
1

1

 2000 Prentice Hall, Inc. All rights reserved.

W 9.1 - Inheritance

Outline
9.1 Introduction
9.2 Inheritance: Base Classes and Derived Classes
9.3 Protected Members
9.4 Casting Base-Class Pointers to Derived-Class Pointers
9.5 Using Member Functions
9.6 Overriding Base-Class Members in a Derived Class
9.7 Public, Protected and Private Inheritance
9.8 Direct Base Classes and Indirect Base Classes
9.9 Using Constructors and Destructors in Derived Classes
9.10 Implicit Derived-Class Object to Base-Class Object Conversion
9.11 Software Engineering with Inheritance
9.12 Composition vs. Inheritance
9.13 “Uses A” and “Knows A” Relationships
9.14 Case Study: Point, Circle, Cylinder
9.15 Multiple Inheritance

2

 2000 Prentice Hall, Inc. All rights reserved.

9.1 Introduction

• Inheritance
– New classes created from existing classes
– Absorb attributes and behaviors
– Derived class

• Class that inherits data members and member functions from a
previously defined base class

– Single inheritance
• Class inherits from one base class

– Multiple inheritance
• Class inherits from multiple base classes

– Types of inheritance
• public: Derived objects are accessible by the base class objects
• private: Derived objects are inaccessible by the base class
• protected: Derived classes and friends can access protected

members of the base class

3

 2000 Prentice Hall, Inc. All rights reserved.

9.1 Introduction

• Polymorphism
– Write programs in a general fashion
– Handle a wide variety of existing (and unspecified) related

classes

4

 2000 Prentice Hall, Inc. All rights reserved.

9.2 Inheritance: Base and Derived Classes

• Base and derived classes
– Often an object from a derived class (subclass) is also an

object of a base class (superclass)
• A rectangle is a derived class in reference to a quadrilateral and

a base class in reference to a square

• Inheritance examples
Base class Derived classes

Student GraduateStudent
UndergraduateStudent

Shape Circle
Triangle
Rectangle

Loan CarLoan
HomeImprovementLoan
MortgageLoan

Employee FacultyMember
StaffMember

Account CheckingAccount
SavingsAccount

5

 2000 Prentice Hall, Inc. All rights reserved.

9.2 Inheritance: Base and Derived Classes

• Implementation of public inheritance
class CommissionWorker : public Employee {
 ...
};

– Class CommissionWorker inherits from class
Employee

– friend functions not inherited
– private members of base class not accessible from

derived class

6

 2000 Prentice Hall, Inc. All rights reserved.

9.3 protected Members

• protected access
– Intermediate level of protection between public and
private inheritance

– Derived-class members can refer to public and
protected members of the base class simply by using the
member names

– Note that protected data “breaks” encapsulation

2

7

 2000 Prentice Hall, Inc. All rights reserved.

9.4 Casting Base-Class Pointers to Derived
Class Pointers

• Derived classes relationships to base classes
– Objects of a derived class can be treated as objects of the base

class
• Reverse not true — base class objects cannot be derived-class objects

• Downcasting a pointer
– Use an explicit cast to convert a base-class pointer to a derived-

class pointer
– If pointer is going to be dereferenced, the type of the pointer must

match the type of object to which the pointer points
– Format:

derivedPtr = static_cast< DerivedClass * > basePtr;

8

 2000 Prentice Hall, Inc. All rights reserved.

9.4 Casting Base-Class Pointers to Derived-
Class Pointers

• The following example:
– Demonstrates the casting of base class pointers to derived

class pointers
– Class Circle is derived from class Point
– A pointer of type Point is used to reference a Circle

object, and a pointer to type Circle is used to reference a
Point object

 2000 Prentice Hall, Inc. All rights reserved.

Outline
9

Outline

1. Point class
definition

1. Load header

1.1 Function definitions

1 // Fig. 9.4: point.h
2 // Definition of class Point
3 #ifndef POINT_H
4 #define POINT_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 class Point {
11 friend ostream &operator<<(ostream &, const Point &);
12 public:
13 Point(int = 0, int = 0); // default constructor
14 void setPoint(int, int); // set coordinates
15 int getX() const { return x; } // get x coordinate
16 int getY() const { return y; } // get y coordinate
17 protected: // accessible by derived classes
18 int x, y; // x and y coordinates of the Point
19 };
20
21 #endif
22 // Fig. 9.4: point.cpp
23 // Member functions for class Point
24 #include <iostream>
25 #include "point.h"
26
27 // Constructor for class Point
28 Point::Point(int a, int b) { setPoint(a, b); }
29
30 // Set x and y coordinates of Point
31 void Point::setPoint(int a, int b)
32 {
33 x = a;  2000 Prentice Hall, Inc. All rights reserved.

