Tierra Research Results

ABSTRACT

As the first step towards addressing the problem of achieving
the transition to life in an Artificial Chemistry, in silico, we
analysed the suitability of Tom Ray’s Tierra [1] as an Arti-
ficial Chemistry in the context of the problem. Our analysis
consisted of source code examination and a closer look at
the Reaper mechanism including ways to cheat it. We then
proposed some minor modifications to Tierra to give rise to
richer evolutionary pathways, but these modifications have
not been implemented.

1. Introduction

The early stages of my work with Tierra were heavily biased
towards separating my source-code based pre-conceptions
from what was actually going on in the soup. It took a lit-
tle while to be able to understand what was going on with
Tierra and analysis of the data was difficult at first. At
one stage, I managed to get the Beagle Explorer up and
running, but as I recall, that was a Friday and by the Mon-
day, Beagle mysteriously refused to work. I did spend some
time trying to get it going again but it never happened.
By that stage however I had become more comfortable with
the native Tierra interface so I was happy to work in that
alone, but I think that Beagle provides some nice statistical
measurements and calculations on top of Tierra’s built in
functionality.

In the early stages, the work consisted of identifying the
various “creatures” described by Ray [1], ie. replicators of
various sizes, parasites and hyper-(hyper-)parasites, and ex-
amining the features of Tierra that allowed such “creatures”
to come into being. Later, when writing our own creatures,
methods for cheating death, ie. the Reaper, were explored,
but due to certain internal calculations of Tierra, these were
not as successful as we first expected. Finally, the results
of long Tierran runs (of the order of 100 instructions) were
briefly examined with some interesting emergent properties
noted.

2. Getting to Grips with The Tools

It was difficult in the early stages to put myself in the mode
of looking at Tierra critically. When analysing the results
of various runs, I found myself accepting Rays conclusions
without really understanding what they meant. For exam-
ple, Rays paper speaks of the Ancestor, 0080aaa, and the
first parasites, which, in the experiments run by Ray, first
appeared with a size of 45 instructions. Whether by luck
or, more likely, inevitability, parasites first emerged with
the same size of 45 instructions in my experiments. I be-
came quite disillusioned with Tierra as it seemed that no
matter how many experiments I carried out, the emergence
of size 45 parasites from the Ancestor genome always oc-
curred. Later, when analysing these parasites in a little
more detail, it was easy to see that their emergence is en-
tirely predictable, and heavily dependant on the design of
the ancestor. It was more than a little unsatisfying to find
that this host - parasite change takes place by a single mu-
tation, causing the host to miscalculate its size as 45 in-
structions, rather than 80. The powerful template matching
“feature” of Tierra then allows this mutant host to execute
the copy instructions of nearby creatures to replicate itself.

Tierra also contains a built-in debugger, which allows track-
ing of individual cells and the setting up of breakpoints for
various conditions. The debugger is a little cumbersome
but with a little experience, it becomes quite easy to set
the breakpoints to flag interesting behaviour. Examples
would include breaking at a specific point in a specific geno-
type listing and breaking when parasitism occurs on a spe-
cific genotype. While the internal debugger is very useful
for watching Tierra-specific functionality, it is not power-
ful enough to watch for things which occur lower down in
the API stack. For this, GDB is extremely useful. Tierra
runs inside GDB without any major speed difficulties, but
I have not carried out extended runs within the debugger.
For shorter runs, we were able to analyse the Reaper and
Slicer queues to determine the position of creatures we were
interested in. Various experimental creatures were written
and tested using this method.

3. Experiments and Results
3.1 First Impressions

3.1.1 The Emergence of Parasitism

Parasitism occurs readily in a soup that has been populated
by a single instance of the Ancestor creature (0080aaa). The
Ancestor creature relies heavily on template matching and



uses templates to mark the beginning and end of the crea-
ture, reproduction loop and copy loop. The mutation that
causes the emergence of parasitism happens in one of these
templates within the Ancestor. Due to the flipping of a sin-
gle bit, when the creature attempts to determine its size it
matches the wrong template and subsequently only copies
about half of its code to the offspring. The mutant offspring
now contains the code for determining size (correctly in the
context of itself), and running the reproduction loop, which
simply makes repeated calls to a copy loop (which no longer
exists within its own code). These parasites start by setting
up the various registers needed to control the copy process
and then try to match the template for the copy loop. If an
Ancestor creature, or a descendant, is nearby in the soup,
and it has the complementary template, the parasite will be
directed to run the code of the host. Hopefully, this code is
a copy loop and the parasite succeeds in copying itself.

