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9.1    Introduction

• Inheritance
– New classes created from existing classes
– Absorb attributes and behaviors
– Derived class

• Class that inherits data members and member functions from a
previously defined base class

– Single inheritance
• Class inherits from one base class

– Multiple inheritance
• Class inherits from multiple base classes

– Types of inheritance
• public: Derived objects are accessible by the base class objects
• private: Derived objects are inaccessible by the base class
• protected: Derived classes and friends can access protected

members of the base class

3

 2000 Prentice Hall, Inc.  All rights reserved.

9.1   Introduction

• Polymorphism
– Write programs in a general fashion
– Handle a wide variety of existing (and unspecified) related

classes
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9.2   Inheritance: Base and Derived Classes

• Base and derived classes
– Often an object from a derived class (subclass) is also an

object of a base class (superclass)
• A rectangle is a derived class in reference to a quadrilateral and

a base class in reference to a square

• Inheritance examples
Base class  Derived classes 

Student GraduateStudent  
UndergraduateStudent 

Shape Circle 
Triangle 
Rectangle  

Loan  CarLoan  
HomeImprovementLoan  
MortgageLoan 

Employee  FacultyMember  
StaffMember  

Account CheckingAccount  
SavingsAccount 
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9.2   Inheritance: Base and Derived Classes

• Implementation of public  inheritance
class CommissionWorker : public Employee {
   ...
};

– Class CommissionWorker inherits from class
Employee

– friend  functions not inherited
– private members of base class not accessible from

derived class
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9.3   protected Members

• protected  access
– Intermediate level of protection between public  and
private inheritance

– Derived-class members can refer to public and
protected members of the base class simply by using the
member names

– Note that protected data “breaks” encapsulation
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9.4   Casting Base-Class Pointers to Derived
Class Pointers

• Derived classes relationships to base classes
– Objects of a derived class can be treated as objects of the base

class
• Reverse not true — base class objects cannot be derived-class objects

• Downcasting a pointer
– Use an explicit cast to convert a base-class pointer to a derived-

class pointer
– If pointer is going to be dereferenced, the type of the pointer must

match the type of object to which the pointer points
– Format:

derivedPtr = static_cast< DerivedClass * > basePtr;
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9.4   Casting Base-Class Pointers to Derived-
Class Pointers

• The following example:
– Demonstrates the casting of base class pointers to derived

class pointers
– Class Circle  is derived from class Point
– A pointer of type Point is used to reference a Circle

object, and a pointer to type Circle is used to reference a
Point object

 2000 Prentice Hall, Inc.  All rights reserved.
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1. Point class
definition

-------------
1. Load header

1.1 Function definitions

1 // Fig. 9.4: point.h
2 // Definition of class Point
3 #ifndef POINT_H
4 #define POINT_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 class Point {
11    friend ostream &operator<<( ostream &, const Point & );
12 public:
13    Point( int = 0, int = 0 );      // default constructor
14    void setPoint( int, int );      // set coordinates
15    int getX() const { return x; }  // get x coordinate
16    int getY() const { return y; }  // get y coordinate
17 protected:         // accessible by derived classes
18    int x, y;       // x and y coordinates of the Point
19 };
20
21 #endif
22 // Fig. 9.4: point.cpp
23 // Member functions for class Point
24 #include <iostream>
25 #include "point.h"
26
27 // Constructor for class Point
28 Point::Point( int a, int b ) { setPoint( a, b ); }
29
30 // Set x and y coordinates of Point
31 void Point::setPoint( int a, int b )
32 {
33    x = a;  2000 Prentice Hall, Inc.  All rights reserved.
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1.1 Function definitions

---------------------

1. Circle  class
definition

34    y = b;
35 }
36
37 // Output Point (with overloaded stream insertion operator)
38 ostream &operator<<( ostream &output, const Point &p )
39 {
40    output << '[' << p.x << ", " << p.y << ']';
41
42    return output;   // enables cascaded calls
43 }
44 // Fig. 9.4: circle.h
45 // Definition of class Circle
46 #ifndef CIRCLE_H
47 #define CIRCLE_H
48
49 #include <iostream>
50
51 using std::ostream;
52
53 #include <iomanip>
54
55 using std::ios;
56 using std::setiosflags;
57 using std::setprecision;
58
59 #include "point.h"
60
61 class Circle : public Point {  // Circle inherits from Point
62    friend ostream &operator<<( ostream &, const Circle & );
63 public:
64    // default constructor

Class Circle publicly inherits from class
Point, so it will have class Point's public
and protected  member functions and data.
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1. Circle definition

--------------------
1. Load header

1.1 Function
Definitions

65    Circle( double r = 0.0, int x = 0, int y = 0 );
66

67    void setRadius( double );   // set radius
68    double getRadius() const;   // return radius

69    double area() const;        // calculate area

70 protected:
71    double radius;

72 };
73

74 #endif
75 // Fig. 9.4: circle.cpp

76 // Member function definitions for class Circle

77 #include "circle.h"

78

79 // Constructor for Circle calls constructor for Point

80 // with a member initializer then initializes radius.

