conjectures which it can generate as true or false in advance;

and if we could do that then we would already have all the accessible knowledge

in our possession, and there could be no growth. Granted, we could possibly

apply this notion to our machines, or perhaps even to animals—if the domain

of their knowledge is strictly circumscribed to lie within some domain of which

102



we already have “perfect” knowledge. But of course, we never have “perfect”

knowledge of any domain, so even this is a contrived case; furthermore, machines

whose knowledge cannot, in principle, transcend our own would still represent a

critically impoverished kind of artificial intelligence.

In any case, the important point is that the idea of “unjustified” variation

does not require or imply “randomness” in this last sense either. A particular

process for generating new conjectures may, in fact, be strongly “biased” (either

towards truth or falsity), insofar as this idea of bias can be given a clear meaning

at all; but we can never know this to be the case. Our labelling of a generation

process as unjustified does not rely one way or the other on such bias, or its

absence.19

In fact, it seems that, if anything, “successful” UVSR processes typically in-

volve generators which are strongly biased in favour of true (or “approximately

true”) conjectures. The crucial point here is that, while the possibility of knowl-

edge growth does not rest on such bias, the rate of growth will be strongly affected

by it.

In saying this it may appear that I am now begging the question at issue: it

seems that I now explain or solve the problem of the growth of knowledge (at least

insofar as it occurs at “speed”) by calling upon some mysterious inbuilt bias in the

generation of new conjectures. But this is actually a flawed criticism—because

the UVSR principle can be applied recursively. If I should say (or conjecture) that

a generator of (unjustified) conjectures is favourably biased, I would be implying

that it already incorporates knowledge; while this would raise the question of

where this knowledge came from, I have a simple answer ready—namely that

it came from a prior process of (unjustified) generation of different generators,

with selective retention of the “best”. The implied regress is not vicious: it can

bottom out with generators which are unbiased (or even unfavourably biased)—

or, more to the point, generators whose operation can be explained without any

19I should caution that I myself have previously made the terminological blunder of using
“unjustified variation” to refer not just to the relatively weak logical concept for which I use
the term here, but also to refer to the stronger concept which I here call “unbiased variation”
(McMullin 1992a; 1992b); this was a blunder insofar as I acquired the phrase “unjustified
variation” from Campbell (1974b), and it has become clear to me that Campbell meant the
term to imply only the weak, strictly logical, notion. I have therefore now reverted to using it
only in this original sense of Campbell’s.
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assumption of bias (i.e. non-teleologically) one way or another.

So the “unjustified” in UVSR does not equal “unbiased” (or “ignorant”); but

a complete evolutionary epistemology does demand that, to whatever extent an

unjustified generator is held to already incorporate significant knowledge, that

the genesis of this knowledge must be explained by a prior UVSR process. This

recursion must ultimately terminate in “primordial” generators whose genesis is

not problematic. We can hold that such a termination is possible, even if we have

little or no idea of its detailed nature, because UVSR can operate even in the

face of a strongly un-favourable bias (provided enough time is allowed).

This is an important result. The previous section established, on strictly logi-

cal grounds, that unjustified variation was necessary to the growth of knowledge—

but said nothing about the rate of such growth. I am now suggesting that the

rate of growth will depend on an ability to exploit previously gained knowledge in

a loosely hierarchical fashion: that, in other words, for “fast” knowledge growth,

we need an architecture which is not tied into a fixed, predefined, generator of

unjustified variation, but which instead supports the emergence of new generators

of unjustified variation, and selection between such generators.

There is a further separate, but complementary, result, regarding the “open-

ness” of knowledge growth, but it will require some discussion to develop it prop-

erly.

Note firstly that, while it seems that an organisation supporting such a hi-

erarchic knowledge structure may be a necessary condition for “fast” knowledge

growth, it cannot, of course, be a sufficient condition. We may say that the

fundamental principle of evolutionary epistemology is that there are no sufficient

conditions for the growth of knowledge.