While this example illustrates the relationship between hosts
and parasites in one sense, there are also the simpler forms
of parasitism which exist. In the case where a creature does
not contain the correct looping structure, the CPU of the
creature will run on into whatever memory locations occur
after it. Consider as an example a simple creature consist-
ing of a number of NOP (no-operation) instructions. This
creatures CPU will step through these and then carry on
executing the code following it in the soup. Depending on
what that code is, the rogue CPU may become trapped by
another creatures code, and start replicating that creature,
assuming that is what the creatures instructions tell it to
do. It is this type of behaviour that leads to the “social”
hyper-parasites, and the hyper-hyper-parasite cheaters that
can occur between co-operating hyper-parasites.

3.1.2 Orphaned Instructions

When I first came across orphaned instructions in genotypes,
I was confused as to what they were there for. I guessed that
maybe they were there to separate templates, or to help in
some form of parasitism. The instructions I refer to are
instances of the ret instruction. Usually, ret is used in
conjunction with call to facilitate subroutines and so on.
In the case of orphaned rets however, seeing as no corre-
sponding call had been made, I could not work out why
they were there. Later, when the obvious was pointed out
to me, I saw that the ret instruction, by definition, pops
the Instruction Pointer(IP) from the stack and starts exe-
cuting code from there. Essentially, this allowed creatures
to directly address locations in the soup, rather than relying
on template matching. We would later use this feature to
implement a creature that could replicate itself with mini-
mal use of templates, which might upset parasites for the
reasons explained earlier.

3.2 Writing Our Own Creatures

Motivated by beating the Reaper, we began to write our
own creatures. In Tierra, a creature can move down the
Reaper queue by successfully executing mal and div instruc-
tions. These instructions are concerned with the replication
of creatures and they allocate memory and “fork” a daughter
cell respectively. There are certain conditions under which
these instructions will generate an error, sometimes relat-
ing to the order of their execution, and other times based
purely on the random chance that Tierra causes an error on

purpose. We set out to subvert the Reaper mechanism by
utilising these instructions in different ways in an attempt to
move ourselves down the Reaper queue quicker than other
creatures.

3.2.1 Creature 1: Highlander

The Highlander creature was our attempt to “live forever”
(see appendix for code) in the Tierran soup. The idea was
simple — make a creature which calls the beneficial instruc-
tions (mal and div) as many times as possible. We designed
the creature so that it would spawn as many creatures as
it could. Tierra will accept parameters to set the minimum
size of a creature, and also the minimum percentage of that
creature that must be filled with instructions before it can
be “forked”. Rather than change these parameters (we had
already turned off all mutation and execution errors), we
left them at their default of 12 instructions. The offspring
consisted of a single loop, which executed nop instructions,
effectively waiting to be killed off by the Reaper. In theory,
our creature should be able to live forever, as it is constantly
moving down the Reaper queue, and striving to stay at the
bottom. In reality though, Tierra was conspiring against us.
It became apparent that even though the soup was not full,
our creature would be Reaped prematurely. With the help
of the GDB debugger, we found out that the reason for this
early death was that Tierra calculates the “laziness” each
creature in the soup. This calculation took the fecundity
of the creature into account, and deemed it to be lazy. It
was not clear to us whether this was because the offspring
were, by definition, lazy, or whether the program considered
the fact that the offspring were not identical to the parent
as a deciding factor. Either way, we disabled this laziness
calculation and our creature performed as expected.

Now that we had tested it in isolation, it was time to see how
different things might be in a soup populated with replica-
tors. One instance of Highlander was put in a soup with
one instance of 0080aaa (the Ancestor). Using GDB, we
were able to track these individual cells and set breakpoints
when they were Reaped. In a soup size of 600, Highlander
outlasted Ancestor 10 times out of 10. Upon increasing
the soup size to 60000 however, Highlanders success rate
dropped to 30%. This result was confusing at first. High-
lander “replicates” creatures of size 12; Ancestor replicates
at size 80. Highlander should therefore accumulate bonuses
(move down the Reaper queue) at roughly 7 times the rate
of the Ancestor. The answer to the problem lies with High-
landers laziness. As far as replication goes, Highlander plods
along at a constant rate. The Ancestor, however, creates a
new copy of itself each time it replicates. This exponential
growth allows the Ancestor lineage to quickly out-replicate
the Highlander lineage, pushing it towards the top of the
Reaper queue.