81 Circle::Circle( double r, int a, int b )

82    : Point( a, b )       // call base-class constructor

83 { setRadius( r ); }

84

85 // Set radius of Circle

86 void Circle::setRadius( double r )

87    { radius = ( r >= 0 ? r : 0 ); }

88

Circle inherits from Point,
and has Point's data members
(which are set by calling
Point's constructor).
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1. 1 Function
Definitions

----------------------
Driver

1. Load headers

1.1 Initialize objects

89 // Get radius of Circle
90 double Circle::getRadius() const { return radius; }
91
92 // Calculate area of Circle
93 double Circle::area() const
94    { return 3.14159 * radius * radius; }
95
96 // Output a Circle in the form:
97 // Center = [x, y]; Radius = #.##
98 ostream &operator<<( ostream &output, const Circle &c )
99 {
100   output << "Center = " << static_cast< Point >( c )
101          << "; Radius = "
102          << setiosflags( ios::fixed | ios::showpoint )
103          << setprecision( 2 ) << c.radius;
104
105   return output;   // enables cascaded calls
106}
107// Fig. 9.4: fig09_04.cpp
108// Casting base-class pointers to derived-class pointers
109#include <iostream>
110
111using std::cout;
112using std::endl;
113
114#include <iomanip>
115
116#include "point.h"
117#include "circle.h"
118
119int main()
120{
121   Point *pointPtr = 0, p( 30, 50 );
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1.1 Initialize objects

1.2 Assign objects

2. Function calls

134   cout << "\nCircle c (via *circlePtr):\n" << *circlePtr
135        << "\nArea of c (via circlePtr): "
136        << circlePtr->area() << '\n';
137
138   // DANGEROUS: Treat a Point as a Circle

139   pointPtr = &p;   // assign address of Point to pointPtr
140
141   // cast base-class pointer to derived-class pointer
142   circlePtr = static_cast< Circle * >( pointPtr );
143   cout << "\nPoint p (via *circlePtr):\n" << *circlePtr
144        << "\nArea of object circlePtr points to: "

145        << circlePtr->area() << endl;
146   return 0;
147}

122   Circle *circlePtr = 0, c( 2.7, 120, 89 );
123
124   cout << "Point p: " << p << "\nCircle c: " << c << '\n';

125
126   // Treat a Circle as a Point (see only the base class part)
127   pointPtr = &c;   // assign address of Circle to pointPtr

128   cout << "\nCircle c (via *pointPtr): "
129        << *pointPtr << '\n';
130

131   // Treat a Circle as a Circle (with some casting)
132   // cast base-class pointer to derived-class pointer
133   circlePtr = static_cast< Circle * >( pointPtr );

Assign derived-class
pointer (&c) to base class
pointer pointPtr .

The base class pointer only
"sees" the base-class part
of the object it points to.

Cast  pointPtr into a
Circle * , and assign to
circlePtr.

circlePtr will treat c
(the object to which it
points) as a Circle.

Point p: [30, 50]

Circle c: Center = [120, 89]; Radius = 2.70

Circle c (via *pointPtr): [120, 89]

Circle c (via *circlePtr):
Center = [120, 89]; Radius = 2.70

Area of c (via circlePtr): 22.90

Assign  pointPtr to a Point
object.  It has no derived-class
information.

When it is cast to a Circle *,
circlePtr is really assigned to a
base-class object with no derived-
class information.  This is dangerous.

Point p (via *circlePtr):

Center = [30, 50]; Radius = 0.00
Area of object circlePtr points to: 0.00  2000 Prentice Hall, Inc.  All rights reserved.

