
1

 2000 Prentice Hall, Inc. All rights reserved.

W6.1

• Destructors
• Data Members and Member Functions
• Returning a Reference to a Private Data Member
• Default Memberwise Copy
• Software Reusability

2

 2000 Prentice Hall, Inc. All rights reserved.

6.12 Using Destructors

• Destructors
– Are member function of class
– Perform termination housekeeping before the system

reclaims the object’s memory
– Complement of the constructor
– Name is tilde (~) followed by the class name (i.e., ~Time)

• Recall that the constructor’s name is the class name
– Receives no parameters, returns no value
– One destructor per class

• No overloading allowed

3

 2000 Prentice Hall, Inc. All rights reserved.

6.13 When Constructors and Destructors
Are Called

• Constructors and destructors called automatically
– Order depends on scope of objects

• Global scope objects
– Constructors called before any other function (including main)
– Destructors called when main terminates (or exit function called)
– Destructors not called if program terminates with abort

• Automatic local objects
– Constructors called when objects are defined
– Destructors called when objects leave scope

• i.e., when the block in which they are defined is exited
– Destructors not called if the program ends with exit or abort

4

 2000 Prentice Hall, Inc. All rights reserved.

6.13 When Constructors and Destructors
Are Called

• Static local objects
– Constructors called when execution reaches the point where

the objects are defined
– Destructors called when main terminates or the exit

function is called
– Destructors not called if the program ends with abort

 2000 Prentice Hall, Inc. All rights reserved.

Outline
5

Outline
1 // Fig. 6.9: create.h

2 // Definition of class CreateAndDestroy.

3 // Member functions defined in create.cpp.

4 #ifndef CREATE_H

5 #define CREATE_H

6

7 class CreateAndDestroy {

8 public:

9 CreateAndDestroy(int); // constructor

10 ~CreateAndDestroy(); // destructor

11 private:

12 int data;

13 };

14

15 #endif

1. Create a header file

1.1 Include function
prototypes for the
destructor and
constructor

 2000 Prentice Hall, Inc. All rights reserved.

Outline
6

Outline
16 // Fig. 6.9: create.cpp

17 // Member function definitions for class CreateAndDestroy

18 #include <iostream>

19

20 using std::cout;

21 using std::endl;

22

23 #include "create.h"

24

25 CreateAndDestroy::CreateAndDestroy(int value)

26 {

27 data = value;

28 cout << "Object " << data << " constructor";

29 }

30

31 CreateAndDestroy::~CreateAndDestroy()

32 { cout << "Object " << data << " destructor " << endl; }

Constructor and Destructor changed to
print when they are called.

2. Load the header file

2.1 Modify the
constructor and
destructor

 2000 Prentice Hall, Inc. All rights reserved.

Outline
7

Outline

3. Create multiple
objects of varying
types

33 // Fig. 6.9: fig06_09.cpp
34 // Demonstrating the order in which constructors and
35 // destructors are called.
36 #include <iostream>
37
38 using std::cout;
39 using std::endl;
40
41 #include "create.h"
42
43 void create(void); // prototype
44
45 CreateAndDestroy first(1); // global object
46
47 int main()
48 {
49 cout << " (global created before main)" << endl;
50
51 CreateAndDestroy second(2); // local object
52 cout << " (local automatic in main)" << endl;
53
54 static CreateAndDestroy third(3); // local object
55 cout << " (local static in main)" << endl;
56
57 create(); // call function to create objects
58
59 CreateAndDestroy fourth(4); // local object
60 cout << " (local automatic in main)" << endl;
61 return 0;
62 }

 2000 Prentice Hall, Inc. All rights reserved.

Outline
8

Outline
63
64 // Function to create objects
65 void create(void)
66 {
67 CreateAndDestroy fifth(5);
68 cout << " (local automatic in create)" << endl;
69
70 static CreateAndDestroy sixth(6);
71 cout << " (local static in create)" << endl;
72
73 CreateAndDestroy seventh(7);
74 cout << " (local automatic in create)" << endl;
75 }