In practical terms, this means that if we happen to find a “good” generator of

new (tentative) knowledge, then that can allow a burst of relatively rapid knowl-

edge growth, but this will inevitably be exhausted; further growth of knowledge

will then rely on generating an alternative generator. That is to say, a “good”

generator is a double-edged sword: to the extent that it does generate good con-

jectures, it accelerates the growth of knowledge; but buried among all the “bad”

conjectures which it does not generate, there may be some jewels, better even

than the “best” conjectures which it does generate.
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Thus, once it is accepted that all knowledge is conjectural—including that

incorporated in our best “generators”—we see that the growth of knowledge may

ultimately cease altogether if we cling dogmatically to any knowledge. Conversely,

if we wish the growth of knowledge to be (as far as possible) open-ended, we need

a knowledge structure which is not a simple hierarchy, but is rather more like a

heterarchy, in which all knowledge (including all generators) is potentially subject

to competition and displacement.20 There is this inherent tension between the

two aspects of the UVSR process—between variation and retention—and it is

precisely the maintenance of this tension which permits (but cannot compel)

continued, open-ended, growth of knowledge.

Our problem then is to find a way to design our putative machine or computer

“intelligence” in just such a way that it can successfully balance on this same

knife-edge which separates dogmatism from ignorance. This is not a trivial task.

3.8.3 UVSR and AI

The notion of realising some kind of more or less Darwinian process, in a com-

putational system, is not at all original. Turing (1950) explicitly drew parallels

between processes of learning and of biological evolution, in his seminal discussion

of the prospects for realising AI. The earliest practical research was probably that

of Friedberg and his colleagues in the field of “automatic programming” (Fried-

berg 1958; Friedberg et al. 1959). However, the problems they tackled were

extremely simple (e.g. 1-bit binary addition), and the results mediocre. A form

of artificial Darwinian evolution was proposed by Selfridge (1959), but was not

pursued to an implementation. Simon (1969) provided an early, and perceptive,

analysis of some of the general factors involved in applying any kind of Darwinian

process in artificial systems.

The idea of artificial evolution was taken up again by Fogel et al. (1966), now

specifically in the context of AI, but still applied to very simple problems and

with very little tangible success. The scathing review of this particular work by

Lindsay (1968) was, perhaps, instrumental in discouraging further investigation

20In its most abstract form this becomes, in effect, the principle of pancritical rationalism

advocated by Bartley (1987). Compare also what I have previously called the “reflexive hy-
pothesis” (McMullin 1990).
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along these lines for some time. Holland has since rehabilitated the evolutionary

approach somewhat with the so-called Genetic Algorithm or GA (Holland 1975),

and this has generated a significant level of interest, particularly in the USA

(Schaffer & Greffenstette 1988). I shall discuss the philosophical background to

Holland’s work in more detail below, and will also consider the Genetic Algorithm

again in Chapter 4, section 4.3.2. There has been a somewhat parallel European

development in the form of Evolution Strategies (Schwefel 1979; 1988). Several of

these historical developments have been recently reviewed by Goldberg (1989).

I shall not attempt a comprehensive discussion of these prior efforts here.

They have met, at best, with limited success, and then only in relatively narrow

domains. I suggest that this failure can be traced, to a large extent, to the

fact that these approaches have not been informed by the detailed philosophical

arguments and analyses which have been elaborated by Popper and others under

the rubric of evolutionary epistemology. I shall develop this claim by considering

a number of attempts to probe the philosophical foundations of evolutionary

or Darwinian growth of knowledge which have previously appeared in the AI

literature.

I start with the analysis contained in Daniel Dennett’s paper Why the Law

of Effect Will Not Go Away (Dennett 1975). This is a remarkable paper in

that Dennett succeeds in (re-)developing many of the important ideas present in

evolutionary epistemology, but appears to have done so almost independently of,

and concurrently with, the “mainstream” work in the field. There is only fleeting

mention of Popper, with no detailed citation; and there is no mention at all of

D.T. Campbell, or other workers associated with the development of evolutionary

epistemology.