Outline
14

Outline

 Program Output

Point p: [30, 50]
Circle c: Center = [120, 89]; Radius = 2.70

Circle c (via *pointPtr): [120, 89]

Circle c (via *circlePtr):
Center = [120, 89]; Radius = 2.70
Area of c (via circlePtr): 22.90

Point p (via *circlePtr):
Center = [30, 50]; Radius = 0.00
Area of object circlePtr points to: 0.00
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9.5     Using Member Functions

• Derived class member functions
– Cannot directly access private  members of their base

class
• Maintains encapsulation

– Hiding private members is a huge help in testing,
debugging and correctly modifying systems
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9.6   Overriding Base-Class Members in a
Derived Class

• To override a base-class member function
– In the derived class, supply a new version of that function

with the same signature
• same function name, different definition

– When the function is then mentioned by name in the derived
class, the derived version is automatically called

– The scope-resolution operator may be used to access the
base class version from the derived class

 2000 Prentice Hall, Inc.  All rights reserved.
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1. Employee class
definition

-----------------------
1. Load header

1.1 Function definitions

1 // Fig. 9.5: employ.h
2 // Definition of class Employee
3 #ifndef EMPLOY_H
4 #define EMPLOY_H
5
6 class Employee {
7 public:
8    Employee( const char *, const char * );  // constructor
9    void print() const;  // output first and last name
10    ~Employee();         // destructor
11 private:
12    char *firstName;     // dynamically allocated string
13    char *lastName;      // dynamically allocated string
14 };
15
16 #endif
17 // Fig. 9.5: employ.cpp
18 // Member function definitions for class Employee
19 #include <iostream>
20
21 using std::cout;
22
23 #include <cstring>
24 #include <cassert>
25 #include "employ.h"
26
27 // Constructor dynamically allocates space for the
28 // first and last name and uses strcpy to copy
29 // the first and last names into the object.
30 Employee::Employee( const char *first, const char *last )
31 {
32    firstName = new char[ strlen( first ) + 1 ];  2000 Prentice Hall, Inc.  All rights reserved.
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1.1 Function definitions

---------------------

1. HourlyWorker
class definition

33    assert( firstName != 0 ); // terminate if not allocated
34    strcpy( firstName, first );
35
36    lastName = new char[ strlen( last ) + 1 ];
37    assert( lastName != 0 );  // terminate if not allocated
38    strcpy( lastName, last );
39 }
40
41 // Output employee name
42 void Employee::print() const
43    { cout << firstName << ' ' << lastName; }
44
45 // Destructor deallocates dynamically allocated memory
46 Employee::~Employee()
47 {
48    delete [] firstName;   // reclaim dynamic memory
49    delete [] lastName;    // reclaim dynamic memory
50 }
51 // Fig. 9.5: hourly.h
52 // Definition of class HourlyWorker
53 #ifndef HOURLY_H
54 #define HOURLY_H
55
56 #include "employ.h"
57
58 class HourlyWorker : public Employee {
59 public:
60    HourlyWorker( const char*, const char*, double, double );
61    double getPay() const;  // calculate and return salary
62    void print() const;     // overridden base-class print
63 private:

HourlyWorker inherits
from Employee.

HourlyWorker will override
the print function.
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1. Load header

1.1 Function definitions

64    double wage;            // wage per hour
65    double hours;           // hours worked for week
66 };
67
68 #endif
69 // Fig. 9.5: hourly.cpp
70 // Member function definitions for class HourlyWorker
71 #include <iostream>
72
73 using std::cout;
74 using std::endl;
75
76 #include <iomanip>
77
78 using std::ios;
79 using std::setiosflags;
80 using std::setprecision;
81
82 #include "hourly.h"
83
84 // Constructor for class HourlyWorker
85 HourlyWorker::HourlyWorker( const char *first,
86                             const char *last,
87                             double initHours, double initWage )
88    : Employee( first, last )   // call base-class constructor
89 {
90    hours = initHours;  // should validate
91    wage = initWage;    // should validate
92 }
93
94 // Get the HourlyWorker's pay
95 double HourlyWorker::getPay() const { return wage * hours; }  2000 Prentice Hall, Inc.  All rights reserved.
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1.1 Function
Definitions

--------------------
1. Load header

1.1 Initialize object

2. Function call

Program Output

96
97 // Print the HourlyWorker's name and pay
98 void HourlyWorker::print() const

99 {
100   cout << "HourlyWorker::print() is executing\n\n";

101   Employee::print();   // call base-class print function
102

103   cout << " is an hourly worker with pay of $"
104        << setiosflags( ios::fixed | ios::showpoint )

105        << setprecision( 2 ) << getPay() << endl;
106}
107// Fig. 9.5: fig09_05.cpp

108// Overriding a base-class member function in a

109// derived class.

