W 9.2

Virtual Functions and
Polymor phism




VIRTUAL FUNCTIONS and
POLYMORPHISM

» Polymorphism, the ability for objects of
different classes related by inheritance to
use a function of the same name but with
different behaviour is facilitated by the use
of virtual functions.

* When an invocation is made through a base
class pointer to use avirtual function, C++
uses the correct redefined function in the
appropriate derived class associated with
the object.

Using Polymorphism

» Suppose we want to draw a picture which is
composed of several objects.

* One way of doing it might be to create an
array of pointersto the various elements and
call the draw() function for each in turn.

Shape* ptrarr[100];
for (int j=0; J<N |++)
ptrarr[j]->draw);




Using Polymorphism (cont.)

» This means that when pointer ptrarr points
at a square asquare is drawn, triangles and
circles likewise.

e Must meet some conditions to do this.

— All different classes must be derived from
common base class.

— Draw function must be declared to be virtua in
base class.

Using Polymorphism (cont.)

» Letslook at some examples to see how this
may be achieved.

» Letslook at an inheritance hierarchy with a
common function show().




/Inotvirt.cpp
//normal functions accessed from pointers

#include <iostream.h> void main(){

class_ Basg{ Derivel dvi,

public: Derive2 dv2;
void show(){ cout<<"In Base\n";} Base* ptr;

};

class Derivel : public Base{ ptr= &dv1;

public: ptr->show();
void show(){ cout<<"\n In Derivel\n";}

}; ptr= &dv2;

class Derive2 : public Base{ ptr->show();

public:

void show(){ cout<<"\n In Derive2\n";}

¥

Accessing Member Functions

* In the above example, we tried to access a
derived class function, so what happened.

e Problem 1

— ptr = &dv1isattempting to assign the address
of onetype (Derivel) to a pointer of another
(Base)..

— Actually this Ok as type checking has been
relaxed.

— Pointers to objects of derived class are type
compatible with pointers to objects of base




Accessing Member Functions
(cont.)
» Which function then was called?

« Actually it was always the base class
function, not the derived class functions as
we may have intended.

» The compiler ignores the contents of the
pointer and chooses the member function

that matches the type of thjicek' .
n Base
I n Base

Now use a Virtual Function

» Make one change only to the above
program
— place the keyword virtua in front of the
declaration for show() in the base class.

— virtual void show(){cout <<*In
Base\n”; }

« The quigyt wifl now be |Now the derived cl as

: function is call ed,
|ln Derive?2 as would be intended




/Inotvirt.cpp
//normal functions accessed from pointers

#include <iostream.h> void main(){

class_ Basg{ Derivel dvi,

public: Derive2 dv2;
virtual void show(){ cout<<"In Base\n";} Base* ptr;

};

class Derivel : public Base{ ptr= &dv1;

public: ptr->show();
void show(){ cout<<"\n In Derivel\n";}

}; ptr= &dv2;

class Derive2 : public Base{ ptr->show();

public:

void show(){ cout<<"\n In Derive2\n";}

¥

Virtua Members Accessed with
Pointers

* The members of the derived classes, not
base classes executed.

* Ruleisthat the compiler selects the function
based on the contents of the pointer, not just
the type as before.

* Rules changed because we declared the
function as virtual.




Pure Virtual Functions

* Inthe next example, thereis a pure virtual

function.
—virtual void show() =0;

» Thereisno body to the function, the =0 syntax
indicates to the compiler that we never intend to
run this function here. We run only the versionsin
the derived classes.

Pure Virtual Functions (cont.)

* The compiler will not know until execution
time which function to run. Thisis called
dynamic binding or late binding.




IIvirt.cpp
//normal functions accessed from pointers

#include <iostream.h> void main(){

class Base{ Derivel dvi;

public: Derive2 dv2:
virtual void show()=0; Base* lis([2]:

};

class Derivel : public Base{ list[0]= &dv1;

public: list[1]=& dv2:
void show(){ cout<<"\n In Derivel\n";}

oo | list[0]->show();

class Derive2 : public Basg{ list[1]->show();

public:

void show(){ cout<<"\n In Derive2\n";}

b

Abstract and Concrete Classes

* Some classes are better never instantiated.

» Abstract base classes are used as base
classes for use in inheritance hierarchies.

» Concrete classes are classes which may be
Instantiated.




Graded Exercises

* Check out summary and other material of
Ch. 10 (pp 654..657)

* Answer Exercises 10.5, 10.6

* Runthecodefor Fig. 10.1 in the book &
satisfy yourself that you understand it. Get
help from tutor as necessary.




