
AN APPROACH FOR NETWORK COMMUNICATIONS SYSTEMS
RECOVERY

GEORGE G. MITCHELL STEPHEN BROWN

Department of Computer Science,
National University of Ireland, Maynooth.

Maynooth,
Co. Kildare.

Ireland.
{ georgem, sbrown} @cs.may.ie

ABSTRACT

In this paper we examine the problem of failures within
network communications and telecom systems and outline
a localised Invisible Recovery solution to such systems.
We introduce a new approach that makes use of an
envelope surrounding an unchanged software protocol
layer, which is running as an independent process. This
envelope stores just sufficient information on each
connection to enable an invisible recovery (IR) of the
protocol layer after a software fault. IR provides the
means to permit a reconnection to take the place of the
original connections. As a result of knowing the necessary
attributes that a recoverable network system should have,
including the required state information, our proposed
technique will allow for the near continuous operation of a
network system using software fault tolerance.
We investigate the problems for the integration of the IR
technique into existing network protocols. We also
explore the use of recoverable techniques on the grounds
that they can be used as a means of providing solutions to
failures due to malicious attack or software faults. We
believe that it is possible to create a design pattern, which
is neither operating system nor protocol specific. This
technique we believe, has particular applications in the
high-volume consumer-technology market.

Keywords
Recovery, Fault Tolerance, Communications Networks.

INTRODUCTION
Failures within Complex Systems have been narrowed
down to software inadequacies and software errors [1].
There has been an apparent resurgence in the belief that
through the use of good software engineering practice it is
possible to avoid the introduction of errors during the
design and implementation stages of a large system, this
has been primaril y touted by manufactures of software
engineering tools. Although using modern software design
methodologies are an effective counter measure to

thoughtless errors, which result in general system failures,
experience [2] has shown that the use of these alone are
inadequate. When dealing with modern Safety Critical
Systems such as those in Avionics Control Systems and
those systems that must integrate with an existing legacy
system, software fault tolerance is necessary and works
well [3].
With the initial introduction of Software Fault tolerance in
the late '70's by Randell [4] and others, it has become a
widely explored area of research. The fundamental
components to a fault tolerant system have remained
largely unchanged from those described by Lee and
Anderson [5], i.e. checking algorithms, error
quantification and then error recovery. The advantages
and disadvantages of the implementation of fault tolerance
across a number of applications have been examined in
detail and the best end use of the techniques has also been
looked at [6]
One important thing to note about the implementation of
fault tolerant systems is that they may be implemented in
two forms, the most predominant form is that of code
invasive design time fault tolerance, the second and also
the far smaller is non code invasive maintenance fault
tolerance. We in this paper will examine an approach that
is in fact predominantly non-code invasive and which also
makes extensive use of software reuse. It is notable that
one should strive for the least code invasive mechanism as
this clearly reduce the potential for the number of possible
faults that could be injected in the system.
With these concepts in mind let us now focus on the issue
of network systems, the provision of fault tolerance to
network systems is one which primarily explores the
problems of hardware failures and also crashes system.
The problems of poor connections resulting in loss of data
and or continuous reconnection of the underlying protocol
daemons has to date been poorly explored. Development
of fault tolerant network systems without a consideration
for the similarities between the current protocols results in
a diversity of fault tolerant mechanisms being employed.

By focusing our research on the principle of developing a
technique for network communications recovery we
intend to provide a component, IR Invisible Recovery,
which is applicable across a wide variety of network
protocols. Initially we examine UDP and TCP over IP, but
this we believe is only the start of the design of a system
that will have a wide scope of use. Another area in which
the use of fault tolerant systems is in the network defence
and security field, by providing a staggered reduction in
the operabili ty of the network rather than a complete
failure users manage the shut down of the system in an
orderly manor in the event of a fail which is impossible to
recover from.

RELATED RESEARCH
A number of differing approaches have been taken to the
design and implementation of Software Fault Tolerant,
SFT, computer networks. Each of these techniques has
made extensions and improvements to the standard SFT
mechanisms. The N-Version programming, NVP,
technique consists of N diverse programs executing in
parallel and of a counter counting the votes of each of the
N outputs. By finding a majority in the outputs the process
moves on to its next task. In the event of no majority the
system flags an alarm and either relies on another FT
technique to cope with the fault or in worst case merely
writes to a log file the error and waits for manual
intervention. Figure 1 shows a simpli fied NVP system.

Figure 1. N-Version programming model.

A second widely used technique is checkpoint this can be
viewed as the placing of a flag along a path taken, in the
event of taking the incorrect turn, it is possible to return to
you last good position which has been flagged. Then from
this good point it is possible to continue by using new
information as if the system had not failed. In fault
tolerant systems we implement this technique through the
use of checkpoints in critical data or in invasive FT
programming checkpoints in the code. It is then possible
to recover back to a particular point through the use of a
rollback function
Another important technique for the checking of the actual
working of a computer system is the acceptance test. This
is a check on a condition expected to be met by successful
program execution. It is not intended to guarantee
complete result correctness and thus includes a wide scope

of possible comprehensiveness levels, ranging from a
cursory check for anomalous states in the program to
completely exhaustive output verification. The
effectiveness of an acceptance test, obviously, will be
highly dependent on the quantifiable parameters selected.
Aiming at too high completeness may lead to large and
complex test programs and therefore excessively high
costs and design fault proneness [5].