I note that Dennett’s paper is clearly a development of ideas previously

mooted in his Content and Consciousness (Dennett 1986), which was originally

published in 1969. Thus this work by Dennett either predated or overlapped

with the original publication of Popper’s collection of essays Objective Knowledge

in 1972 (Popper 1979), and the publication of the Schilpp volume on Popper’s

philosophy (Schilpp 1974), which also contained Campbell’s most comprehensive

expression of evolutionary epistemology (Campbell 1974a). So, notwithstanding

the fact that the essential ideas of evolutionary epistemology were available in
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much earlier publications21 it is perhaps not too surprising that Dennett’s de-

velopment of these ideas was quite independent. While Dennett has mentioned

Campbell’s work more recently (Dennett 1981, p. 59), this was in a quite different

context, and does not bear directly on the issues to be discussed here. As far

as I am aware, neither Dennett himself, nor any other commentator, has previ-

ously drawn attention to the close connections between Dennett’s analysis and

evolutionary epistemology per se.

Although Dennett’s treatment does not, in my view, go significantly beyond

the analyses of Popper and Campbell, it is particularly relevant here because

Dennett explicitly relates these ideas to AI.

Dennett expresses his discussion in terms of the thesis known, in behaviourist

psychology, as the Law of Effect ; very roughly, this states that actions followed

by reward are likely to be repeated, or, more specifically, that rewards act to

reinforce or select the “successful” behaviours from a diverse repertoire of possible

behaviours. While Dennett is no friend of behaviourism, his claim is that there

is a core of truth in the Law of Effect, and, in particular, that something like it

will be “not just part of a possible explanation of behavior, but of any possible

explanation of behavior” (Dennett 1975, p. 72, original emphasis).

Dennett develops this claim by first noting that Darwinian evolution provides

an explanation of the growth of what I have called “inate knowledge” (and which

Dennett refers to as purely “tropistic” or “instinctual” control of behavior); and

that, for the time being at least, Darwinism is the only account we have of this

growth which is not “question-begging”. In Dennett’s view, the Law of Effect

provides a similarly unavoidable basis for any satisfactory account of the growth

of knowledge in somatic time (i.e. what I termed “learning” above, as opposed to

“evolution”)—indeed he now reformulates the Law of Effect in a generalised form

of what he calls “generate-and-test” procedures. These are hardly distinguish-

able from Campbell’s UVSR processes—except that Dennett does not explicitly

21As already noted, there were clear anticipations of evolutionary epistemology in Popper’s
Logik der Forschung, first published in 1934, of which the English translation, The Logic of

Scientific Discovery, first appeared in 1959 (Popper 1980); there were also substantive specific
discussions of the problem of induction in Popper’s Conjectures and Refutations (Popper 1989),
first published in 1963; and Campbell published two seminal papers in the field at an early date
(Campbell 1960a; 1960b).
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formulate the notion of logically unjustified variation as a essential element of

these processes.

Dennett’s analysis closely mirrors that of Campbell in other respects also. In

particular, he introduces the notion of an “inner” environment which can allow a

selection process to proceed internally to an organism, apart from overt external

behaviour. This is very similar to Campbell’s idea of “vicarious” or “substitute”

selectors (Campbell 1974a), and, like Dennett, Campbell has explicitly viewed

this as a necessary generalisation of earlier learning theories, behaviourist and

otherwise (Campbell 1960a). Following Simon (1969, Chapter 4, pp. 95–97),

Dennett’s discussion of the rôle of generate-and-test procedures in AI focuses

on the requirement (if the growth of knowledge is to be “efficient”) for genera-

tion processes to be “endowed with a high degree of selectivity” (Dennett 1975,

p. 86)—which I take to be equivalent to what I have earlier called “favourable

bias”. However, unlike Simon, but exactly matching Campbell’s various descrip-

tions, Dennett explicitly recognises that any such “selectivity” in a generation

process itself demands an explanation in turn, and that this can only be satisfied

by a recursive appeal to some earlier (perhaps properly Darwinian or evolution-

ary) generate-and-test process; and, further, that this recursion can only bottom

out with an appeal to some “ultimate” generators which “contain an element of

randomness or arbitrariness” (Dennett 1975, pp. 86–87).