Outline
10

Outline

1.1 Function definitions

1. Circle class
definition

34 y = b;
35 }
36
37 // Output Point (with overloaded stream insertion operator)
38 ostream &operator<<(ostream &output, const Point &p)
39 {
40 output << '[' << p.x << ", " << p.y << ']';
41
42 return output; // enables cascaded calls
43 }
44 // Fig. 9.4: circle.h
45 // Definition of class Circle
46 #ifndef CIRCLE_H
47 #define CIRCLE_H
48
49 #include <iostream>
50
51 using std::ostream;
52
53 #include <iomanip>
54
55 using std::ios;
56 using std::setiosflags;
57 using std::setprecision;
58
59 #include "point.h"
60
61 class Circle : public Point { // Circle inherits from Point
62 friend ostream &operator<<(ostream &, const Circle &);
63 public:
64 // default constructor

Class Circle publicly inherits from class
Point, so it will have class Point's public
and protected member functions and data.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
11

Outline

1. Circle definition

1. Load header

1.1 Function
Definitions

65 Circle(double r = 0.0, int x = 0, int y = 0);
66

67 void setRadius(double); // set radius
68 double getRadius() const; // return radius

69 double area() const; // calculate area

70 protected:
71 double radius;

72 };
73

74 #endif
75 // Fig. 9.4: circle.cpp

76 // Member function definitions for class Circle

77 #include "circle.h"

78

79 // Constructor for Circle calls constructor for Point

80 // with a member initializer then initializes radius.

81 Circle::Circle(double r, int a, int b)

82 : Point(a, b) // call base-class constructor

83 { setRadius(r); }

84

85 // Set radius of Circle

86 void Circle::setRadius(double r)

87 { radius = (r >= 0 ? r : 0); }

88

Circle inherits from Point,
and has Point's data members
(which are set by calling
Point's constructor).

 2000 Prentice Hall, Inc. All rights reserved.

Outline
12

Outline

1. 1 Function
Definitions

Driver

1. Load headers

1.1 Initialize objects

89 // Get radius of Circle
90 double Circle::getRadius() const { return radius; }
91
92 // Calculate area of Circle
93 double Circle::area() const
94 { return 3.14159 * radius * radius; }
95
96 // Output a Circle in the form:
97 // Center = [x, y]; Radius = #.##
98 ostream &operator<<(ostream &output, const Circle &c)
99 {
100 output << "Center = " << static_cast< Point >(c)
101 << "; Radius = "
102 << setiosflags(ios::fixed | ios::showpoint)
103 << setprecision(2) << c.radius;
104
105 return output; // enables cascaded calls
106}
107// Fig. 9.4: fig09_04.cpp
108// Casting base-class pointers to derived-class pointers
109#include <iostream>
110
111using std::cout;
112using std::endl;
113
114#include <iomanip>
115
116#include "point.h"
117#include "circle.h"
118
119int main()
120{
121 Point *pointPtr = 0, p(30, 50);

3

 2000 Prentice Hall, Inc. All rights reserved.

Outline
13

Outline

1.1 Initialize objects

1.2 Assign objects

2. Function calls

134 cout << "\nCircle c (via *circlePtr):\n" << *circlePtr
135 << "\nArea of c (via circlePtr): "
136 << circlePtr->area() << '\n';
137
138 // DANGEROUS: Treat a Point as a Circle

139 pointPtr = &p; // assign address of Point to pointPtr
140
141 // cast base-class pointer to derived-class pointer
142 circlePtr = static_cast< Circle * >(pointPtr);
143 cout << "\nPoint p (via *circlePtr):\n" << *circlePtr
144 << "\nArea of object circlePtr points to: "

145 << circlePtr->area() << endl;
146 return 0;
147}

122 Circle *circlePtr = 0, c(2.7, 120, 89);
123
124 cout << "Point p: " << p << "\nCircle c: " << c << '\n';

125
126 // Treat a Circle as a Point (see only the base class part)
127 pointPtr = &c; // assign address of Circle to pointPtr

128 cout << "\nCircle c (via *pointPtr): "
129 << *pointPtr << '\n';
130

131 // Treat a Circle as a Circle (with some casting)
132 // cast base-class pointer to derived-class pointer
133 circlePtr = static_cast< Circle * >(pointPtr);

Assign derived-class
pointer (&c) to base class
pointer pointPtr .

The base class pointer only
"sees" the base-class part
of the object it points to.

Cast pointPtr into a
Circle * , and assign to
circlePtr.

circlePtr will treat c
(the object to which it
points) as a Circle.

Point p: [30, 50]

Circle c: Center = [120, 89]; Radius = 2.70

Circle c (via *pointPtr): [120, 89]

Circle c (via *circlePtr):
Center = [120, 89]; Radius = 2.70

Area of c (via circlePtr): 22.90

Assign pointPtr to a Point
object. It has no derived-class
information.