OUTPUT
Object 1 constructor (global created before main)
Object 2 constructor (local automatic in main)
Object 3 constructor (local static in main)
Object 5 constructor (local automatic in create)
Object 6 constructor (local static in create)
Object 7 constructor (local automatic in create)
Object 7 destructor
Object 5 destructor
Object 4 constructor (local automatic in main)
Object 4 destructor
Object 2 destructor
Object 6 destructor
Object 3 destructor
Object 1 destructor

Notice how the order of the
constructor and destructor call
depends on the types of variables
(automatic, global and static)
they are associated with.

Program Output

9

 2000 Prentice Hall, Inc. All rights reserved.

6.14 Using Data Members and Member
Functions

• Member functions
– Allow clients of the class to set (i.e., write) or get (i.e., read) the

values of private data members
– Example:

Adjusting a customer’s bank balance
• private data member balance of a class BankAccount

could be modified through the use of member function
computeInterest

• A member function that sets data member interestRate could
be called setInterestRate, and a member function that returns
the interestRate could be called getInterestRate

– Providing set and get functions does not make private
variables public

– A set function should ensure that the new value is valid

10

 2000 Prentice Hall, Inc. All rights reserved.

6.15 A Subtle Trap: Returning a Reference to
a Private Data Member

• Reference to an object
– Alias for the name of the object,
– May be used on the left side of an assignment statement,

makes perfectly acceptable lvalue.
– Reference can receive a value, which changes the original

object as well

• Returning references
– public member functions can return non-const

references to private data members
• Should be avoided, breaks encapsulation

• Please avoid using references in this way, very,
very bad!!!

 2000 Prentice Hall, Inc. All rights reserved.

Outline
11

Outline
1 // Fig. 6.11: time4.h

2 // Declaration of the Time class.

3 // Member functions defined in time4.cpp

4

5 // preprocessor directives that

6 // prevent multiple inclusions of header file

7 #ifndef TIME4_H

8 #define TIME4_H

9

10 class Time {

11 public:

12 Time(int = 0, int = 0, int = 0);

13 void setTime(int, int, int);

14 int getHour();

15 int &badSetHour(int); // DANGEROUS reference return

16 private:

17 int hour;

18 int minute;

19 int second;

20 };

21

22 #endif

Notice how member function
badSetHour returns a reference
(int & is the return type).

1. Define class

1.1 Function
prototypes

1.2 Member variables

 2000 Prentice Hall, Inc. All rights reserved.

Outline
12

Outline

1. Load header

1.1 Function definitions

23 // Fig. 6.11: time4.cpp
24 // Member function definitions for Time class.
25 #include "time4.h"
26
27 // Constructor function to initialize private data.
28 // Calls member function setTime to set variables.
29 // Default values are 0 (see class definition).
30 Time::Time(int hr, int min, int sec)
31 { setTime(hr, min, sec); }
32
33 // Set the values of hour, minute, and second.
34 void Time::setTime(int h, int m, int s)
35 {
36 hour = (h >= 0 && h < 24) ? h : 0;
37 minute = (m >= 0 && m < 60) ? m : 0;
38 second = (s >= 0 && s < 60) ? s : 0;
39 }
40
41 // Get the hour value
42 int Time::getHour() { return hour; }
43
44 // POOR PROGRAMMING PRACTICE:
45 // Returning a reference to a private data member.
46 int &Time::badSetHour(int hh)
47 {
48 hour = (hh >= 0 && hh < 24) ? hh : 0;
49
50 return hour; // DANGEROUS reference return
51 }

badSetHour returns a
reference to the
private member
variable hour.
Changing this reference
will alter hour as well.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
13

