
Introduction toC and C++. © Brian Stone 2001 1

CA212CA212
OO Design & Implementation

Lecturer

Brian Stone
Brian.Stone@comppapp.dcu.ie

Office: L244

Introduction toC and C++. © Brian Stone 2001 2

Course Structure

• Follows structure of text book “C++ HOW
TO PROGRAMME” by Deitel & Deitel.

• Uses Microsoft’s Visual C++ compiler.

• Based on lectures, programming
workshops and UML notation.

• Handouts and Slides augment the textbook

• Assessments: lab exams; project, written
exam.

Introduction toC and C++. © Brian Stone 2001 3

Objectives

• To be able to read and write programs in C

• To be able to read and write programs in C++

• To learn structured programming techniques in
C and C++.

• To understand and apply basic UML (and
SSADM) diagramming techniques.

Introduction toC and C++. © Brian Stone 2001 4

Syllabus (provisionally)

• Variable Types. Simple C/C++ instructions,
expressions and Looping structures. Functions.

• Pointers. Dynamic memory and the heap:
Memory allocation. Parameter passing. File I/O

• Complex Data structures. C++ Extensions -
reference passing and the const keyword.

Introduction toC and C++. © Brian Stone 2001 5

• Name Mangling and function and operator
overloading. Inline Functions.

• Introduction to C++ classes. Designing a class.
Constructors and Destructors. Derived classes.

• Copy constructor and assignment operator.
Virtual Functions.

• Multiple Inheritance. Exception Handling.

• Templates

• UML Notation throughout

Introduction toC and C++. © Brian Stone 2001 6

W1: What is a Program?

• Programs are like recipes or a series of
instructions which must be followed precisely

• Programs may be constructed of sub programs
– Chocolate cake recipe does not define how to make

chocolate!

– Chocolate recipe does not define how to grow cocoa
beans!

Introduction toC and C++. © Brian Stone 2001 7

What is an Operating System?

• Operating system responsible for giving your
programs to the hardware (CPU).

• OS may be capable of controlling several
programs, passing them one-at-a-time to the
CPU

• It is a piece of software, NT and Windows 95,
98 developed by Microsoft, Solaris developed
by SUN

Introduction toC and C++. © Brian Stone 2001 8

How do programs run?

• User selects which program to run

• OS loads executable into RAM from disk

• OS reads the program file in RAM and passes
instructions to the H\W

• H\W executes instruction, OS fetches next
instruction

• OS may decide to schedule each program for a
little while, in a round-robin style

Introduction toC and C++. © Brian Stone 2001 9

CPU Execution Cycle

Forever
Fetch next instruction
from RAM

Execute instruction

Power
On

Power
Off

Introduction toC and C++. © Brian Stone 2001 10

Making C & C++ Executables

#include”…
int main()
{
..
..
}//end main

#include”…
int very()
{
..
..
}//end very

Object
Code

Linker

C++
Libraries

Component
Libraries

Exexutable
Program

C++

Compiler

Introduction toC and C++. © Brian Stone 2001 11

Good Programs

• Accuracy
– Does exactly what it says in the spec. !

• Reliability
– Keeps on doing it

• Robustness
– Handles exceptional data sensibly

Introduction toC and C++. © Brian Stone 2001 12

Good ProgramsGood Programs (cont.)
• Efficiency

– Acceptable performance (speed\code-size etc..)

• Usability
– Easy to use (other programmers may be users !)

• Maintainability
– Source code facilitates easy modification and

extensibility

• Portability
– May move code to another operating environment.

Introduction toC and C++. © Brian Stone 2001 13

Lets look at C FirstLets look at C First

• Evolved from B and CCPL languages

• Developed by Ritchie (the R in K&R) in 1972

• KnR C was developed in late 70’s and became a
de-facto standard.

• There is now an ANSI standard for C and C++

• Bjarne Stroustrup developed C++ in the early
80’s

Introduction toC and C++. © Brian Stone 2001 14

Hello …..

//comment: first C program

#include<stdio.h>

void main()
{
 printf(“First program output\n”);
 return;
}

//comment: first C++ program

#include<iostream.h>

void main()
{
 cout<<“First program output\n”;
 return 0;
}

Does this look OO ?