So: it seems clear that Dennett’s ideas, so far at least, are essentially at one

with the ideas of evolutionary epistemology. But I have not yet dealt with Den-

nett’s substantive claim: that his generalised Darwinism, in the form of generate-

and-test, is a necessary component of any satisfactory psychology (or, indeed,

AI). Frankly, I find Dennett’s argument here obscure, and I shall not attempt to

reproduce it. But I note that, in introducing his argument, Dennett says:

I suspect this argument could be made to appear more rigorous (while also,
perhaps, being revealed to be entirely unoriginal) by recasting it into the
technical vocabulary of some version of “information theory” or “theory of
self-organizing systems”. I would be interested to learn that this was so,
but am content to let the argument, which is as intuitive as it is sketchy,
rest on its own merits in the meantime.

Dennett (1975, p. 84)

Now I admit that I may not have grasped Dennett’s argument correctly; but

insofar as I think I do understand it, it seems to me that it is, indeed, “entirely
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unoriginal” (as Dennett anticipated) and that it already had been made more

“rigorous”. However, far from being related to “information theory”, I think

it is actually, in essence, a specialised form of Popper’s argument in relation to

the impossibility of a logic of induction. It differs primarily in that Dennett has

failed to locate the problem as precisely or clearly as Popper, as being that of

the growth of knowledge (in the face of the impossibility of induction), and his

solution is, as a result, much less clearcut than Popper’s; but it is essentially the

same result, namely that there is no logical alternative to seeing knowledge as

irredeemably hypothetical, and that knowledge grows, if at all, by (unjustified)

variation and selective retention.

Having accepted that Dennett’s analysis of the growth of knowledge is es-

sentially equivalent to the doctrine of evolutionary epistemology, the remaining

question is the relevance of this to AI.

Dennett notes that generate-and-test, in the most general sense, is a “ubiqui-

tous” strategy within AI programs (and actually uses this fact to bolster some-

what his argument for the necessity of such processes). That is fair enough, as far

as it goes, but it does not go very far. The important point for my purposes is that

the use of generate-and-test is not, in itself, any kind of panacea. Dennett argues

(and I agree) that such processes will be necessary in the realisation of AI—but

they are not sufficient by any means. I have argued earlier that the effective

and open-ended growth of knowledge actually requires that the architecture of

the knowledge agent must support the growth and elaboration of a heterarchical

structure in which no knowledge (including knowledge generators, and vicarious

selectors) is sacrosanct, or dogmatically held. This is a much stronger require-

ment than simply insisting on having “some” form of UVSR; as far as I am aware,

such an architecture is unknown in any functioning AI system.

In particular, Dennett himself (who is, of course, primarily a philosopher) has

not attempted to actually apply the abstract ideas reviewed here in the design of

any real AI system, and I shall therefore not discuss his analysis any further.

I now turn to some writers who, at first sight at least, might seem to oppose

the central claim that UVSR processes are essential to the growth of knowledge,

and thus to the realisation of AI.