110#include "hourly.h"

111

112int main()

113{

114   HourlyWorker h( "Bob", "Smith", 40.0, 10.00 );

115   h.print();

116   return 0;

117}
HourlyWorker::print() is executing

Bob Smith is an hourly worker with pay of $400.00

The print function is
overriden in
HourlyWorker.
However, the new
function still can call the
original print function
using ::
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9.7   public, private, and protected
Inheritance

Type of inheritance  Base class 
member 
access 
specifier  

public 
inheritance  

protected 
inheritance  

private   
inheritance  

  
 
 
Public 

public  in derived class. 
Can be accessed directly by any 
non-static member functions,  
friend functions and non-
member functions.  

protected  in derived class.  
Can be accessed directly by all 
non-static member functions 
and friend functions.  

private in derived class.  
Can be accessed directly by all 
non-static member functions 
and friend functions.  

 
 
 
Protected 

protected in derived class.  
Can be accessed directly by all 
non-static member functions 
and friend functions. 

protected  in derived class.  
Can be accessed directly by all 
non-static member functions 
and friend  functions. 

private in derived class.  
Can be accessed directly by all 
non-static member functions 
and friend functions. 

 
 
 
Private 

Hidden in derived class. 
Can be accessed by non-static 
member functions and friend  
functions through public  or 
protected  member functions 
of the base class. 

Hidden in derived cl ass. 
Can be accessed by non-static 
member functions and friend  
functions through public  or 
protected  member functions 
of the base class.  

Hidden in derived class.  
Can be accessed by non-static 
member functions and friend  
functions through public  or 
protected member  functions 
of the base class. 
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9.8   Direct and Indirect Base Classes

• Direct base class
– Explicitly listed derived class’s header with the colon (:)

notation when that derived class is declared
class HourlyWorker : public Employee

• Employee  is a direct base class of HourlyWorker

• Indirect base class
– Not listed in derived class’s header
– Inherited from two or more levels up the class hierarchy

class MinuteWorker : public HourlyWorker
• Employee  is an indirect base class of MinuteWorker

23
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9.9   Using Constructors and Destructors in
Derived Classes

• Base class initializer
– Uses member-initializer syntax
– Can be provided in the derived class constructor to call the

base-class constructor explicitly
• Otherwise base class’s default constructor called implicitly

– Base-class constructors and base-class assignment operators
are not inherited by derived classes

• Derived-class constructors and assignment operators, however,
can call base-class constructors and assignment operators

24
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9.9   Using Constructors and Destructors in
Derived Classes

• A derived-class constructor
– Calls the constructor for its base class first to initialize its

base-class members
– If the derived-class constructor is omitted, its default

constructor calls the base-class’ default constructor

• Destructors are called in the reverse order of
constructor calls
– So a derived-class destructor is called before its base-class

destructor

• Destructor of Class Employee frees up the
dynamically assigned arrays[ ]firstname
and[ ]lastname, avoiding memory leaks (lines
48, 49).
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1. Point definition

-----------------

1. Load header

1.1 Function definitions

1 // Fig. 9.7: point2.h
2 // Definition of class Point
3 #ifndef POINT2_H
4 #define POINT2_H
5
6 class Point {
7 public:
8    Point( int = 0, int = 0 );  // default constructor
9    ~Point();    // destructor
10 protected:      // accessible by derived classes
11    int x, y;    // x and y coordinates of Point
12 };
13
14 #endif
15 // Fig. 9.7: point2.cpp
16 // Member function definitions for class Point
17 #include <iostream>
18
19 using std::cout;
20 using std::endl;
21
22 #include "point2.h"
23
24 // Constructor for class Point
25 Point::Point( int a, int b )
26 {
27    x = a;
28    y = b;
29
30    cout << "Point  constructor: "
31         << '[' << x << ", " << y << ']' << endl;
32 }  2000 Prentice Hall, Inc.  All rights reserved.
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1.1 Function definitions

----------------------
1. Load header

1.1 Circle  Definition

33
34 // Destructor for class Point

35 Point::~Point()

36 {

37    cout << "Point  destructor:  "

38         << '[' << x << ", " << y << ']' << endl;

39 }

40 // Fig. 9.7: circle2.h
41 // Definition of class Circle

42 #ifndef CIRCLE2_H
43 #define CIRCLE2_H
44

45 #include "point2.h"
46

47 class Circle : public Point {
48 public:

49    // default constructor
50    Circle( double r = 0.0, int x = 0, int y = 0 );

51
52    ~Circle();

53 private:
54    double radius;

55 };
56

57 #endif

Circle inherits from
Point.