When it is cast to a Circle *,
circlePtr is really assigned to a
base-class object with no derived-
class information. This is dangerous.

Point p (via *circlePtr):

Center = [30, 50]; Radius = 0.00
Area of object circlePtr points to: 0.00  2000 Prentice Hall, Inc. All rights reserved.

Outline
14

Outline

 Program Output

Point p: [30, 50]
Circle c: Center = [120, 89]; Radius = 2.70

Circle c (via *pointPtr): [120, 89]

Circle c (via *circlePtr):
Center = [120, 89]; Radius = 2.70
Area of c (via circlePtr): 22.90

Point p (via *circlePtr):
Center = [30, 50]; Radius = 0.00
Area of object circlePtr points to: 0.00

15

 2000 Prentice Hall, Inc. All rights reserved.

9.5 Using Member Functions

• Derived class member functions
– Cannot directly access private members of their base

class
• Maintains encapsulation

– Hiding private members is a huge help in testing,
debugging and correctly modifying systems

16

 2000 Prentice Hall, Inc. All rights reserved.

9.6 Overriding Base-Class Members in a
Derived Class

• To override a base-class member function
– In the derived class, supply a new version of that function

with the same signature
• same function name, different definition

– When the function is then mentioned by name in the derived
class, the derived version is automatically called

– The scope-resolution operator may be used to access the
base class version from the derived class

 2000 Prentice Hall, Inc. All rights reserved.

Outline
17

Outline

1. Employee class
definition

1. Load header

1.1 Function definitions

1 // Fig. 9.5: employ.h
2 // Definition of class Employee
3 #ifndef EMPLOY_H
4 #define EMPLOY_H
5
6 class Employee {
7 public:
8 Employee(const char *, const char *); // constructor
9 void print() const; // output first and last name
10 ~Employee(); // destructor
11 private:
12 char *firstName; // dynamically allocated string
13 char *lastName; // dynamically allocated string
14 };
15
16 #endif
17 // Fig. 9.5: employ.cpp
18 // Member function definitions for class Employee
19 #include <iostream>
20
21 using std::cout;
22
23 #include <cstring>
24 #include <cassert>
25 #include "employ.h"
26
27 // Constructor dynamically allocates space for the
28 // first and last name and uses strcpy to copy
29 // the first and last names into the object.
30 Employee::Employee(const char *first, const char *last)
31 {
32 firstName = new char[strlen(first) + 1];  2000 Prentice Hall, Inc. All rights reserved.

Outline
18

Outline

1.1 Function definitions

1. HourlyWorker
class definition

33 assert(firstName != 0); // terminate if not allocated
34 strcpy(firstName, first);
35
36 lastName = new char[strlen(last) + 1];
37 assert(lastName != 0); // terminate if not allocated
38 strcpy(lastName, last);
39 }
40
41 // Output employee name
42 void Employee::print() const
43 { cout << firstName << ' ' << lastName; }
44
45 // Destructor deallocates dynamically allocated memory
46 Employee::~Employee()
47 {
48 delete [] firstName; // reclaim dynamic memory
49 delete [] lastName; // reclaim dynamic memory
50 }
51 // Fig. 9.5: hourly.h
52 // Definition of class HourlyWorker
53 #ifndef HOURLY_H
54 #define HOURLY_H
55
56 #include "employ.h"
57
58 class HourlyWorker : public Employee {
59 public:
60 HourlyWorker(const char*, const char*, double, double);
61 double getPay() const; // calculate and return salary
62 void print() const; // overridden base-class print
63 private:

HourlyWorker inherits
from Employee.

HourlyWorker will override
the print function.

4

 2000 Prentice Hall, Inc. All rights reserved.

Outline
19

Outline

1. Load header

1.1 Function definitions

64 double wage; // wage per hour
65 double hours; // hours worked for week
66 };
67
68 #endif
69 // Fig. 9.5: hourly.cpp
70 // Member function definitions for class HourlyWorker
71 #include <iostream>
72
73 using std::cout;
74 using std::endl;
75
76 #include <iomanip>
77
78 using std::ios;
79 using std::setiosflags;
80 using std::setprecision;
81
82 #include "hourly.h"
83
84 // Constructor for class HourlyWorker
85 HourlyWorker::HourlyWorker(const char *first,
86 const char *last,
87 double initHours, double initWage)
88 : Employee(first, last) // call base-class constructor
89 {
90 hours = initHours; // should validate
91 wage = initWage; // should validate
92 }
93
94 // Get the HourlyWorker's pay
95 double HourlyWorker::getPay() const { return wage * hours; }  2000 Prentice Hall, Inc. All rights reserved.