Kim and Subbaraman [7] introduced Acceptance Test
Checks at ever point in which the reasonableness of a
computation result was in question. Kim's main interest
was in over coming 'AT failure' results due to transient
hardware faults or design faults in the method of
computation and even the possibili ty of timing failures
indicating a violation of the method execution deadline.
To do this, the primary and shadow technique was taken
to a new level, he used the principle of design diversity
(similar to NVP) to create two nodes which were both
identical from, a design specification point but were
entirely different by means of their implementation. Kim
also made use of distributed recovery blocks. The primary
and shadow nodes were constructed using the active
replication principle, this is based on the underlying
principles of the Real-time Fault Tolerance DRB scheme
[7]. This technique has been in constant re-development
over the past 15 years, with each object replicated to form
a pair of partner objects running on differing nodes the
two partner objects control the updating of there own
ODS, object data store. This together with NVP design
and implementation provides for a more reliable result for
the AT's in question.
At this point we must note that all the previous research
was extensively code invasive and what follows is the best
of the non-code techniques. This brings us to the research
conducted by Tso in SoHaR Corporation [3] over the past
ten years. Much of the work they have published has been
focused on the use of fault tolerance in the area of critical
computer systems such as health care and aircraft control.
The extent of there research in the areas of networks is
also interesting, although they have developed all of there
systems with the use of one single environment, Ada. By
the use of recovery block programming they provide a
recoverable mechanism to network systems primarily
Distributed Systems. Again all of their techniques are
code invasive except for reusable watchdog processes that
are incorporated ion to all of their systems.
González [8] developed a method for a graceful
degradation of a system which was intended to provide a
mechanism to allow the correct control of an avionics
system but his technique raised the idea of allowing our
system to continue to work for a length of time so as to
permit the controlled shut down of the system if it so
happened that it was impossible to continue to work with
our recovered connection.
Huang and Kintalas [6, 9] fault tolerant network systems,
made use of application level software components for the
detection and recovery from faults not handled by the
operating system or the hardware fault mechanism built

C
O
U
N
T
E
R

M aj.

No M aj.
V ersion n

V ersion 2

V ersion 1

result

alarm

V ote

V ote

V ote

into the actual networking computer system. What was
significant about this work was the novel idea of a self
recovering component which was a watch dog daemon
that monitored the running of the system and was merely
used to flag the occurrence of a detected error (fault) this
ran in parallel with the rest of the system and was
implemented in the for m of a C library for inclusion in
the implementation / design of the system. Although the
self-recovering daemon was not used directly in the actual
recovery of the system it did raise the possibili ties which
we intend to explore in our work. Whilst Huang and
Kintalas work was developed to cope with static errors we
are more interested in the exploration of software fault
tolerance in applications directly affected by transient
software failures / errors.

INVISIBLE RECOVERY
Our invisible recovery technique takes on three separate
and distinct parts:

� Timing
� Restart
� Protocol Mangling

Time:
Crucial to the correct operation of many network systems
is the timing both of packets and the overall session. The
OSI protocol stack introduced session layers that provided
a compensation operation for intermittent connections by
token management and check-pointing data transfer. This
permits multiple network sessions to be integrated
together to form one continues data transfer. This type of
method is not available in all network and telecom
protocols for example, TCP / IP, the timing and also the
non-interrupted communication between networked
machines is crucial to the continues operation of the
protocol. The length of time that a packet remains
unacknowledged is directly linked with the retransmission
of the data packet in question. Our system must contend
with this and it is anticipated to take no more than a 2-3
seconds for the complete resumption of normal service,
through the use of our restart / protocol mangling.

Restart:
The initial communication required for a connection
between networked computers normally requires the
issuing a number of protocol data units (PDU). Each of
these are used to enable the client to register itself with the
server, typically 3 to 5 PDU's are required, in the TCP
protocol, 3 PDU's are used in the well know 3-way hand
shake. Our IR system operates in the form of an envelope
that surrounds an unchanged protocol entity, with this
design it is possible to operate between upper and lower
network layers providing a "restartable" component for
most telecommunications and network protocols. Our
envelope makes a data copy of all data that passes through
the layer. On detection of a fault our restart component

reinitialises the connection by reissuing PDU's and then
creating a new connection. Our envelope, running as a
process, uses a database containing the state information
of the application process and also the protocol process.
Typically this consists of; port number, IP address,
unacked_data, last_seq_number, last_acked_request, etc.
This provides sufficient information to enable the IR
process to restart and to then hide the failure of the
underlying network entity, we accomplish this with the aid
of protocol mangling.