Outline

1.2 Declare reference

2. Change data using a
reference

3. Output results

52 // Fig. 6.11: fig06_11.cpp
53 // Demonstrating a public member function that
54 // returns a reference to a private data member.
55 // Time class has been trimmed for this example.
56 #include <iostream>
57
58 using std::cout;
59 using std::endl;
60
61 #include "time4.h"
62
63 int main()
64 {
65 Time t;
66 int &hourRef = t.badSetHour(20);
67
68 cout << "Hour before modification: " << hourRef;
69 hourRef = 30; // modification with invalid value
70 cout << "\nHour after modification: " << t.getHour();
71
72 // Dangerous: Function call that returns
73 // a reference can be used as an lvalue!
74 t.badSetHour(12) = 74;
75 cout << "\n\n*********************************\n"
76 << "POOR PROGRAMMING PRACTICE!!!!!!!!\n"
77 << "badSetHour as an lvalue, Hour: "
78 << t.getHour()
79 << "\n*********************************" << endl;
80
81 return 0;
82 }

Declare Time object t and
reference hourRef that is
assigned the reference returned by
the call t.badSetHour(20).

Alias used to set the value
of hour to 30 (an invalid
value).

Function call used as an lvalue
and assigned the value 74
(another invalid value).

Hour before modification: 20

Hour after modification: 30

POOR PROGRAMMING PRACTICE!!!!!!!!

badSetHour as an lvalue, Hour: 74

 2000 Prentice Hall, Inc. All rights reserved.

Outline
14

Outline

Program Output

HourRef used to change hour
to an invalid value. Normally,
the function setbadSetHour
would not have allowed this.
However, because it returned a
reference, hour was changed
directly.

Hour before modification: 20
Hour after modification: 30

POOR PROGRAMMING PRACTICE!!!!!!!!
badSetHour as an lvalue, Hour: 74

15

 2000 Prentice Hall, Inc. All rights reserved.

6.16 Assignment by Default Memberwise
Copy

• Assigning objects
– An object can be assigned to another object of the same type

using the assignment operator (=)
– Member by member copy

• Objects may be
– Passed as function arguments
– Returned from functions (call-by-value default)

 2000 Prentice Hall, Inc. All rights reserved.

Outline
16

Outline
1 // Fig. 6.12: fig06_12.cpp
2 // Demonstrating that class objects can be assigned
3 // to each other using default memberwise copy
4 #include <iostream>
5
6 using std::cout;
7 using std::endl;
8
9 // Simple Date class
10 class Date {
11 public:
12 Date(int = 1, int = 1, int = 1990); // default constructor
13 void print();
14 private:
15 int month;
16 int day;
17 int year;
18 };
19
20 // Simple Date constructor with no range checking
21 Date::Date(int m, int d, int y)
22 {
23 month = m;
24 day = d;
25 year = y;
26 }
27
28 // Print the Date in the form mm-dd-yyyy
29 void Date::print()
30 { cout << month << '-' << day << '-' << year; }

1. Define class

1.1 Define member
functions

 2000 Prentice Hall, Inc. All rights reserved.

Outline
17

Outline
31
32 int main()
33 {
34 Date date1(7, 4, 1993), date2; // d2 defaults to 1/1/90
35
36 cout << "date1 = ";
37 date1.print();
38 cout << "\ndate2 = ";
39 date2.print();
40
41 date2 = date1; // assignment by default memberwise copy
42 cout << "\n\nAfter default memberwise copy, date2 = ";
43 date2.print();
44 cout << endl;
45
46 return 0;
47 }

date1 = 7-4-1993
date2 = 1-1-1990

After default memberwise copy, date2 = 7-4-1993

date2 set equal to date1,
and all member variables
are copied.

2. Create Date objects

2.1 Memberwise copy

3. Print values

Program Output

18

 2000 Prentice Hall, Inc. All rights reserved.

6.17 Software Reusability

• Software resusability
– Implementation of useful classes
– Class libraries exist to promote reusability

• Allows for construction of programs from existing, well-
defined, carefully tested, well-documented, portable, widely
available components

– Speeds development of powerful, high-quality software