Outline
20

Outline

1.1 Function
Definitions

1. Load header

1.1 Initialize object

2. Function call

Program Output

96
97 // Print the HourlyWorker's name and pay
98 void HourlyWorker::print() const

99 {
100 cout << "HourlyWorker::print() is executing\n\n";

101 Employee::print(); // call base-class print function
102

103 cout << " is an hourly worker with pay of $"
104 << setiosflags(ios::fixed | ios::showpoint)

105 << setprecision(2) << getPay() << endl;
106}
107// Fig. 9.5: fig09_05.cpp

108// Overriding a base-class member function in a

109// derived class.

110#include "hourly.h"

111

112int main()

113{

114 HourlyWorker h("Bob", "Smith", 40.0, 10.00);

115 h.print();

116 return 0;

117}
HourlyWorker::print() is executing

Bob Smith is an hourly worker with pay of $400.00

The print function is
overriden in
HourlyWorker.
However, the new
function still can call the
original print function
using ::

21

 2000 Prentice Hall, Inc. All rights reserved.

9.7 public, private, and protected
Inheritance

Type of inheritance Base class
member
access
specifier

public
inheritance

protected
inheritance

private
inheritance

Public

public in derived class.
Can be accessed directly by any
non-static member functions,
friend functions and non-
member functions.

protected in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

private in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

Protected

protected in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

protected in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

private in derived class.
Can be accessed directly by all
non-static member functions
and friend functions.

Private

Hidden in derived class.
Can be accessed by non-static
member functions and friend
functions through public or
protected member functions
of the base class.

Hidden in derived cl ass.
Can be accessed by non-static
member functions and friend
functions through public or
protected member functions
of the base class.

Hidden in derived class.
Can be accessed by non-static
member functions and friend
functions through public or
protected member functions
of the base class.

22

 2000 Prentice Hall, Inc. All rights reserved.

9.8 Direct and Indirect Base Classes

• Direct base class
– Explicitly listed derived class’s header with the colon (:)

notation when that derived class is declared
class HourlyWorker : public Employee

• Employee is a direct base class of HourlyWorker

• Indirect base class
– Not listed in derived class’s header
– Inherited from two or more levels up the class hierarchy

class MinuteWorker : public HourlyWorker
• Employee is an indirect base class of MinuteWorker

23

 2000 Prentice Hall, Inc. All rights reserved.

9.9 Using Constructors and Destructors in
Derived Classes

• Base class initializer
– Uses member-initializer syntax
– Can be provided in the derived class constructor to call the

base-class constructor explicitly
• Otherwise base class’s default constructor called implicitly

– Base-class constructors and base-class assignment operators
are not inherited by derived classes

• Derived-class constructors and assignment operators, however,
can call base-class constructors and assignment operators

24

 2000 Prentice Hall, Inc. All rights reserved.

9.9 Using Constructors and Destructors in
Derived Classes

• A derived-class constructor
– Calls the constructor for its base class first to initialize its

base-class members
– If the derived-class constructor is omitted, its default

constructor calls the base-class’ default constructor

• Destructors are called in the reverse order of
constructor calls
– So a derived-class destructor is called before its base-class

destructor

• Destructor of Class Employee frees up the
dynamically assigned arrays[]firstname
and[]lastname, avoiding memory leaks (lines
48, 49).

5

 2000 Prentice Hall, Inc. All rights reserved.

Outline
25

Outline

1. Point definition

1. Load header

1.1 Function definitions

1 // Fig. 9.7: point2.h
2 // Definition of class Point
3 #ifndef POINT2_H
4 #define POINT2_H
5
6 class Point {
7 public:
8 Point(int = 0, int = 0); // default constructor
9 ~Point(); // destructor
10 protected: // accessible by derived classes
11 int x, y; // x and y coordinates of Point
12 };
13
14 #endif
15 // Fig. 9.7: point2.cpp
16 // Member function definitions for class Point
17 #include <iostream>
18
19 using std::cout;
20 using std::endl;
21
22 #include "point2.h"
23
24 // Constructor for class Point
25 Point::Point(int a, int b)
26 {
27 x = a;
28 y = b;
29
30 cout << "Point constructor: "
31 << '[' << x << ", " << y << ']' << endl;
32 }  2000 Prentice Hall, Inc. All rights reserved.