 2000 Prentice Hall, Inc.  All rights reserved.
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1. Load header

1.1 Function
Definitions

58 // Fig. 9.7: circle2.cpp

59 // Member function definitions for class Circle
60 #include <iostream>

61

62 using std::cout;

63 using std::endl;

64

65 #include "circle2.h"

66

67 // Constructor for Circle calls constructor for Point

68 Circle::Circle( double r, int a, int b )

69    : Point( a, b )   // call base-class constructor

70 {

71    radius = r;  // should validate

72    cout << "Circle constructor: radius is "

73         << radius << " [" << x << ", " << y << ']' << endl;

74 }

75
76 // Destructor for class Circle

77 Circle::~Circle()

78 {

79    cout << "Circle destructor:  radius is "

80         << radius << " [" << x << ", " << y << ']' << endl;

81 }

Constructor for Circle
calls constructor for
Point, first.  Uses
member-initializer syntax.

Destructor for Circle
calls destructor for Point,
last.

 2000 Prentice Hall, Inc.  All rights reserved.
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1. Load headers

1.1 Initialize objects

2. Objects enter and
leave scope

82 // Fig. 9.7: fig09_07.cpp
83 // Demonstrate when base-class and derived-class

84 // constructors and destructors are called.
85 #include <iostream>

86

87 using std::cout;
88 using std::endl;

89
90 #include "point2.h"

91 #include "circle2.h"
92

93 int main()

94 {
95    // Show constructor and destructor calls for Point

96    {
97       Point p( 11, 22 );

98    }
99

100   cout << endl;

101   Circle circle1( 4.5, 72, 29 );
102   cout << endl;

103   Circle circle2( 10, 5, 5 );
104   cout << endl;

105   return 0;

106}

Point  constructor: [11, 22]
Point  destructor:  [11, 22]

Object created inside a block destroyed
once it leaves scope.

Remember that the Point
constructor is called for
Circle objects before the
Circle constructor (inside
to out).

Point  constructor: [72, 29]

Circle constructor: radius is 4.5 [72, 29]

Point  constructor: [5, 5]

Circle constructor: radius is 10 [5, 5]
Point destructor called after
Circle destructor (outside
in).

Circle destructor:  radius is 10 [5, 5]
Point  destructor:  [5, 5]

Circle destructor:  radius is 4.5 [72, 29]

Point  destructor:  [72, 29]

 2000 Prentice Hall, Inc.  All rights reserved.
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Program Output

Point  constructor: [11, 22]
Point  destructor:  [11, 22]

Point  constructor: [72, 29]
Circle constructor: radius is 4.5 [72, 29]

Point  constructor: [5, 5]
Circle constructor: radius is 10 [5, 5]

Circle destructor:  radius is 10 [5, 5]
Point  destructor:  [5, 5]
Circle destructor:  radius is 4.5 [72, 29]
Point  destructor:  [72, 29]
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9.10  Implicit Derived-Class Object to Base-
Class Object Conversion

• Assignment of derived and base classes
– Derived-class type and base-class type are different
– Derived-class object can be treated as a base-class object

• Derived class has members corresponding to all of the base
class’s members

• Derived-class has more members than the base-class object
• Base-class can be assigned a derived-class

– Base-class object cannot be treated as a derived-class object
• Would leave additional derived class members undefined
• Derived-class cannot be assigned a base-class
• Assignment operator can be overloaded to allow such an

assignment
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9.10   Implicit Derived-Class Object to Base-
Class Object Conversion

• Mixing base and derived class pointers and objects
– Referring to a base-class object with a base-class pointer

• Allowed (straightforward)

– Referring to a derived-class object with a derived-class pointer
• Allowed (straightforward)

– Referring to a derived-class object with a base-class pointer
• Possible syntax error
• Code can only refer to base-class members, or syntax error

– Referring to a base-class object with a derived-class pointer
• Syntax error
• The derived-class pointer must first be cast to a base-class pointer

• Need way to resolve base-class Vs derived-class
routines using base-class pointers (Virtual functions)

32
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9.11  Software Engineering With Inheritance

• Classes are often closely related
– “Factor out” common attributes and behaviors and place

these in a base class
– Use inheritance to form derived classes

• Modifications to a base class
– Derived classes do not change as long as the public and
protected interfaces are the same

– Derived classes may need to be recompiled

• Use Inheritance sparingly, often times
complexity is introduced needlessly. Can make for
bad engineering thus hard to understand systems.

33

 2000 Prentice Hall, Inc.  All rights reserved.

9.12  Composition vs. Inheritance

• “Is a” relationships
– Inheritance

• Relationship in which a class is derived from another class

• “Has a” relationships
– Composition

• Relationship in which a class contains other classes as
members

• Has a , is a composition. Is a kind of, is
inheritance.

• Interchangeable! Careful.

34
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9.13  “Uses A” And “Knows A”
Relationships

• “Uses a”
– One object issues a function call to a member function of

another object. Limited!