Consider first the criticism by Boden (1984). Boden is primarily concerned
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with the relevance of Darwinian processes to problems of mentality, specifically

including AI, but she is also prepared to carry her attack to the home ground of

Darwinian theory, biological evolution itself:

Perhaps similar considerations concerning creative exploration might illu-
minate various biological phenomena which, on a neo-Darwinist account
of evolution, are very puzzling. These include the facts that the fraction
of DNA that does not code for the synthesis of specific proteins increases
phylogenetically; that species have evolved remarkably quickly, and that
the more complex species have if anything evolved at a greater rate than
their predecessors; and that the speed with which a species evolves mor-
phologically seems quite unrelated to the rate at which its individual pro-
teins evolve (so frogs have protein-synthesizing mechanisms of comparable
complexity to those of man). Such facts are not explicable in terms of
“Random-Generate-and-Test,” the mutational strategy favoured by neo-
Darwinism. This is because (as was discovered by the early workers in
automatic programming), the combinatorics of such a process are horren-
dous (cf. [Arbib 1969a22]). Switching to a higher-level biological language
(cf. “consolidation”), might be effected by random processes of gene dupli-
cation and recombination; but this merely reduces the exponent without
preventing an exponential explosion.

Instead, some strategy of “Plausible-Generate-and-Test” is needed, where-
by mutations of a type likely to be adaptive become increasingly probable.

Boden (1984, p. 312, emphasis added)

But although Boden represents herself here as being opposed to “neo-

Darwinism”, it should be clear that there is, in fact, very little difference between

the position she describes and the general position envisaged within the scope

of evolutionary epistemology. Specifically, Boden seems to be assuming that

neo-Darwinism must rely exclusively on generators of variation which are unbi-

ased ; but as I have already explained, that is a mistaken view.23 The structure

of Darwinian explanation (or, more generally, of evolutionary epistemology) de-

mands only that, to whatever extent a generator of variation exhibits significant

favourable bias, this will require a further, recursive, invocation of the UVSR

principle; and this can bottom out only with generators whose explanation or

genesis is, we may say, unproblematic.

22I have been unable to identify the relevance of Boden’s citation here: (Arbib 1969a) makes
no reference, that I can see, to automatic programming; it seems possible that the intended
reference was actually to (Lenat 1983).

23While I believe that Boden is mistaken in her interpretation of neo-Darwinism, I also
consider that she can hardly be blamed for this. Evolutionary biologists have not always been
very clear on the issue, though there have been some useful recent discussions (e.g. Dawkins
1989a; Wills 1991). I review this in more detail in (McMullin 1992b).
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Boden evidently accepts all this: thus she says, variously that “the initial

heuristics must evolve by random mutation (since there is no suggestion of teleol-

ogy here)” (p. 312), and that “a structural theory can even allow that contingency

is sometimes essential to creative intelligence” (p. 314).

Nonetheless, a literal reading of the full passage quoted above might still

suggest that Boden has something stronger than this result in mind: the last

sentence, in particular, with its reference to favourable mutations becoming “in-

creasingly probable”, could be read as implying some kind of inevitable progres-

sion, or even acceleration, in the growth of “adaptation” (or, in my terms, in the

growth of knowledge). That would obviously be deeply contrary to the principles

of evolutionary epistemology. But, I doubt that Boden herself really intends such

a strong claim, for there is no explicit argument to such an effect. I shall not,

therefore, consider her analysis any further.

By contrast, I think that Lenat (1983—a work which is heavily referenced in

Boden’s discussion) does have a genuine, if implicit, disagreement with the prin-

ciples of evolutionary epistemology; but, equally, I believe that Lenat is wholly

mistaken in this. Lenat’s epistemology seems, at that time at least, to have been

a näıve inductivism:

The necessary machinery for learning from experience is not very com-
plex: accumulate a corpus of empirical data and make simple inductive
generalizations from it.

Lenat (1983, p.287)

Lenat was evidently unaware that the idea of induction presented any diffi-

culties in principle.