Outline
26

Outline

1.1 Function definitions

1. Load header

1.1 Circle Definition

33
34 // Destructor for class Point

35 Point::~Point()

36 {

37 cout << "Point destructor: "

38 << '[' << x << ", " << y << ']' << endl;

39 }

40 // Fig. 9.7: circle2.h
41 // Definition of class Circle

42 #ifndef CIRCLE2_H
43 #define CIRCLE2_H
44

45 #include "point2.h"
46

47 class Circle : public Point {
48 public:

49 // default constructor
50 Circle(double r = 0.0, int x = 0, int y = 0);

51
52 ~Circle();

53 private:
54 double radius;

55 };
56

57 #endif

Circle inherits from
Point.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
27

Outline

1. Load header

1.1 Function
Definitions

58 // Fig. 9.7: circle2.cpp

59 // Member function definitions for class Circle
60 #include <iostream>

61

62 using std::cout;

63 using std::endl;

64

65 #include "circle2.h"

66

67 // Constructor for Circle calls constructor for Point

68 Circle::Circle(double r, int a, int b)

69 : Point(a, b) // call base-class constructor

70 {

71 radius = r; // should validate

72 cout << "Circle constructor: radius is "

73 << radius << " [" << x << ", " << y << ']' << endl;

74 }

75
76 // Destructor for class Circle

77 Circle::~Circle()

78 {

79 cout << "Circle destructor: radius is "

80 << radius << " [" << x << ", " << y << ']' << endl;

81 }

Constructor for Circle
calls constructor for
Point, first. Uses
member-initializer syntax.

Destructor for Circle
calls destructor for Point,
last.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
28

Outline

1. Load headers

1.1 Initialize objects

2. Objects enter and
leave scope

82 // Fig. 9.7: fig09_07.cpp
83 // Demonstrate when base-class and derived-class

84 // constructors and destructors are called.
85 #include <iostream>

86

87 using std::cout;
88 using std::endl;

89
90 #include "point2.h"

91 #include "circle2.h"
92

93 int main()

94 {
95 // Show constructor and destructor calls for Point

96 {
97 Point p(11, 22);

98 }
99

100 cout << endl;

101 Circle circle1(4.5, 72, 29);
102 cout << endl;

103 Circle circle2(10, 5, 5);
104 cout << endl;

105 return 0;

106}

Point constructor: [11, 22]
Point destructor: [11, 22]

Object created inside a block destroyed
once it leaves scope.

Remember that the Point
constructor is called for
Circle objects before the
Circle constructor (inside
to out).

Point constructor: [72, 29]

Circle constructor: radius is 4.5 [72, 29]

Point constructor: [5, 5]

Circle constructor: radius is 10 [5, 5]
Point destructor called after
Circle destructor (outside
in).

Circle destructor: radius is 10 [5, 5]
Point destructor: [5, 5]

Circle destructor: radius is 4.5 [72, 29]

Point destructor: [72, 29]

 2000 Prentice Hall, Inc. All rights reserved.

Outline
29

Outline

Program Output

Point constructor: [11, 22]
Point destructor: [11, 22]

Point constructor: [72, 29]
Circle constructor: radius is 4.5 [72, 29]

Point constructor: [5, 5]
Circle constructor: radius is 10 [5, 5]

Circle destructor: radius is 10 [5, 5]
Point destructor: [5, 5]
Circle destructor: radius is 4.5 [72, 29]
Point destructor: [72, 29]

30

 2000 Prentice Hall, Inc. All rights reserved.

9.10 Implicit Derived-Class Object to Base-
Class Object Conversion

• Assignment of derived and base classes
– Derived-class type and base-class type are different
– Derived-class object can be treated as a base-class object

• Derived class has members corresponding to all of the base
class’s members

• Derived-class has more members than the base-class object
• Base-class can be assigned a derived-class

– Base-class object cannot be treated as a derived-class object
• Would leave additional derived class members undefined
• Derived-class cannot be assigned a base-class
• Assignment operator can be overloaded to allow such an

assignment

6

31

 2000 Prentice Hall, Inc. All rights reserved.

9.10 Implicit Derived-Class Object to Base-
Class Object Conversion

• Mixing base and derived class pointers and objects
– Referring to a base-class object with a base-class pointer

• Allowed (straightforward)

– Referring to a derived-class object with a derived-class pointer
• Allowed (straightforward)

– Referring to a derived-class object with a base-class pointer
• Possible syntax error
• Code can only refer to base-class members, or syntax error

– Referring to a base-class object with a derived-class pointer
• Syntax error
• The derived-class pointer must first be cast to a base-class pointer

• Need way to resolve base-class Vs derived-class
routines using base-class pointers (Virtual functions)

32

 2000 Prentice Hall, Inc. All rights reserved.

9.11 Software Engineering With Inheritance

• Classes are often closely related
– “Factor out” common attributes and behaviors and place

these in a base class
– Use inheritance to form derived classes

• Modifications to a base class
– Derived classes do not change as long as the public and
protected interfaces are the same

– Derived classes may need to be recompiled

• Use Inheritance sparingly, often times
complexity is introduced needlessly. Can make for
bad engineering thus hard to understand systems.

33

 2000 Prentice Hall, Inc. All rights reserved.

9.12 Composition vs. Inheritance

• “Is a” relationships
– Inheritance

• Relationship in which a class is derived from another class

• “Has a” relationships
– Composition

• Relationship in which a class contains other classes as
members

• Has a , is a composition. Is a kind of, is
inheritance.

