
1

W 9.2

Virtual Functions and
Polymorphism

2

VIRTUAL FUNCTIONS and
POLYMORPHISM

• Polymorphism, the ability for objects of
different classes related by inheritance to
use a function of the same name but with
different behaviour is facilitated by the use
of virtual functions.

• When an invocation is made through a base
class pointer to use a virtual function, C++
uses the correct redefined function in the
appropriate derived class associated with
the object.

Using Polymorphism

• Suppose we want to draw a picture which is
composed of several objects.

• One way of doing it might be to create an
array of pointers to the various elements and
call the draw() function for each in turn.

Shape* ptrarr[100];
for (int j=0; j<N; j++)
 ptrarr[j]->draw();

3

Using Polymorphism (cont.)

• This means that when pointer ptrarr points
at a square a square is drawn, triangles and
circles likewise.

• Must meet some conditions to do this.
– All different classes must be derived from

common base class.
– Draw function must be declared to be virtual in

base class.

Using Polymorphism (cont.)

• Lets look at some examples to see how this
may be achieved.

• Lets look at an inheritance hierarchy with a
common function show().

4

//notvirt.cpp
//normal functions accessed from pointers
#include <iostream.h>
class Base{
public:
 void show(){cout<<"In Base\n";}
};
class Derive1 : public Base{
public:
 void show(){cout<<"\n In Derive1\n";}
};
class Derive2 : public Base{
public:
 void show(){cout<<"\n In Derive2\n";}
};

void main(){
Derive1 dv1;
Derive2 dv2;
Base* ptr;

ptr= &dv1;
ptr->show();

ptr= &dv2;
ptr->show();

}

Accessing Member Functions

• In the above example, we tried to access a
derived class function, so what happened.

• Problem 1
– ptr = &dv1 is attempting to assign the address

of one type (Derive1) to a pointer of another
(Base)..

– Actually this Ok as type checking has been
relaxed.

– Pointers to objects of derived class are type
compatible with pointers to objects of base

5

Accessing Member Functions
(cont.)

• Which function then was called?
• Actually it was always the base class

function, not the derived class functions as
we may have intended.

• The compiler ignores the contents of the
pointer and chooses the member function
that matches the type of the pointer.

In Base
In Base

Now use a Virtual Function

• Make one change only to the above
program
– place the keyword virtual in front of the

declaration for show() in the base class.
– virtual void show(){cout<<“In
Base\n”;}

• The output will now beIn Derive1
In Derive2

Now the derived class
function is called,
as would be intended

6

//notvirt.cpp
//normal functions accessed from pointers
#include <iostream.h>
class Base{
public:
 virtual void show(){cout<<"In Base\n";}
};
class Derive1 : public Base{
public:
 void show(){cout<<"\n In Derive1\n";}
};
class Derive2 : public Base{
public:
 void show(){cout<<"\n In Derive2\n";}
};

void main(){
Derive1 dv1;
Derive2 dv2;
Base* ptr;

ptr= &dv1;
ptr->show();

ptr= &dv2;
ptr->show();

}

Virtual Members Accessed with
Pointers

• The members of the derived classes, not
base classes executed.

• Rule is that the compiler selects the function
based on the contents of the pointer, not just
the type as before.

• Rules changed because we declared the
function as virtual.

7

Pure Virtual Functions

• In the next example, there is a pure virtual
function.
– virtual void show()=0;

• There is no body to the function, the =0 syntax
indicates to the compiler that we never intend to
run this function here. We run only the versions in
the derived classes.

Pure Virtual Functions (cont.)

• The compiler will not know until execution
time which function to run. This is called
dynamic binding or late binding.

8

//virt.cpp
//normal functions accessed from pointers
#include <iostream.h>
class Base{
public:
 virtual void show()=0;
};
class Derive1 : public Base{
public:
 void show(){cout<<"\n In Derive1\n";}
};
class Derive2 : public Base{
public:
 void show(){cout<<"\n In Derive2\n";}
};

void main(){
Derive1 dv1;
Derive2 dv2;
Base* list[2];

list[0]= &dv1;
list[1]=&dv2;

list[0]->show();
list[1]->show();

}

Abstract and Concrete Classes

• Some classes are better never instantiated.
• Abstract base classes are used as base

classes for use in inheritance hierarchies.
• Concrete classes are classes which may be

instantiated.

9

Graded Exercises

• Check out summary and other material of
Ch. 10 (pp 654..657)

• Answer Exercises 10.5, 10.6
• Run the code for Fig. 10.1 in the book &

satisfy yourself that you understand it. Get
help from tutor as necessary.

