
CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 1

Aspects of the UUMMLL
CA212 - Week 11CA212 - Week 11

Dynamic ModellingDynamic Modelling
withwith

State DiagramsState Diagrams

UUnified nified MModelling odelling LLanguageanguage

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 2

Modelling Behaviour

Object Interactions
System Dynamics

Models

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 3

Describing Behaviour

z Dynamic Modelling
yy UUMMLL State Diagram State Diagram
yy UUMMLL Sequence Diagram
yy UUMMLL Collaboration Diagram
yy UUMMLL Activity Diagram

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 4

State Diagram

z Each Class may have an optional
associated State Diagram.

z Developed by Harel.
z Incorporated into OO methods by

Rumbaugh (OMT) and many others.

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 5

Notation

State 1 State 2
Event[guard]/action

Name of event
which causes
transition

Action performed
when event occurs

Must be true for
event to fire.

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 6

Example

z Pop-up menu
control

Cursor Moved/
Highlight item

right button down/display

right button up/erase

idle
menu
visible

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 7

Activity

z An activity is an operation that takes time
to complete. Activities are associated with
states

State 1
do/ Activity 1

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 8

Action

z An action is an instantaneous operation
associated with an event.

z Semantics of instantaneous is ambiguous.

State 1 State 2
event/action

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 9

z Event may have optional attributes
associated (event supplies data)

z Optional guard conditions (pre-
conditions) must be satisfied before
a transition occurs.

State 1 State 2

event(attrib)[condition]/action

Attribute list Condition list

General Notation

Action list

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 10

Message Notation

z Synchronous: blocking call.
z Asynchronous: non blocking call
z Simple: no details about

communication.
z Synchronous with immediate return.

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 11

Nesting State Diagrams

z State diagrams for an Object may be
nested, allowing the control mechanism to
be viewed at different levels.

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 12

Example: Vending Machine

Collecting Money
coins in(amt)/add to bal

do/test item and compute change

select(item) [change<0][item empty]

do/make changedo/ dispense item

[change=0] [change>0]

idle
coins in(amount)/set bal

cancel/refund

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 13

Example: Dispense Item

do/ move arm to correct row

do/ move arm to correct col do/push off shelf

arm ready

arm ready

pushed

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 14

Example: Select Item

do/reset
 item

do/append
 digit

digit(n)

clear

digit(n)

enter

select(item)

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 15

Generalisation of States

z Groups of substates with common
transitions can be combined into a single
superstate, and inherit transitions from
the superstate.

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 16

Example: Transmission

Transmission

Forward

Neutral
Reverse

1st 2nd 3rd
downshift

upshift

downshift

upshift
stop

push N push F
push N

push R

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 17

Example: Generalisation

z Forward is an abstract state.
z Selecting N in any forward gear will

cause a transition to Neutral.
z Selecting Stop in any forward gear will

cause a transition to First.

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 18

Example: Object Model

Car

Ignition Transmission Brake Accelerator

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 19

Dynamic Model

Ignition state
diagram

Transmission
state diagram Accelerator

state diagram

Brake
state diagram

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 20

Dynamic Model: Ignition

off
starting

on

Ignition
turn key[transmission in Neutral]

release key
turn key off

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 21

Dynamic Model: Transmission
Transmission

Forward

Neutral
Reverse

1st 2nd 3rd
downshift

upshift

downshift

upshift
stop

push N push F
push N

push R

contour

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 22

Dynamic Model:
Accelerator & Brake

Accelerator Brake

off on off on

press acc

rel acc

press brake

rel brake

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 23

Concurrency

z Aggregation concurrency: The
aggregate state corresponds to the
combined states of all the components.

1

2 3

State of 1 is defined by
state of 2 and of 3

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 24

Concurrency (cont..)

z Concurrency within an Object:-
Concurrency within the state of a single
Object arises when an object can be
partitioned into subsets of attributes or
links, each of which has its own state
diagram.

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 25

Concurrency (cont..)

Superstate

substate1

substate2

substate3

substate4

event1

event2

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 26

Example:
Programmable Thermostat

Thermostat

U.I. season
switch

fan
switch

furnace
relay

A/C
relay

fan
relay

Run
ind

Example of Aggregation Concurrency

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 27

Links to the Class Diagram

z Keep SD as simple as possible.
z Events, actions, activities must each map

directly to functions on the UUMMLL Class
Diagram.

z A “dictionary” of all functions and data is
maintained for consistency across all
diagrams and models.

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 28

Class and State Diagrams

z If a function appears on a State Diagram,
then it must appear on a corresponding
Class Diagram, otherwise there is no
rigor.

z CASE tools like Rational Rose help support
this rigor by assisting modeller with lists
of operations and generating reports of
orphan operations (not on Class diagram).

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 29

OO Method Adaptations

z ROOM
z Octopus
z INSYDE’s OMT*

y http://www.compapp.dcu.ie/~bstone/research

z Catalysis
y http://www.iconcomp.com

z Rational’s Process (Objectory)
y http://www.rational.com

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 30

UUMMLL Tools

z At present there are two main UUMMLL tool
vendors…
y Rational: the Rose CASE tool

x http://www.rational.com

y Object Team: the Cayenne CASE tool.
x http://www.objectteam.com

CA212 - Object Oriented Design (C++ and UML) © Brian Stone 2001 31

Graded Exercise

z This is the final exercise. Well worth doing!!!
z An ATM case-study is defined on the public directory.

y Develop a Class Diagram for the ATM
y Develop a State Diagram for performing a Query on Account.
y Use Rational Rose.

z Hints: Make “Transaction” a class. “Query” is a type-of
“Transaction” (inherited from).

z Partial Telecomms example available on public directory
for reference.