•  “Knows a”
– One object is aware of another

• Contains a pointer or handle to another object
• Has access to all public stuff.

– Also called an association

35
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9.14  Case Study: Point, Circle, Cylinder

• Point, circle, cylinder hierarchy
– Point class is base class
– Circle  class is derived from Point class
– Cylinder class is derived from Circle  class

 2000 Prentice Hall, Inc.  All rights reserved.
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1. Point definition

1.1 Function definitions

1 // Fig. 9.8: point2.h
2 // Definition of class Point
3 #ifndef POINT2_H
4 #define POINT2_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 class Point {
11    friend ostream &operator<<( ostream &, const Point & );
12 public:
13    Point( int = 0, int = 0 );      // default constructor
14    void setPoint( int, int );      // set coordinates
15    int getX() const { return x; }  // get x coordinate
16    int getY() const { return y; }  // get y coordinate
17 protected:        // accessible to derived classes
18    int x, y;      // coordinates of the point
19 };
20
21 #endif
22 // Fig. 9.8: point2.cpp
23 // Member functions for class Point
24 #include "point2.h"
25
26 // Constructor for class Point
27 Point::Point( int a, int b ) { setPoint( a, b ); }
28
29 // Set the x and y coordinates
30 void Point::setPoint( int a, int b )
31 {
32    x = a;

Point data members are
protected to be made
accessible by Circle.
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Outline
37

Outline

1.1 Function definitions

33    y = b;
34 }
35
36 // Output the Point
37 ostream &operator<<( ostream &output, const Point &p )
38 {
39    output << '[' << p.x << ", " << p.y << ']';
40
41    return output;          // enables cascading
42 }

 2000 Prentice Hall, Inc.  All rights reserved.
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1. circle  definition

1.1 Function definitions

1 // Fig. 9.9: circle2.h
2 // Definition of class Circle
3 #ifndef CIRCLE2_H
4 #define CIRCLE2_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 #include "point2.h"
11
12 class Circle : public Point {
13    friend ostream &operator<<( ostream &, const Circle & );
14 public:
15    // default constructor
16    Circle( double r = 0.0, int x = 0, int y = 0 );
17    void setRadius( double );    // set radius
18    double getRadius() const;    // return radius
19    double area() const;         // calculate area
20 protected:          // accessible to derived classes
21    double radius;   // radius of the Circle
22 };
23
24 #endif
25 // Fig. 9.9: circle2.cpp
26 // Member function definitions for class Circle
27 #include <iomanip>
28
29 using std::ios;
30 using std::setiosflags;
31 using std::setprecision;
32
33 #include "circle2.h"

Circle data members are
protected to be made
accessible by Cylinder.
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1.1 Function definitions

34
35 // Constructor for Circle calls constructor for Point
36 // with a member initializer and initializes radius
37 Circle::Circle( double r, int a, int b )
38    : Point( a, b )       // call base-class constructor
39 { setRadius( r ); }
40
41 // Set radius
42 void Circle::setRadius( double r )
43    { radius = ( r >= 0 ? r : 0 ); }
44
45 // Get radius
46 double Circle::getRadius() const { return radius; }
47
48 // Calculate area of Circle
49 double Circle::area() const
50    { return 3.14159 * radius * radius; }
51
52 // Output a circle in the form:
53 // Center = [x, y]; Radius = #.##
54 ostream &operator<<( ostream &output, const Circle &c )
55 {
56    output << "Center = " << static_cast< Point > ( c )
57           << "; Radius = "
58           << setiosflags( ios::fixed | ios::showpoint )
59           << setprecision( 2 ) << c.radius;
60
61    return output;   //  enables cascaded calls
62 }  2000 Prentice Hall, Inc.  All rights reserved.

Outline
40

Outline

1. Cylinder definition

1 // Fig. 9.10: cylindr2.h
2 // Definition of class Cylinder
3 #ifndef CYLINDR2_H
4 #define CYLINDR2_H
5
6 #include <iostream>
7
8 using std::ostream;
9
10 #include "circle2.h"
11
12 class Cylinder : public Circle {
13    friend ostream &operator<<( ostream &, const Cylinder & );
14
15 public:
16    // default constructor
17    Cylinder( double h = 0.0, double r = 0.0,
18              int x = 0, int y = 0 );
19
20    void setHeight( double );   // set height
21    double getHeight() const;   // return height
22    double area() const;        // calculate and return area
23    double volume() const;      // calculate and return volume
24
25 protected:
26    double height;              // height of the Cylinder
27 };
28
29 #endif

 2000 Prentice Hall, Inc.  All rights reserved.
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1.1 Function definitions