Introduction toC and C++. © Brian Stone 2001 15

Adding two Integers in CAdding two Integers in C
#include <stdio.h>
main()
{
 int integer1, integer2, sum; /* declaration */
 printf("Enter first integer\n"); /* prompt */
 scanf("%d", &integer1); /* read an integer */
 printf("Enter second integer\n"); /* prompt */
 scanf("%d", &integer2); /* read an integer */
 sum = integer1 + integer2; /* assignment of sum */
 printf("Sum is %d\n", sum); /* print sum */
 return 0; /* indicate that program ended successfully */
}

Introduction toC and C++. © Brian Stone 2001 16

Adding two integers in C++Adding two integers in C++
#include <iostream.h>
main()
{

int integer1, integer2, sum; // declaration
cout << "Enter first integer\n"; // prompt
cin >> integer1; // read an integer
cout << "Enter second integer\n"; // prompt
cin >> integer2; // read an integer
sum = integer1 + integer2; // assignment of sum
cout << "Sum is " << sum << endl; // print sum

 return 0; // indicate that program ended successfully
}

Does this look OO ?

Introduction toC and C++. © Brian Stone 2001 17

C++ Vs CC++ Vs C

• Some of the new features of C++ have nothing
whatsoever to do with Object Oriented
programming.
– Parameter passing, debugging, exceptions.

• Don’t feel bad because you’re not using a
Multiple Inheritance Class Hierarchy to
implement “Hello World”.

Introduction toC and C++. © Brian Stone 2001 18

C++ Vs CC++ Vs C (cont.)

• Some of the new features supplant and make
obsolete some of the functionality of C.

• That is, they do it better and more simply, and
with a more elegant syntax.

• One example is in keyboard/screen Input and
Output
– Like the two examples just seen! We will continue

to borrow nice bits from C++!!!

Introduction toC and C++. © Brian Stone 2001 19

Programming in C
• Many of the basic types that exist in Java exist

here also.

• There is no such thing as Class in C, there is in
C++.

• Types may be declared ANYWHERE in a
program and used so long as they are in scope.

• Functions may be declared and called at will.

Introduction toC and C++. © Brian Stone 2001 20

Some TypesSome Types

• char 8 bits usually used to store ASCII codes,
but may be used for small integers.

• int size dictated by word length of computer, 32
bits on most modern computer, may be set by
compiler. Problems with porting int.

• float Up to 7 decimal places of floating-point
accuracy in 32 bits. Not recommended.

Introduction toC and C++. © Brian Stone 2001 21

Some TypesSome Types (cont.)

• double Up to 17 decimal places of floating
point accuracy in 64 bits. Typically 52 bit
mantissa and 12 bit exponent.

• void Has no value. For example the main
program function is often declared as type void,
as it returns no value.

• Qualifier unsigned may be used.

• short and long and long double (128 bit f.p.)

Introduction toC and C++. © Brian Stone 2001 22

Type ConversionsType Conversions

• You should never assign an instance of one
type to an instance of another.

• If you are sure of what you are doing, use a
cast.

int x;
long y;
y=x; /* compiler warning! */
y=(long)x; // this is Ok

Introduction toC and C++. © Brian Stone 2001 23

Exercise / Tutorial

• Code and run the examples given so far

• Annotate your code with pencil, find the
following and mark them
– identifiers

– declarations

– assignments

– statements

– expressions

– compound statement

– compound statement start
delimiter

– compound statement end
delimiter

Introduction toC and C++. © Brian Stone 2001 24

W2: Taking for Granted...

• You know about
– if\else and case\switch statements

– looping constructs for, whole, do\while

– functions with parameters

Introduction toC and C++. © Brian Stone 2001 25

Introducing
Pseudocode

&
Flowcharts

Learn to design a simple algorithm using
an if / else selection structure with

pseudocode and debug the resulting
code

Introduction toC and C++. © Brian Stone 2001 26

Pseudocode

• Informal language, English-like representation
that helps programmer think out the problem

• No need for declararions, “”only executable
statements

If student’s grade is greater than or equal to 70
then print “ Passed ”

if (grade >= 60)
 cout<< “Passed ”;