• Interchangeable! Careful.

34

 2000 Prentice Hall, Inc. All rights reserved.

9.13 “Uses A” And “Knows A”
Relationships

• “Uses a”
– One object issues a function call to a member function of

another object. Limited!

• “Knows a”
– One object is aware of another

• Contains a pointer or handle to another object
• Has access to all public stuff.

– Also called an association

35

 2000 Prentice Hall, Inc. All rights reserved.

9.14 Case Study: Point, Circle, Cylinder

• Point, circle, cylinder hierarchy
– Point class is base class
– Circle class is derived from Point class
– Cylinder class is derived from Circle class

 2000 Prentice Hall, Inc. All rights reserved.

Outline
36

Outline

1. Point definition

1.1 Function definitions

1 // Fig. 9.8: point2.h
2 // Definition of class Point
3 #ifndef POINT2_H
4 #define POINT2_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 class Point {
11 friend ostream &operator<<(ostream &, const Point &);
12 public:
13 Point(int = 0, int = 0); // default constructor
14 void setPoint(int, int); // set coordinates
15 int getX() const { return x; } // get x coordinate
16 int getY() const { return y; } // get y coordinate
17 protected: // accessible to derived classes
18 int x, y; // coordinates of the point
19 };
20
21 #endif
22 // Fig. 9.8: point2.cpp
23 // Member functions for class Point
24 #include "point2.h"
25
26 // Constructor for class Point
27 Point::Point(int a, int b) { setPoint(a, b); }
28
29 // Set the x and y coordinates
30 void Point::setPoint(int a, int b)
31 {
32 x = a;

Point data members are
protected to be made
accessible by Circle.

7

 2000 Prentice Hall, Inc. All rights reserved.

Outline
37

Outline

1.1 Function definitions

33 y = b;
34 }
35
36 // Output the Point
37 ostream &operator<<(ostream &output, const Point &p)
38 {
39 output << '[' << p.x << ", " << p.y << ']';
40
41 return output; // enables cascading
42 }

 2000 Prentice Hall, Inc. All rights reserved.

Outline
38

Outline

1. circle definition

1.1 Function definitions

1 // Fig. 9.9: circle2.h
2 // Definition of class Circle
3 #ifndef CIRCLE2_H
4 #define CIRCLE2_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 #include "point2.h"
11
12 class Circle : public Point {
13 friend ostream &operator<<(ostream &, const Circle &);
14 public:
15 // default constructor
16 Circle(double r = 0.0, int x = 0, int y = 0);
17 void setRadius(double); // set radius
18 double getRadius() const; // return radius
19 double area() const; // calculate area
20 protected: // accessible to derived classes
21 double radius; // radius of the Circle
22 };
23
24 #endif
25 // Fig. 9.9: circle2.cpp
26 // Member function definitions for class Circle
27 #include <iomanip>
28
29 using std::ios;
30 using std::setiosflags;
31 using std::setprecision;
32
33 #include "circle2.h"

Circle data members are
protected to be made
accessible by Cylinder.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
39

Outline

1.1 Function definitions

34
35 // Constructor for Circle calls constructor for Point
36 // with a member initializer and initializes radius
37 Circle::Circle(double r, int a, int b)
38 : Point(a, b) // call base-class constructor
39 { setRadius(r); }
40
41 // Set radius
42 void Circle::setRadius(double r)
43 { radius = (r >= 0 ? r : 0); }
44
45 // Get radius
46 double Circle::getRadius() const { return radius; }
47
48 // Calculate area of Circle
49 double Circle::area() const
50 { return 3.14159 * radius * radius; }
51
52 // Output a circle in the form:
53 // Center = [x, y]; Radius = #.##
54 ostream &operator<<(ostream &output, const Circle &c)
55 {
56 output << "Center = " << static_cast< Point > (c)
57 << "; Radius = "
58 << setiosflags(ios::fixed | ios::showpoint)
59 << setprecision(2) << c.radius;
60
61 return output; // enables cascaded calls
62 }  2000 Prentice Hall, Inc. All rights reserved.