30 // Fig. 9.10: cylindr2.cpp
31 // Member and friend function definitions
32 // for class Cylinder.
33 #include "cylindr2.h"
34
35 // Cylinder constructor calls Circle constructor
36 Cylinder::Cylinder( double h, double r, int x, int y )
37    : Circle( r, x, y )   // call base-class constructor
38 { setHeight( h ); }
39
40 // Set height of Cylinder
41 void Cylinder::setHeight( double h )
42    { height = ( h >= 0 ? h : 0 ); }
43
44 // Get height of Cylinder
45 double Cylinder::getHeight() const { return height; }
46
47 // Calculate area of Cylinder (i.e., surface area)
48 double Cylinder::area() const
49 {
50    return 2 * Circle::area() +
51           2 * 3.14159 * radius * height;
52 }
53
54 // Calculate volume of Cylinder
55 double Cylinder::volume() const
56    { return Circle::area() * height; }
57
58 // Output Cylinder dimensions
59 ostream &operator<<( ostream &output, const Cylinder &c )
60 {

Circle::area() is
overidden.

 2000 Prentice Hall, Inc.  All rights reserved.
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1.1 Function definitions

----------------------

1. Load headers

1.1 Initialize object

2. Function calls

2.1 Change attributes

3. Output data

61    output << static_cast< Circle >( c )
62           << "; Height = " << c.height;
63
64    return output;   // enables cascaded calls
65 }
66 // Fig. 9.10: fig09_10.cpp
67 // Driver for class Cylinder
68 #include <iostream>
69
70 using std::cout;
71 using std::endl;
72
73 #include "point2.h"
74 #include "circle2.h"
75 #include "cylindr2.h"
76
77 int main()
78 {
79    // create Cylinder object
80    Cylinder cyl( 5.7, 2.5, 12, 23 );
81
82    // use get functions to display the Cylinder
83    cout << "X coordinate is " << cyl.getX()
84         << "\nY coordinate is " << cyl.getY()
85         << "\nRadius is " << cyl.getRadius()
86         << "\nHeight is " << cyl.getHeight() << "\n\n";
87
88    // use set functions to change the Cylinder's attributes
89    cyl.setHeight( 10 );
90    cyl.setRadius( 4.25 );
91    cyl.setPoint( 2, 2 );

X coordinate is 12
Y coordinate is 23

Radius is 2.5

Height is 5.7
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3. Output data

Program Output

92    cout << "The new location, radius, and height of cyl are:\n"
93         << cyl << '\n';
94
95    cout << "The area of cyl is:\n"
96         << cyl.area() << '\n';
97
98    // display the Cylinder as a Point
99    Point &pRef = cyl;   // pRef "thinks" it is a Point
100   cout << "\nCylinder printed as a Point is: "
101        << pRef << "\n\n";
102
103   // display the Cylinder as a Circle
104   Circle &circleRef = cyl;  // circleRef thinks it is a Circle
105   cout << "Cylinder printed as a Circle is:\n" << circleRef
106        << "\nArea: " << circleRef.area() << endl;
107
108   return 0;
109}

X coordinate is 12
Y coordinate is 23
Radius is 2.5
Height is 5.7

The new location, radius, and height of cyl are:
Center = [2, 2]; Radius = 4.25; Height = 10.00
The area of cyl is:
380.53
Cylinder printed as a Point is: [2, 2]

Cylinder printed as a Circle is:
Center = [2, 2]; Radius = 4.25
Area: 56.74

The new location, radius, and height of cyl
are:
Center = [2, 2]; Radius = 4.25; Height = 10.00

The area of cyl is:

380.53

Cylinder printed as a Point is: [2, 2]

pref  "thinks"  cyl is a Point, so it
prints as one.

circleref "thinks"  cyl is a
Circle, so it prints as one.

Cylinder printed as a Circle is:

Center = [2, 2]; Radius = 4.25

Area: 56.74

44
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9.15   Multiple Inheritance

• Multiple Inheritance
– Derived-class inherits from multiple base-classes
– Encourages software reuse, but can create ambiguities

 2000 Prentice Hall, Inc.  All rights reserved.
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1. Base1 definition

---------------------

1. Base2 definition

1 // Fig. 9.11: base1.h
2 // Definition of class Base1
3 #ifndef BASE1_H
4 #define BASE1_H
5
6 class Base1 {

7 public:
8    Base1( int x ) { value = x; }
9    int getData() const { return value; }
10 protected:      // accessible to derived classes
11    int value;   // inherited by derived class
12 };