Introduction toC and C++. © Brian Stone 2001 27

Flowchart Sequence

Enter Classroom

Sit on seat

Take notepad from bag

Take notes

Leave Class

Introduction toC and C++. © Brian Stone 2001 28

Flowchart Decisions

• Diamond denotes a decision, contains an
expression such as a condition which will be
evaluated True (not 0) or False (0)

grade>=70 print “Passed”
True

False

Introduction toC and C++. © Brian Stone 2001 29

Conditional ?: Operator
• Closely related to if / else structure

• Ternary expression, three operands
– First operand is condition, evaluates True or False

– Second operand is value for expression if first
operand is true

– Third operand is value for expression if conditional
is false
Syntax: logical-OR-expr ? expr : conditional-expr

cout<<(grade>=70 ? “Passed” : “Failed”);

Introduction toC and C++. © Brian Stone 2001 30

Double Selection... if / else and ?:

grade>=70 print “Passed”
TrueFalse

print “Passed”

Introduction toC and C++. © Brian Stone 2001 31

Example Pseudocode / C

if student grade is greater than or equel to 90
 print “A”
else
 if student grade is greater than or equel to 80
 print “B”
 else
 if student grade is greater than or equel to 70
 print “C”
 else
 if student grade is greater than or equel to 60
 print “D”

Introduction toC and C++. © Brian Stone 2001 32

Now the C
if (grade >= 90)

 cout<< “A”;
else
 if (grade >= 80)
 cout<< “B”;
 else
 if (grade >= 70)
 cout<< “C”;
 else
 if (grade >= 60)
 cout<< “D”;
 else
 cout<<“F”;

• Not very elegant
looking

• Difficult to read this
code, too much
indentation

• Perhaps we can do
better...

Introduction toC and C++. © Brian Stone 2001 33

Indentation

• Indentation of code is extremely important as
it makes your programs human readable

• Recommended to use three spaces for
statements under control of if and else

if (grade >= 60)
 cout<<“Passed”;
else
 cout<<“Failed”;

Introduction toC and C++. © Brian Stone 2001 34

Improved Code

if (grade >= 90)
 cout<< “A”;
else if (grade >= 80)
 cout<< “B”;
else if (grade >= 70)
 cout<< “C”;
else if (grade >= 60)
 cout<< “D”;
else
 cout<<“F”;

• More elegant looking

• Both forms equivalent

• Easier for humans to
read this

• We can write the
pseudocode in this form
also

Introduction toC and C++. © Brian Stone 2001 35

Selecting from a list...

• Just take some time to look at an advanced form
of selection structure

• Saves on many nested else statements with an if

• Called switch statement

Introduction toC and C++. © Brian Stone 2001 36

switch and case and break
/* Counting letter grades */
#include <stdio.h>

main()
{
 int grade;
 int aCount = 0, bCount = 0, cCount = 0,
 dCount = 0, fCount = 0;

 printf("Enter the letter grades.\n");
 printf("Enter the EOF character to end input.\n");

 while ((grade = getchar()) != EOF) {

 switch (grade) { /* switch nested in while */

 case 'A': case 'a': /* grade was uppercase A */
 ++acount; /* or lowercase a */
 break;

 case 'B': case 'b': /* grade was uppercase B */
 ++bcount; /* or lowercase b */
 break;

 case 'C': case 'c': /* grade was uppercase C */
 ++ccount; /* or lowercase c */
 break;

 case 'D': case 'd': /* grade was uppercase D */
 ++dcount; /* or lowercase d */
 break;

 case 'F': case 'f': /* grade was uppercase F */
 ++fcount; /* or lowercase f */
 break;

 case '\n': case' ': /* ignore these in input */
 break;

 default: /* catch all other characters */
 cout<<"Incorrect letter grade entered.";
 cout" Enter a new grade.\n";
 break;
 }
 }
 cout"\nTotals for each letter grade are:\n";
 cout<<"A: “<< aCount<<endl;
 cout<<"B:”<< bCount<<endl;
 cout<<"C:”<< cCount<<endl;
 cout<<"D: ”<< dCount<<endl;
 cout<<"F: ”<< fCount<<endl;
 return 0;
}

Introduction toC and C++. © Brian Stone 2001 37

Revising Basic Constructs

• Expression evaluations

• Control Structures
– Sequence, Selection and iteration

Introduction toC and C++. © Brian Stone 2001 38

Arithmetic Operators

C++ operation Arithmetic operation Algebraic expression C++ Expression
Addition + f + 7 f + 7
Subtraction - p - c p - c
Multiplication * bm b * m
Division / x / y x / y
Modulus % r mod s r % s

Introduction toC and C++. © Brian Stone 2001 39

Precedence of Operators
• My Dear Aunt Sally

• (* / %) (+ -)

• Parenthesis () always comes first

• If there are several operators, evaluation is left
to right

• what is the algebraic equivalent of the following
• z = p * r % q + w / x - y

• Rewrite it using appropriate parenthesis!