Outline
40

Outline

1. Cylinder definition

1 // Fig. 9.10: cylindr2.h
2 // Definition of class Cylinder
3 #ifndef CYLINDR2_H
4 #define CYLINDR2_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 #include "circle2.h"
11
12 class Cylinder : public Circle {
13 friend ostream &operator<<(ostream &, const Cylinder &);
14
15 public:
16 // default constructor
17 Cylinder(double h = 0.0, double r = 0.0,
18 int x = 0, int y = 0);
19
20 void setHeight(double); // set height
21 double getHeight() const; // return height
22 double area() const; // calculate and return area
23 double volume() const; // calculate and return volume
24
25 protected:
26 double height; // height of the Cylinder
27 };
28
29 #endif

 2000 Prentice Hall, Inc. All rights reserved.

Outline
41

Outline

1.1 Function definitions

30 // Fig. 9.10: cylindr2.cpp
31 // Member and friend function definitions
32 // for class Cylinder.
33 #include "cylindr2.h"
34
35 // Cylinder constructor calls Circle constructor
36 Cylinder::Cylinder(double h, double r, int x, int y)
37 : Circle(r, x, y) // call base-class constructor
38 { setHeight(h); }
39
40 // Set height of Cylinder
41 void Cylinder::setHeight(double h)
42 { height = (h >= 0 ? h : 0); }
43
44 // Get height of Cylinder
45 double Cylinder::getHeight() const { return height; }
46
47 // Calculate area of Cylinder (i.e., surface area)
48 double Cylinder::area() const
49 {
50 return 2 * Circle::area() +
51 2 * 3.14159 * radius * height;
52 }
53
54 // Calculate volume of Cylinder
55 double Cylinder::volume() const
56 { return Circle::area() * height; }
57
58 // Output Cylinder dimensions
59 ostream &operator<<(ostream &output, const Cylinder &c)
60 {

Circle::area() is
overidden.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
42

Outline

1.1 Function definitions

1. Load headers

1.1 Initialize object

2. Function calls

2.1 Change attributes

3. Output data

61 output << static_cast< Circle >(c)
62 << "; Height = " << c.height;
63
64 return output; // enables cascaded calls
65 }
66 // Fig. 9.10: fig09_10.cpp
67 // Driver for class Cylinder
68 #include <iostream>
69
70 using std::cout;
71 using std::endl;
72
73 #include "point2.h"
74 #include "circle2.h"
75 #include "cylindr2.h"
76
77 int main()
78 {
79 // create Cylinder object
80 Cylinder cyl(5.7, 2.5, 12, 23);
81
82 // use get functions to display the Cylinder
83 cout << "X coordinate is " << cyl.getX()
84 << "\nY coordinate is " << cyl.getY()
85 << "\nRadius is " << cyl.getRadius()
86 << "\nHeight is " << cyl.getHeight() << "\n\n";
87
88 // use set functions to change the Cylinder's attributes
89 cyl.setHeight(10);
90 cyl.setRadius(4.25);
91 cyl.setPoint(2, 2);

X coordinate is 12
Y coordinate is 23

Radius is 2.5

Height is 5.7

8

 2000 Prentice Hall, Inc. All rights reserved.

Outline
43

Outline

3. Output data

Program Output

92 cout << "The new location, radius, and height of cyl are:\n"
93 << cyl << '\n';
94
95 cout << "The area of cyl is:\n"
96 << cyl.area() << '\n';
97
98 // display the Cylinder as a Point
99 Point &pRef = cyl; // pRef "thinks" it is a Point
100 cout << "\nCylinder printed as a Point is: "
101 << pRef << "\n\n";
102
103 // display the Cylinder as a Circle
104 Circle &circleRef = cyl; // circleRef thinks it is a Circle
105 cout << "Cylinder printed as a Circle is:\n" << circleRef
106 << "\nArea: " << circleRef.area() << endl;
107
108 return 0;
109}

X coordinate is 12
Y coordinate is 23
Radius is 2.5
Height is 5.7

The new location, radius, and height of cyl are:
Center = [2, 2]; Radius = 4.25; Height = 10.00
The area of cyl is:
380.53
Cylinder printed as a Point is: [2, 2]

Cylinder printed as a Circle is:
Center = [2, 2]; Radius = 4.25
Area: 56.74

The new location, radius, and height of cyl
are:
Center = [2, 2]; Radius = 4.25; Height = 10.00

The area of cyl is:

380.53

Cylinder printed as a Point is: [2, 2]

pref "thinks" cyl is a Point, so it
prints as one.

circleref "thinks" cyl is a
Circle, so it prints as one.

Cylinder printed as a Circle is:

Center = [2, 2]; Radius = 4.25

Area: 56.74

44

 2000 Prentice Hall, Inc. All rights reserved.

9.15 Multiple Inheritance

• Multiple Inheritance
– Derived-class inherits from multiple base-classes
– Encourages software reuse, but can create ambiguities

 2000 Prentice Hall, Inc. All rights reserved.

Outline
45

Outline

1. Base1 definition

1. Base2 definition

1 // Fig. 9.11: base1.h
2 // Definition of class Base1
3 #ifndef BASE1_H
4 #define BASE1_H
5
6 class Base1 {

7 public:
8 Base1(int x) { value = x; }
9 int getData() const { return value; }
10 protected: // accessible to derived classes
11 int value; // inherited by derived class
12 };

13
14 #endif
15 // Fig. 9.11: base2.h
16 // Definition of class Base2
17 #ifndef BASE2_H
18 #define BASE2_H
19
20 class Base2 {
21 public:
22 Base2(char c) { letter = c; }
23 char getData() const { return letter; }
24 protected: // accessible to derived classes
25 char letter; // inherited by derived class
26 };
27
28 #endif  2000 Prentice Hall, Inc. All rights reserved.