I should note that Lenat was working on a system (EURISKO) which went some

way toward meeting the architectural requirements I have identified for realising

AI. Specifically, EURISKO included components (“heuristics”) for generating new

conjectures, and the system was reflexive in the sense that these heuristics could

operate on each other. However, the heuristics seem to have been relentlessly

inductivist, and EURISKO cannot be viewed as implementing UVSR in any rea-

sonable sense. In any case, the system had very limited success, and Lenat

himself subsequently abandoned this line of research; but he has not, apparently,

abandoned an essentially inductivist epistemology. In a recent discussion of the
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on-going Cyc project, he outlines the following objective for the system (to be

achieved by late 1994):

Demonstrate that Cyc can learn by discovery. This . . . includes decid-
ing what data to gather, noticing patterns and regularities in the data,
and drawing from those patterns useful new analogies, dependencies, and
generalizations.

Lenat & Guha (1990, p. 357)

Thus, given that Lenat has still not recognised, much less analysed, the philo-

sophical problems underlying induction, I suggest that any criticism of evolution-

ary epistemology implied in his work can be safely neglected.

To close this review of philosophical work bearing on the relation between

UVSR and AI, I shall consider the position of John Holland and certain of his

co-workers.

Holland is an engineer and scientist who has long been concerned with the

problems of developing artificial “adaptive systems”, and was in the vanguard of

those advocating an evolutionary approach to such problems (e.g. Holland 1962b;

1962a). In particular, as noted earlier, Holland is the inventor of the so-called

Genetic Algorithm (Holland 1975), a general purpose “learning” or adaptive pro-

cedure inspired in certain ways by the mechanisms of biological evolution. Holland

has specifically attempted to apply the Genetic Algorithm in the development of

machine learning systems which could overcome the brittleness of conventional

expert systems (Holland 1986). It might seem, therefore, that Holland would

surely support the position I have been advocating—that reflexive, heterarchical,

UVSR processes are essential to the efficient, open ended, growth of knowledge.

It transpires, however, that that would be, at best, an oversimplification.

In originally introducing the Genetic Algorithm, Holland identified himself

as being concerned with the growth of “adaptation” (Holland 1975, Chap-

ter 1). More recently, Holland has written explicitly in terms of the growth

of “knowledge”, particularly in the volume (Holland et al. 1986), co-written with

K.J. Holyoak, R.E. Nisbett and P.R. Thagard; here they jointly identify them-

selves as concerned with “all inferential processes that expand knowledge in the

face of uncertainty” (p. 1).

However, the situation is rather more complicated than this. The philosoph-

ical framework underlying Holland’s approach is, at first sight at least, quite
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incompatible with that which I have been advocating: like Lenat, Holland et al.

seem to be self-declared inductivists—indeed, the title of their book (Holland

et al. 1986) is actually Induction. Despite this, I shall not be arguing against the

epistemology, as such, of Holland et al.; instead, I shall suggest that the appear-

ance of disagreement is mistaken, a matter of words and emphasis rather than

substance. But, in the very process of reconciling these apparent differences, I

shall conclude that the aspects of the growth of knowledge which Holland et al.

choose to concentrate upon are largely those which I choose to neglect, and vice

versa.

The appearance of disagreement between the position of Holland et al. and

that of Popper and Campbell is clear enough. We find, for example, an un-

qualified rejection of “evolutionary epistemology” (Holland et al. 1986, p. 79;

they explicitly cite Campbell 1974a; 1974b); and while we (eventually) find an

admission, mentioning Hume and Popper, that the very possibility of induction

is problematic, this is immediately passed over with the statement that “most

[philosophers] have attempted to solve the narrower problem of determining un-

der what circumstances the [inductive] inference can be justified” (Holland et al.

1986, p. 230).

However, I do not think the situation is quite as it may seem when selectively

quoted in this way. While the writers apparently believe themselves to be opposed

to Popperian epistemology, their genuine familiarity with Popper’s work can rea-

sonably be questioned. There is only one explicit citation of Popper (on p. 328, to

the first English edition of The Logic of Scientific Discovery—see Popper 1980).