Protocol mangling:
This is essentiall y a mapping of all the last known good
state information to the current new state information. It is
necessary so as to cope with the newly regenerated
protocol entity that will have been "reincarnated" with
differing sequence numbering, possibly different port
information and possibly incorrectly matched data. We
use the stored data to correct the data problems of
acknowledged verses unacknowledged data. Then by
mangling the state information such as old_port address to
new_port addresses, old_ip to new_ip and so forth we
make it is possible to disguise the fact of a protocol entity
failure, and continue to operate correctly.

Figure 2. IR envelope communication

CURRENT WORK
Currently we are in the process of validating the operation
of our technique. Examining Figure 2 we see the
unchanged network layers and the envelope surrounding
the protocol entity that may have undergone a localised
failure. What is important to note here is the requirement
for the extra two jumps incurred in our system, although
this is a slight overhead we believe that it is small when
compared against a complete system failure which may
have occurred when our technique is not in use. The
relationship our system has with other systems is depicted
in Figure 3 here our system, with its IR process running
between the network application and the network process,

Unchanged network
layer N + 1

Unchanged network
layer N - 1

Protocol Entity

can communicate effectively with a standard system
which remains unchanged.

Figure 3. IR system communications with standard system

VALIDATION & TESTING
Validation of the correctness and performance of the
invisible recovery model is currently in progress. We are
using LINUX as the initial operating system environment,
as it provides a number of highly desirable attributes that
we required in the construction of our test model. By
effecting the inetd process which is in control of the
socket requests for the system it is possible to cause a
protocol failure and examine the quality of our technique.
We have of late decided upon the use of SFIT, Software
Fault Insertion Testing. The testing of transient errors is
completely unpredictable but it is possible to mimic them
by inserting errors to cause a process crash or even by the
removal of the hardware network connection. SFIT the
Federal Communications Commission (FCC) Network
Reliabili ty Council (NRC) conducted an extensive study
that involved all major key telecommunications /
computer networking system suppliers and research
institutions and issued a report entitled Network
Reliability: A Report to the Nation [10]. In this report
Software Fault Insertion Testing, SFIT was recommended
to be performed as a standard part of a
telecommunications system supplier's development
process for improving fault tolerance.
We intend to measure the restart time required for the
system and also the overhead impact of introducing two
further data jumps in the protocol this together with the
small amount of data coping that is required will have a
performance issue but one which will be small .

CONCLUSION & FUTURE WORK
Invisible Recovery is important for the provision of
software fault tolerance to existing network protocol
systems. It enables code reuse and provides a high
availabili ty of the protocol entities that are surrounded buy
the protective envelope. With knowledge of the necessary

attributes that a recoverable network system must have,
we can derive a design pattern for use on a wide range of
protocols.
Once we have validated our design pattern on UDP and
then TCP, we intend to complete further work on
validating the model for significantly different protocols
such as ADSL or xDSL. With the increased interest in
providing digital television to the domestic market our
technique should enable the recover of such systems in a
fast and low cost manner.

REFERENCES
[1] J.Gray, Why computers stop and what can be done

about it? Proceedings of the 5th Symposium on the
Reliabili ty in Distributed Software and Database
Systems, 1986, 3-12.

[2] A. Spector & D. Gifford, The Space Shuttle Primary
Computer System, Communications of the ACM,
27(9), 1984.

[3] K. Tso, E. Shokri, A. Tai , R. Dziegiel, Jr. A Reuse
Framework for Software Fault Tolerance, AIAA
Computing in Aerospace 10 Conference, 1995, 490-
500.

[4] B.Randell , System structure for software fault
tolerance, IEEE Transactions on Software
Engineering, SE 1, June 1975, 220-232.

[5] P.A. Lee, and T. Anderson, Fault Tolerant Principles
and Practice 2 ed., (Wien - New York: Springer -
Verlag, 1990).

[6] M.R. Lyu, Software Fault Tolerance, (New York:
John Wiley and Sons Inc, 1995).

[7] K.H. Kim and C. Subbaraman, Fault Tolerant Real-
time Objects, Communications of the ACM, 40(1),
1997, 75 - 82

[8] H. Gonzàlez, Adaptive Fault Tolerance and Graceful
Degradation Under Dynamic Hard Real-Time
Scheduling, Proceedings of the 18rth IEEE, RTSS,
1997.

[9] C. Kintala, Software Implemented Fault Tolerance:
Technologies and Experience, Proceedings of the 23rd

Annual International Symposium on Fault-Tolerant
Computing, 1993, 2-9.

[10] NRC, Network Reliability: A Report to the Nation,
Network Reliabil ity Council , USA,1993.

IR

Application
 e.g. Telnet / TV

Network protocol
UDP / TCP / DSL

Network protocol
UDP / TCP / DSL

Application
 e.g. Telnet / TV

Dbase

