W 9.2

Virtual Functions and
Polymor phism

VIRTUAL FUNCTIONSand
POLYMORPHISM

* Polymorphism, the ability for objects of
different classes related by inheritance to
use afunction of the same name but with
different behaviour isfacilitated by the use
of virtual functions

» When an invocation is made through a base
class pointer to use avirtua function, C++
uses the correct redefined function in the
appropriate derived class associated with
the object.

Using Polymorphism

* Suppose we want to draw a picture which is
composed of several objects.

» Oneway of doing it might beto create an
array of pointersto the various elements and
call the draw() function for each in turn.

Shape* ptrarr[100];
for (int j=0; j<N j++)
ptrarr[j]->draw();

Using Polymorphism (cont.)

* This means that when pointer ptrarr points
a asguare asguare is drawn, triangles and
circles likewise.

» Must meet some conditions to do this.

— All different classes must be derived from
common base class.

— Draw function must be declared to be virtual in
base class.

Using Polymorphism (cont.)

 Letslook at some examplesto see how this
may be achieved.

« Letslook at an inheritance hierarchy with a
common function show().

/Inotvirt.cpp
/normal functions accessed from pointers

#include <iostream.h> void main(){

class Base{ Derivel dvi;

public: Derive2 dv2;
void show(){ cout<<"In Base\n";} Base* ptr;

classDerivel : public Base{ pt=&avl;

public: ptr->show();
void show()X cout<<"\n In Derivel\n";}

b) . ptr= & dv2;

class Derive2 : public Base{ ptr->show();

public: }
void show(){ cout<<"\n In Derive2\n";}
b

Accessing Member Functions

* Inthe above example, we tried to access a
derived class function, so what happened.

* Problem1

— ptr = &dv1 is attempting to assign the address
of one type (Derivel) to apointer of another
(Base)..

— Actually this Ok as type checking has been
relaxed.

— Pointers to objects of derived class are type
compatible with pointers to objects of base

Accessing Member Functions

(cont.)
» Which function then was called?
 Actualy it was aways the base class
function, not the derived class functions as
we may have intended.
» The compiler ignores the contents of the

pointer and chooses the member function

that matches the type of the POITEr

Now use aVirtual Function

» Make one change only to the above
program
— place the keyword virtual in front of the
declaration for show() in the base class.
— virtual void show(){cout<<“In
Base\ n”;}

e Th Eﬂ! m illlnow be Now the derived cl as{
9% Wéh unction is called,
s woul d he |ntended

n Derive?

/Inotvirt.cpp

/Inormal functions accessed from pointers

#include <iostream.h> void main(){

class Base{ Derivel dvi;

public: Derive2 dv2,
virtua void show(){ cout<<"In Base\n";} Base* ptr,

class Derivel : public Base{ ptr=&advl;

public: ptr->show();
void show(){ cout<<"\n In Derivel\n";}

¥ ptr= & dv2;

class Derive2 : public Base{ ptr->show();

public: }
void show(){ cout<<"\n In Derive2\n";}
b

Virtua Members Accessed with
Pointers

» The members of the derived classes, not
base classes executed.

» Ruleisthat the compiler selects the function
based on the contents of the pointer, not just
the type as before.

* Rules changed because we declared the
function as virtual.

Pure Virtua Functions

* Inthe next example, thereis apure virtua
function.
—virtual void show)=0;

¢ Thereis no body to the function, the =0 syntax
indicates to the compiler that we never intend to

run this function here. We run only the versionsin
the derived classes.

Pure Virtua Functions (cont.)

» The compiler will not know until execution
time which function to run. Thisiscalled
dynamic binding or late binding.

INirt.cpp

/Inormal functions accessed from pointers

#include <iostream.h> void main(){

clasg Base{ Derivel dvi;

put_)llc:) Derive2 dv2;
virtua void show()=0; Base* list[2];

cI’a$ Derivel : public Base{ list[0]= &adv1;

public:] list[1]=& dv2;
void show(){ cout<<"\n In Derivel\n";}

I)) list[0]->show();

classDerive2 : public Base{ list[1]->show();

public:
void show(){ cout<<"\n In Derive2\n";}

h

Abstract and Concrete Classes

» Some classes are better never instantiated.

» Abstract base classes are used as base
classesfor usein inheritance hierarchies.

« Concrete classes are classes which may be
instantiated.

Graded Exercises

* Check out summary and other materia of
Ch. 10 (pp 654..657)
» Answer Exercises 10.5, 10.6

* Run the code for Fig. 10.1 in the book &
satisfy yourself that you understand it. Get
help from tutor as necessary.