Introduction toC and C++. © Brian Stone 2001 40

Constants andConstants and Literals Literals
• Integer constants - 1234, 0345

(Octal), 0x1234 (Hex)

• Long integer constant - 12345678L

• Floating-point constant - 47.324, 3.2e13

• Character constant - ‘p’, ‘\n’ (new
line)

• String constant - “Hello there”
(but there is no string type?… later folks)

Introduction toC and C++. © Brian Stone 2001 41

Relational Operators

• = = is equal to

• != is not equal to

• > is greater than

• < is less than

• >= is greater than or equal to

• <= is less than or equal to

Introduction toC and C++. © Brian Stone 2001 42

ExpressionsExpressions
• Parenthesis give order of evaluation.

• Syntax x+=y is the same as x=x+y

• Syntax x++ adds one to x (inc ax in
assembler).

• Similarly x- - subtracts one from x. The syntax
x=y=0 is valid, and does as you would expect.

• Logical comparisons evaluate to 0 (False) or 1
(True). Any non-zero result is taken as True.

Introduction toC and C++. © Brian Stone 2001 43

Control Structures

• Structures
– if/else

– while

– for

– switch

• These are much the same in Java !

Introduction toC and C++. © Brian Stone 2001 44

Control Structures
• Programs exhibit three behaviours

– sequence
• execute statements sequentially, we have seen this with

the debugger

– selection
• choose between different execution paths, may decide to

execute compound statements, or not depending on
conditions

– iteration
• may have to do the same thing many times over,

repetition is something computers do very well

Introduction toC and C++. © Brian Stone 2001 45

SelectionSelection
• The if statement.

Syntax:

if (<condition>) <statement1>;

if (<condition>) <statement1>;
 else <statement2>;

Introduction toC and C++. © Brian Stone 2001 46

#include <stdio.h>
main(){
 int num1, num2;
 printf("Enter two integers, and I will tell you\n");
 printf("the relationships they satisfy: ");
 scanf("%d%d", &num1, &num2); /* read two integers */
 if (num1 == num2)
 printf("%d is equal to %d\n", num1, num2);
 if (num1 != num2)
 printf("%d is not equal to %d\n", num1, num2);
 if (num1 < num2)
 printf("%d is less than %d\n", num1, num2);
 if (num1 > num2)
 printf("%d is greater than %d\n", num1, num2);
 if (num1 <= num2)
 printf("%d is less than or equal to %d\n",
 num1, num2);
 if (num1 >= num2)
 printf("%d is greater than or equal to %d\n",
 num1, num2);
 return 0; /* indicate program ended successfully */
}

Code this up,
use debugger to
trace \ step.

Introduction toC and C++. © Brian Stone 2001 47

Careful !Careful !

• A statement like:- if (x=3) {}, probably a
mistake (surely if (x==3) {} was intended?),
will not generate a compiler error. It will assign
3 to x, which evaluates as True.

• A neat idea is to write it as if (3==x). This will
generate an error if you accidentally type it in as
if (3=x).

Introduction toC and C++. © Brian Stone 2001 48

Selection with AlternativesSelection with Alternatives

• If … else

If (grade >= 60)
 cout<<“Passed \n”;
else
 cout“Failed \n”;

Exercise: Write a program
to assign exam grades to
percentages.The user inputs
the percentage from the
keyboard, the program outputs
the percentage to the screen

Introduction toC and C++. © Brian Stone 2001 49

Exercise / Tutorial

• Do the following questions from chapter 1 and
keep the program listings in your workshop
folder.

• Also keep screen dumps of program runs.

• This may be assessed later.
– 2.14 (coding errors)

– 2.17, 2.18, 2.19, 2.26, 2.27

Introduction toC and C++. © Brian Stone 2001 50

Keeping Your CA212 Exercises

• Keep a special folder for CA212 exercises

• Grades will be affected by your exercises

• Tutors will award grades for up to date work on
a week to week basis

• This forms a part of your continuous
assessment.

