
1

Introduction toC and C++. CA212 © Brian Stone 2001 1

W5.1(revised)

Memory Allocation

Introduction toC and C++. CA212 © Brian Stone 2001 2

Ways of Using Structure MemberWays of Using Structure Member
and Pointer Operatorsand Pointer Operators

#include <stdio.h>
struct card {
 char *face;
 char *suit;
};
main(){
 struct card a;
 struct card *aPtr;
 a.face = "Ace";
 a.suit = "Spades";
 aPtr = &a;
 printf("%s%s%s\n%s%s%s\n%s%s%s\n",
 a.face, " of ", a.suit,
 aPtr->face, " of ", aPtr->suit,
 (*aPtr).face, " of ", (*aPtr).suit);
 return 0;
}

N.B. here !
Dereferencing
pointers.

2

Introduction toC and C++. CA212 © Brian Stone 2001 3

Memory and its ManagementMemory and its Management
• new & delete
• Allow us to allocate

memory to data
structures during
program execution

• May allocate
memory for arrays,
structs and basic
types etc.

Stack

Heap

Fixed

small < 10000
bytes

Large -
accessed by
programmer
via
‘new’ and
‘delete’

Allocated once-
and-for-all when
program is
loaded.

Introduction toC and C++. CA212 © Brian Stone 2001 4

Heap, Stack, Memory andHeap, Stack, Memory and
VisibilityVisibility

• Consider the program fragment below...
int globalA[1000]; // Fixed Memory
static int globalB[1000]; // Fixed Memory
int funcA(int x,int y) // x & y are created from the stack
{
 int localA[10]; //Stack memory
 static int localB[1000]; //Fixed memory
 int *p; //Stack memory
 p=new int[100000]; //Heap memory

 delete p; // Return to the heap

// on exit all memory taken from the the stack
} // is restored
static int funcB(int x) // module scope!!!
{}

3

Introduction toC and C++. CA212 © Brian Stone 2001 5

What’s the Visibility Here ?What’s the Visibility Here ?
int globalA[1000]; // potentially visible to all modules
static int globalB[1000]; // visible throughout this module only

int funcA(int x,int y) // x & y are visible only inside this function
{
 int localA[10]; //visible within this function
 static int localB[1000]; //visible within this function
 int *p;
 p=new int[100000]; //visible within this function

 delete p; // p is about to be destroyed
}

static int funcB(int x)
{

..........
}

Introduction toC and C++. CA212 © Brian Stone 2001 6

Visibility…..Visibility…..
In a second module

extern int globalA[]; //Valid
extern int globalB[]; // Illegal
extern int funcA(int,int); //Valid
extern int funcB(int); //Illegal

The keyword static is a little overused!

4

Introduction toC and C++. CA212 © Brian Stone 2001 7

Pulling It All Together.Pulling It All Together.

• A simple stack program which constructs and
releases a stack is a good illustrator of many of the
programming constructs seen so far.

• Remember, a stack places new data on top of the
structure, and deletions may only occur at the top,
like a stack of plates.

• Consider the following code…See problems?

Introduction toC and C++. CA212 © Brian Stone 2001 8

#include <iostream.h> //MS
#define N 1000
#define BOS -1
struct stack
{ int size;
 int *array;
 int top;
};
void construct(struct stack s){
 s.size=N;
 s.top=BOS;
 s.array=new int [N];
}
int is_empty(struct stack s){
 return (s.top==BOS);
}
int is_full(struct stack s){
 return (s.top==s.size-1);
}
void push(int value,struct stack s){
 if (is_full(s)) return;
 s.array[++s.top]=value;
}

int pop(struct stack s)
{
 if (is_empty(s))
 {
 cout << “No elements in stack\n”;
 return 0;
 }
 return s.array[s.top--];
} //function pop
void main()
{
 struct stack astack;
 int v,i,size;
 construct(astack);
for (i=0;i<N;i++)
 push(i,astack);
 size=astack.top;
 for (i=0;i<=size;i++)
 {
 v=pop(astack);
 cout << “element = “ << v << endl;
 } //end for
} //end main

5

Introduction toC and C++. CA212 © Brian Stone 2001 9

Graded Assignment

• This program does not work, flawed in a simple
and fundamental way!!!

• There are at least three ways of fixing it.
– Some better than others!
– Produce two (good ones).

• When it is working, break it up into two files. A
set of utility functions in one file and main in the
other. Use header files as appropriate.

• TIP: reduce the size of the stack to debug this.

Introduction toC and C++. CA212 © Brian Stone 2001 10

Another Problem to SolveAnother Problem to Solve
The year is 66AD. A group of desperate people have decided to
commit mass suicide, but without anyone killing themselves.
Their leader is one Josephus. He doesn’t want to die, but his
followers will kill him unless he agrees. Josephus proposes the
following. All the men will stand in a circle, numbered 1 to N.
They will then proceed to kill the Mth man in the circle proceeding
clockwise. The survivors close up the gap, and continue to kill the
Mth man, until only one is left. Josephus needs a short program for
his lap-top which will predict the outcome, so that he can decide
the choice of M, so that he is the last survivor (hypocrisy again).

6

Introduction toC and C++. CA212 © Brian Stone 2001 11

The Problem of Josephus

1

2
3

4

5

6

78

9

10

key

next

key

next

key

next

t

t->next=x->next

x

Leapfrog a node
and delete the
jumped node

All stand in circle,
last points to first

Introduction toC and C++. CA212 © Brian Stone 2001 12

#include <iostream.h>
/* use a circular linked list type of
node structure to represent the men.
 Each man has a number ‘key’ and
a pointer to the next man */
struct node
{
 int key;
 struct node *next;
};

void main(){
int i,N,M;
struct node *t,*x;
cout << “Enter Number of people= “;
cin >> N;
cout << “Enter Killing order= “;
cin >> M;
t=new node;
t->key=1; x=t;
for (i=2;i<=N;i++)
 { // build linked list
 t->next=new node;
 t=t->next;
 t->key=i;
 }
t->next=x; // last points to first
while (t != t->next)
 { // Kill every M-th man
 for (i=1;i<M;i++) t=t->next;
 cout << t->next->key << ' ';
 x=t->next; t->next=x->next;
 delete x;
 }
cout << t->key << '\n';
} //end main

Bit of C++ I\O here, it simplifies!

A Solution for
Josephus

leapfrog
Self-type referential
pointer

7

Introduction toC and C++. CA212 © Brian Stone 2001 13

Semester Project (Stage 1)

To be rewritten later using OO
Constructs.

Introduction toC and C++. CA212 © Brian Stone 2001 14

The Dictionary Project
Using whatever data structures and algorithms that you are
familiar with and feel appropriate, write a program which
acts as a dictionary, or word store. Your program should
allow the user to type in a word and store it in the dictionary.
Duplicate words are not allowed. The user should also be
allowed to check the presence of a word in the dictionary and
be told whether that word is present or not. The application
should also be able to list the words in the word store in
alphabetical order, on the screen. You must also allow deletions
of words.
Do not use Objects and Classes.