Outline
46

Outline

1. Derived Definition

29 // Fig. 9.11: derived.h
30 // Definition of class Derived which inherits
31 // multiple base classes (Base1 and Base2).
32 #ifndef DERIVED_H

33 #define DERIVED_H
34
35 #include <iostream>
36

37 using std::ostream;
38
39 #include "base1.h"
40 #include "base2.h"

41
42 // multiple inheritance
43 class Derived : public Base1, public Base2 {
44 friend ostream &operator<<(ostream &, const Derived &);

45
46 public:
47 Derived(int, char, double);
48 double getReal() const;

49
50 private:
51 double real; // derived class's private data
52 };

53
54 #endif

Derived inherits from
Base1 and Base2.

 2000 Prentice Hall, Inc. All rights reserved.

Outline
47

Outline

1. Load header

1.1 Function
Definitions

55 // Fig. 9.11: derived.cpp
56 // Member function definitions for class Derived
57 #include "derived.h"
58
59 // Constructor for Derived calls constructors for
60 // class Base1 and class Base2.
61 // Use member initializers to call base-class constructors
62 Derived::Derived(int i, char c, double f)
63 : Base1(i), Base2(c), real (f) { }
64
65 // Return the value of real
66 double Derived::getReal() const { return real; }
67
68 // Display all the data members of Derived
69 ostream &operator<<(ostream &output, const Derived &d)
70 {
71 output << " Integer: " << d.value
72 << "\n Character: " << d.letter
73 << "\nReal number: " << d.real;
74
75 return output; // enables cascaded calls
76 }
77 // Fig. 9.11: fig09_11.cpp
78 // Driver for multiple inheritance example
79 #include <iostream>
80
81 using std::cout;
82 using std::endl;
83
84 #include "base1.h"
85 #include "base2.h"  2000 Prentice Hall, Inc. All rights reserved.

Outline
48

Outline

1. Load header

1.1 Create objects

2. Function calls

3. Output data

86 #include "derived.h"
87
88 int main()
89 {
90 Base1 b1(10), *base1Ptr = 0; // create Base1 object
91 Base2 b2('Z'), *base2Ptr = 0; // create Base2 object
92 Derived d(7, 'A', 3.5); // create Derived object
93
94 // print data members of base class objects
95 cout << "Object b1 contains integer " << b1.getData()
96 << "\nObject b2 contains character " << b2.getData()
97 << "\nObject d contains:\n" << d << "\n\n";
98
99 // print data members of derived class object
100 // scope resolution operator resolves getData ambiguity
101 cout << "Data members of Derived can be"
102 << " accessed individually:"
103 << "\n Integer: " << d.Base1::getData()
104 << "\n Character: " << d.Base2::getData()
105 << "\nReal number: " << d.getReal() << "\n\n";
106
107 cout << "Derived can be treated as an "
108 << "object of either base class:\n";
109
110 // treat Derived as a Base1 object
111 base1Ptr = &d;
112 cout << "base1Ptr->getData() yields "
113 << base1Ptr->getData() << '\n';
114
115 // treat Derived as a Base2 object
116 base2Ptr = &d;

Treat d as a Base1
object.

Treat d as a Base2 object.

Object b1 contains integer 10

Object b2 contains character Z

Object d contains:
 Integer: 7

 Character: A
Real number: 3.5

Data members of Derived can be accessed
individually:
 Integer: 7

 Character: A
Real number: 3.5

Derived can be treated as an object of either base class:

base1Ptr->getData() yields 7

9

 2000 Prentice Hall, Inc. All rights reserved.

Outline
49

Outline

3. Output data

Program Output

117 cout << "base2Ptr->getData() yields "

118 << base2Ptr->getData() << endl;

119

120 return 0;

121}

Object b1 contains integer 10
Object b2 contains character Z
Object d contains:
 Integer: 7
 Character: A
Real number: 3.5

Data members of Derived can be accessed individually:
 Integer: 7
 Character: A
Real number: 3.5

Derived can be treated as an object of either base class:
base1Ptr->getData() yields 7
base2Ptr->getData() yields A

base2Ptr->getData() yields A
50

 2000 Prentice Hall, Inc. All rights reserved.

Graded Exercises

• Read the summary of Ch 9 (pp 618..622)
• Do Self-Review exercises Ch 9 Deitel & Deitel
• Do following Exercises

– 9.2 (make a diagram like on Fig 9.2, put in folder),
– 9.12 (on paper & put in folder)