3.2.2 Creature 2: Lazy Ancestor

In an attempt to prove our theory that it was the speed
of the Ancestor lineage replication that was causing High-
landers death, we set about designing a creature whose re-
production cycle was delayed. To achieve this, we took the
Ancestor code and inserted a time wasting segment inside
the copy loop. This segment began by storing the value of
the CX register and finished by restoring it. Within the
segment, an arbitrary number of nop instructions were in-



serted. The first incarnation of this scheme was found to
be capable of a maximum of 26 timewasting instructions.
The reason for this was discovered to be that the Ancestor
code utilised omni-directional jumps, which, if there were
more than 26 dummy instructions, jumped into the daugh-
ter instead of back into its own code. This problem was
resolved in the second generation by changing the problem
jump instructions to uni-directional jumps. These modifi-
cations permitted arbitrarily long delays to be inserted into
the Ancestor. For the purposes of the experiment, 172 extra
instructions were inserted into the copy-loop of the Ances-
tor. This had a dramatic affect on the reproduction rate of
the Ancestor in the soup. We found that the original Ances-
tor was capable of about 850 births per million instructions
executed while the newly modified Ancestor sometimes reg-
istered zero births per million instructions.

To test Highlander against this lazy Ancestor, the soup was
first inoculated with the lazy Ancestor. The population was
permitted to reach 200 Ancestors whereupon a Highlander
creature was injected into the soup. After a short while, the
number of Ancestor creatures was reduced to about 4 or 5.
Highlander had produced thousands of sterile offspring and
was able to stay at or near the bottom of the Reaper queue.
Even the presence of a single self-replicating Ancestor would
help its lineage progress, but eventually, the Ancestors were
displaced and the soup contained only the Highlander and
thousands of sterile offspring.

3.2.3 Creature 3: “No NOP” Replicator

The “No-NOP” Replicator was designed by modification
from one of the creatures that is included with the Tierra
distribution. The rationale behind the “No-NOP” design
was to make a creature that would be resistant to parasites,
while still being able to self-replicate. Since Tierra uses NOP
instructions as templates addressing, it is a little difficult to
remove the NOP instructions completly. The creature needs
to determine its starting address in the soup, and then de-
termine its length. These operations almost certainly need
to be performed with the help of NOP templates. Internal
looping however, ie. the reproduction loop and its nested
copy loop, could be performed using the stack to store ad-
dresses and the ret op-code to jump to a specific address.
Due to these modifications, even if a parasite were to be-
gin executing the code of this creature, the structure would
force the parasite to replicate this creature rather than it-
self. Also, since this creature is almost 4 times smaller than
the Ancestor, it is a more efficient replicator.

In our experiments, this creature could outperform the An-
cestor on a regular basis. In the longer term, the Ancestor
lineage would also be displaced. As parasites emerge, they
find it increasingly difficult to find matching templates in
the soup to enable their replication and soon they become
extinct.

3.3 Other Interesting Results

Before leaving the lab for a trip to Venice, I set up a “nor-
mal” Tierra run and set it going. Upon my return, the soup
was still alive, with some interesting creatures in it. At this
stage, the soup has run for approximatly 25x10° instruc-
tions and is predominantly populated by various creatures
of the same length, but different genotypes. The length of

these creatures is 34 instructions. Some basic exploration
suggests that the differences in genotype are neutral, how-
ever the interesting thing about these creatures lies in their
copy procedure.

Efficient copying takes place by setting up some registers to
specify copy length and source and destination addresses.
Then, the movii instruction is called, followed by the in-
crementing of source and destination, and decrementing of
the copy-length registers. These particular creatures posess
a mutation of this that, at first glance, appears to be some
form of rudimentary loop-unrolling. On closer inspection, it
emerges that what may have begun as loop unrolling has
now become a novel way of ensuring that only creatures of
a certain size can utilize the copy loop. To break it down,
the loop contains 4 movii instructions, and checks the exit
condition after the second of these. This means that only
creatures whose size is congruent to 2mod4 can be replicated
by this loop. Any non-conforming size creature will never
finish copying, as the conditional expression checks a flag for
equality with zero, rather than less or equal.

4. Conclusion

5. REFERENCES

[1] 1992 Thomas S. Ray. An approach to the synthesis of
life, in : Langton, c., c. taylor, j. d. farmer, & s.
rasmussen [eds], artificial life ii, santa fe institute
studies in the sciences of complexity, vol. xi, 371-408.
redwood city, ca: Addison-wesley.