This is followed, quite shortly, by an ascription to Popper of the view that any

reluctance to abandon functioning (but refuted) scientific theories must represent

“an irrational, egotistical attachment” (p. 332); Holland et al. go on to suggest

(apparently as a contrast to this “Popperian” view) that, in practice, theories can

only be discarded “when a new, alternative theory that does not require special

assumptions arises and offers to replace the existing theory” (p. 332). But one

could hardly find a more genuinely Popperian statement that the latter: it is,

precisely, the notion of survival between competing hypotheses. Popper (1974b,

p. 995) has had occasion to defend himself against a similar “criticism”, where he

gives a more detailed rebuttal. For my purposes it is sufficient to note that the
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rejection of a “Popperian” epistemology by Holland et al. may be more imagined

(on their part) than real.

In fact, it seems that the “inductive” processes with which Holland et al.

are concerned may be more or less identified with the “plausible-generate-and-

test” processes of Boden (1984). Thus, in introducing their problem, Holland

et al. quote C.S. Peirce at length to the effect that the growth of knowledge

involves something like “special aptitudes for guessing right” (p. 4); and later

(p. 79) they explicitly refer to this as “Peirce’s problem of generating plausible

new rules”, which is almost identical to Boden’s formulation (though the latter

is not actually cited). This last reference to Peirce is the more ironic since it

is immediately juxtaposed with the already mentioned dismissal of (Campbell

1974a)—a paper in which (pp. 438–440) Campbell carefully and critically reviews

Peirce’s profound ambivalence on the issues at hand.24

So: my conclusion here is essentially the same as previously outlined in re-

viewing Boden’s work. I hold, essentially, that the processes which Holland et al.

describe as inductive are processes of unjustified variation. Notwithstanding my

use of the term “unjustified” here, I quite accept that, in given circumstances,

some such processes may do “better” than others (in the sense of generating con-

jectures which are “closer” to the truth). Similarly, I accept that the formulation

and comparison of processes in this respect is a genuine and difficult problem.

But, crucially, I hold that there can be no final or definitive “solution” to this

problem; all “inductive” processes are heuristic and fallible; there is no “logic” of

induction. I say this without doubting, for a moment, that even partial solutions

to this “problem of induction” may be very interesting, and, indeed, pragmati-

cally useful. It seems to me that Holland et al. do not ultimately disagree with

any of this, and that their analysis need not, therefore, be considered any further

here.

24I might also add that Popper himself has made very positive remarks regarding the phi-
losophy of C.S. Peirce (e.g. Popper 1965, pp. 212–213); however, these remarks do not bear
directly on the issues under discussion here.
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3.9 Conclusion

In this chapter I have argued that computational systems can be said to have

knowledge, in a perfectly conventional, biological, sense; that this knowledge can

grow only via some kind of Darwinian, UVSR, processes; that such processes

will therefore be an essential component of any system pretending to human-

like intelligence (as represented, for example, by Turing Test performance); and

that, in any case, such processes (as opposed to pure “Knowledge Engineering”)

may well be essential to the initial construction of any system which exhibits, or

aspires to exhibit, human-like intelligence.

It follows that the realisation, in a computational system, of UVSR processes

incorporating an open-ended, reflexive, heterarchical, architecture—which is to

say, in effect, some form of Artificial Darwinism—is now seen as being at least an

essential element (if not the essential element) of a serious AI research program.

The next chapter will be devoted to reviewing some issues which arise in practical

attempts to do this. I shall leave the final summarising word for the present

chapter with Popper:

I do not really believe that we shall succeed in creating life artificially; but
after having reached the moon and landed a spaceship or two on Mars,
I realize that this disbelief of mine means very little. But computers are
totally different from brains, whose function is not primarily to compute
but to guide and balance an organism and help it to stay alive. It is for
this reason that the first step of nature toward an intelligent mind was the
creation of life, and I think that should we artificially create an intelligent
mind, we would have to follow the same path.

Popper & Eccles (1977, Chapter P5, p. 208)
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