

W 9.2

Virtual Functions and
Polymor phism

VIRTUAL FUNCTIONSand
POLYMORPHISM

 Polymorphism, the ability for objects of
different classes related by inheritance to
use afunction of the same name but with
different behaviour isfacilitated by the use
of virtual functions.

* \WWhen an invocation is made through a base
class pointer to use avirtual function, C++
uses the correct redefined function in the
appropriate derived class associated with
the object.

Using Polymorphism

e Suppose we want to draw a picturewhichis
composed of severa objects.

* Oneway of doing it might be to create an
array of pointers to the various elements and
call the draw() function for each in turn.

Shape* ptrarr[100];
for (int j=0; jJ<N, j++)
ptrarr[j]->draw);

Using Polymorphism (cont.)

e Thismeansthat when pointer ptrarr points
al asquare a sguare isdrawn, triangles and

circles likewise.
e Must meet some conditions to do this.

— All different classes must be derived from
common bhase class.

— Draw function must be declared to be virtual in
base class.

Using Polymorphism (cont.)

e Letslook at some examplesto see how this
may be achieved.

e Letslook at an inheritance hierarchy with a
common function show().

//notvirt.cpp

//normal functions accessed from pointers

#include <iostream.h>

class Basg{
public:

void show(){ cout<<"In Base\n";}
b
class Derivel : public Basg{
public:
void show(){ cout<<"\n In Derivel\n";}
b
class Derive2 : public Basg{
public:
void show(){ cout<<"\n In Derive2\n";}

b

void main(){

Derivel dvi;
Derive2 dv2;
Base* ptr;

ptr= &avl,
ptr->show();

ptr= & dv2;
ptr->show();

Accessing Member Functions

* Inthe above example, wetried to access a
derived class function, so what happened.

e Problem 1

— ptr = &dv1 is attempting to assign the address
of onetype (Derivel) to a pointer of another
(Base)..

— Actually this Ok as type checking has been
relaxed.

— Pointers to objects of derived class are type
compatible with pointers to objects of base

Accessing Member Functions

(cont.)
e \Which function then was called?

o Actually it was aways the base class
function, not the derived class functions as
we may have intended.

* The compiler ignores the contents of the
pointer and chooses the member function
that matches the type of the pointer.

Fn Base
| N Base

Now use aVirtua Function

* Make one change only to the above
program

— place the keyword virtual in front of the
declaration for show() in the base class.

— virtual void show(){cout<<“In
Base\n”; }

e Th

§ QUBRHE YWl

| n DeriveZ

| now be

Now t he derived cl as
function i s call ed,
as woul d be I ntended

S

//notvirt.cpp
//normal functions accessed from pointers

#include <iostream.h> void main(){

cla$ Baseg{ Derivel dvi;

public: Derive2 dvz,
virtual void show(){ cout<<"In Base\n";} Base* ptr;

b

class Derivel : public Basg{ ptr= &adv1;

public: ptr->show();
void show(){ cout<<"\n In Derivel\n";}

}; ptr= &adv2;

class Derive?2 : public Basg{ ptr->show();

public:

void show(){ cout<<"\n In Derive2\n";}

b

Virtua Members Accessed with
Pointers

 The members of the derived classes, not
nase classes executed.

* Ruleisthat the compiler selects the function
nased on the contents of the pointer, not just
the type as before.

* Rules changed because we declared the
function as virtual.

Pure Virtual Functions

* Inthe next example, thereisapure virtual
function.

— virtual void show) =0;

e Thereisno body to the function, the =0 syntax
Indicates to the compiler that we never intend to

run this function here. We run only the versionsin
the derived classes.

Pure Virtual Functions (cont.)

e The compiler will not know until execution
time which functionto run. Thisis called
dynamic binding or late binding.

/Ivirt.cpp

//normal functions accessed from pointers

#include <iostream.h>
class Basg|
public:
virtual void show()=0;
¥
class Derivel : public Baseg{
public:

void show(){ cout<<"\n In Derivel\n";}
¥
class Derive2 : public Baseg{
public:
void show(){ cout<<"\n In Derive2\n";}

b

void main(){

}

Derivel dvi;
Derive2 dv2;
Base* list[2];

list[O0]= &dv1,
list[1]=& dv2;

list[0]->show();
list[1]->show();

Abstract and Concrete Classes

e Some classes are better never instantiated.

e Abstract base classes are used as base
classes for use 1n inheritance hierarchies.

* Concrete classes are classes which may be
Instantiated.

Graded Exercises

e Check out summary and other material of
Ch. 10 (pp 654..657)

e Answer Exercises 10.5, 10.6

* Run the code for Fig. 10.1 in the book &
satisfy yourself that you understand it. Get
help from tutor as necessary.