13
14 #endif
15 // Fig. 9.11: base2.h
16 // Definition of class Base2
17 #ifndef BASE2_H
18 #define BASE2_H
19
20 class Base2 {
21 public:
22    Base2( char c ) { letter = c; }
23    char getData() const { return letter; }
24 protected:        // accessible to derived classes
25    char letter;   // inherited by derived class
26 };
27
28 #endif  2000 Prentice Hall, Inc.  All rights reserved.
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1. Derived Definition

29 // Fig. 9.11: derived.h
30 // Definition of class Derived which inherits
31 // multiple base classes (Base1 and Base2).
32 #ifndef DERIVED_H

33 #define DERIVED_H
34
35 #include <iostream>
36

37 using std::ostream;
38
39 #include "base1.h"
40 #include "base2.h"

41
42 // multiple inheritance
43 class Derived : public Base1, public Base2 {
44    friend ostream &operator<<( ostream &, const Derived & );

45
46 public:
47    Derived( int, char, double );
48    double getReal() const;

49
50 private:
51    double real;   // derived class's private data
52 };

53
54 #endif

Derived inherits from
Base1 and Base2.

 2000 Prentice Hall, Inc.  All rights reserved.
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1. Load header

1.1 Function
Definitions

55 // Fig. 9.11: derived.cpp
56 // Member function definitions for class Derived
57 #include "derived.h"
58
59 // Constructor for Derived calls constructors for
60 // class Base1 and class Base2.
61 // Use member initializers to call base-class constructors
62 Derived::Derived( int i, char c, double f )
63    : Base1( i ), Base2( c ), real ( f ) { }
64
65 // Return the value of real
66 double Derived::getReal() const { return real; }
67
68 // Display all the data members of Derived
69 ostream &operator<<( ostream &output, const Derived &d )
70 {
71    output << "    Integer: " << d.value
72           << "\n  Character: " << d.letter
73           << "\nReal number: " << d.real;
74
75    return output;   // enables cascaded calls
76 }
77 // Fig. 9.11: fig09_11.cpp
78 // Driver for multiple inheritance example
79 #include <iostream>
80
81 using std::cout;
82 using std::endl;
83
84 #include "base1.h"
85 #include "base2.h"  2000 Prentice Hall, Inc.  All rights reserved.

Outline
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1. Load header

1.1 Create objects

2. Function calls

3. Output data

86 #include "derived.h"
87
88 int main()
89 {
90    Base1 b1( 10 ), *base1Ptr = 0;  // create Base1 object
91    Base2 b2( 'Z' ), *base2Ptr = 0; // create Base2 object
92    Derived d( 7, 'A', 3.5 );       // create Derived object
93
94    // print data members of base class objects
95    cout << "Object b1 contains integer " << b1.getData()
96         << "\nObject b2 contains character " << b2.getData()
97         << "\nObject d contains:\n" << d << "\n\n";
98
99    // print data members of derived class object
100   // scope resolution operator resolves getData ambiguity
101   cout << "Data members of Derived can be"
102        << " accessed individually:"
103        << "\n    Integer: " << d.Base1::getData()
104        << "\n  Character: " << d.Base2::getData()
105        << "\nReal number: " << d.getReal() << "\n\n";
106
107   cout << "Derived can be treated as an "
108        << "object of either base class:\n";
109
110   // treat Derived as a Base1 object
111   base1Ptr = &d;
112   cout << "base1Ptr->getData() yields "
113        << base1Ptr->getData() << '\n';
114
115   // treat Derived as a Base2 object
116   base2Ptr = &d;

Treat d as a  Base1
object.

Treat d as a  Base2 object.

Object b1 contains integer 10

Object b2 contains character Z

Object d contains:
    Integer: 7

  Character: A
Real number: 3.5

Data members of Derived can be accessed
individually:
    Integer: 7

  Character: A
Real number: 3.5

Derived can be treated as an object of either base class:

base1Ptr->getData() yields 7
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3. Output data

Program Output

117   cout << "base2Ptr->getData() yields "

118        << base2Ptr->getData() << endl;

119

120   return 0;

121}

Object b1 contains integer 10
Object b2 contains character Z
Object d contains:
    Integer: 7
  Character: A
Real number: 3.5

Data members of Derived can be accessed individually:
    Integer: 7
  Character: A
Real number: 3.5

Derived can be treated as an object of either base class:
base1Ptr->getData() yields 7
base2Ptr->getData() yields A

base2Ptr->getData() yields A
50
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Graded Exercises

• Read the summary of Ch 9 (pp 618..622)
• Do Self-Review exercises Ch 9 Deitel & Deitel
• Do following Exercises

– 9.2 (make a diagram like on Fig 9.2, put in folder),
– 9.12 (on paper & put in folder)


