AN APPROACH FOR NETWORK COMMUNICATIONSSYSTEMS
RECOVERY

GEORGE G. MITCHELL

STEPHEN BROWN

Department of Computer Science,
National University of Ireland, Maynoaoth.
Maynoath,

Co. Kildare.

{ georgem, sbrown} @cs.may.ie

ABSTRACT

In this paper we examine the problem of failures within
network communications and telecom systems and autline
a locdised Invisible Recovery solution to such systems.
We introduce a new approach that makes use of an
envelope surrounding an unchanged software protocol
layer, which is running as an independent process This
envelope stores just sufficient information on each
connedion to enable an invisible recmvery (IR) of the
protocol layer after a software fault. IR provides the
means to permit a reconnedion to take the place of the
original connedions. As aresult of knowing the neeessary
attributes that a recoverable network system should have,
including the required state information, our proposed
technique will alow for the nea continuous operation of a
network system using software fault tolerance

We investigate the problems for the integration of the IR
technique into existing retwork protocols. We dso
explore the use of remverable techniques on the grounds
that they can be used as a means of providing solutions to
failures due to malicious attack or software faults. We
believe that it is possble to creae adesign pattern, which
is neither operating system nor protocol spedfic. This
technique we believe, has particular applicaions in the
high-volume consumer-technology market.

Keywords
Recovery, Fault Tolerance, Communications Networks.

INTRODUCTION

Failures within Complex Systems have been narrowed
down to software inadequades and software arors [1].
There has been an apparent resurgence in the belief that
through the use of good software engineaing pradiceit is
possble to avoid the introduction of errors during the
design and implementation stages of a large system, this
has been primarily touted by manufadures of software
engineaingtools. Although using modern software design
methoddogies are a effedive @unter measure to

thoughtless errors, which result in general system failures,
experience [2] has shown that the use of these done ae
inadequate. When deding with modern Safety Criticd
Systems such as those in Avionics Control Systems and
those systems that must integrate with an existing legacy
system, software fault tolerance is necessary and works
well [3].

With the initial introduction of Software Fault tolerancein
the late '70's by Randell [4] and cathers, it has become a
widely explored area of reseach. The fundamental
components to a fault tolerant system have remained
largely unchanged from those described by Lee ad
Anderson [5], i.e. cheking algorithms, error
quantification and then error recovery. The avantages
and dsadvantages of the implementation of fault tolerance
aaoss a humber of applicaions have been examined in
detail and the best end use of the techniques has also been
looked at [6]

One important thing to note aout the implementation of
fault tolerant systems is that they may be implemented in
two forms, the most predominant form is that of code
invasive design time fault tolerance, the second and also
the far smaller is non code invasive maintenance fault
tolerance. We in this paper will examine an approach that
isin fad predominantly non-code invasive and which also
makes extensive use of software reuse. It is notable that
one should strive for the least code invasive mechanism as
this clealy reducethe potential for the number of possble
faultsthat could be injeded in the system.

With these concepts in mind let us now focus on the issue
of network systems, the provision of fault tolerance to
network systems is one which primarily explores the
problems of hardware failures and also crashes system.
The problems of poar connedions resulting in lossof data
and or continuous recnnedion of the underlying protocol
daamons has to date been poaly explored. Development
of fault tolerant network systems without a @nsideration
for the simil arities between the current protocols resultsin
a diversity of fault tolerant mechanisms being employed.

By focusing our reseach on the principle of developing a
technique for network communicaions rewmvery we
intend to provide a ®mponent, IR Invisble Recvery,
which is applicable acoss a wide variety of network
protocols. Initially we examine UDP and TCP over IP, but
this we believe is only the start of the design of a system
that will have awide scope of use. Another areain which
the use of fault tolerant systems is in the network defence
and seaurity field, by providing a staggered reduction in
the operability of the network rather than a complete
failure users manage the shut down of the system in an
orderly manor in the event of afail which isimpossgble to
recover from.

RELATED RESEARCH

A number of differing approaches have been taken to the
design and implementation of Software Fault Tolerant,
SFT, computer networks. Each of these techniques has
made extensions and improvements to the standard SFT
mechanisms. The N-Version programming, NVP,
tedhnique mnsists of N diverse programs exeauting in
paralel and of a counter counting the votes of ead of the
N outputs. By finding a mgjority in the outputs the process
moves on to its next task. In the event of no majority the
system flags an alarm and either relies on another FT
technique to cope with the fault or in worst case merely
writes to a log file the eror and waits for manual
intervention. Figure 1 shows a simplified NVP system.

Version 1 Vote

result

Vote

Version 2

Im—=HzZzCco0

alarm

Vote

Versionn

No Maj.

Figure 1. N-Version programming model.

A seoond widely used technique is checkpaint this can be
viewed as the pladng of a flag along a path taken, in the
event of taking the incorred turn, it is possble to return to
you last good paition which has been flagged. Then from
this good poant it is possble to continue by using new
information as if the system had not faled. In fault
tolerant systems we implement this technique through the
use of chedkpoints in criticd data or in invasive FT
programming checkpoints in the mde. It is then possible
to recover badk to a particular point through the use of a
rollbadk function

Another important technique for the checking of the a¢ual
working of a mmputer system is the accetance test. This
isa check on a @ndition expeded to be met by successful
program exeadution. It is not intended to guarantee
complete result corrednessand thus includes a wide scope

of possble cmprehensiveness levels, ranging from a
cursory check for anomalous dgates in the program to
completely exhaustive output verificaion. The
effectiveness of an accetance test, obvioudy, will be
highly dependent on the quantifiable parameters sleded.
Aiming at too high completeness may lead to large and
complex test programs and therefore excessvely high
costs and design fault proneness [5].

Kim and Subbaraman [7] introduced Acceptance Test
Checks at ever paint in which the reasonableness of a
computation result was in question. Kim's main interest
was in over coming 'AT failure' results due to transient
hardware faults or design faults in the method o
computation and even the posshility of timing failures
indicaing a violation of the method exeaution deadline.
To do this, the primary and shadow technique was taken
to a new level, he used the principle of design diversity
(similar to NVP) to creae two nodes which were both
identicd from, a design spedficaion point but were
entirely different by means of their implementation. Kim
also made use of distributed recovery blocks. The primary
and shadow nodes were onstructed using the adive
replication principle, this is based on the underlying
principles of the Red-time Fault Tolerance DRB scheme
[7]. This technique has been in constant re-development
over the past 15 yeas, with each objed replicaed to form
a pair of partner objeds running on differing nodes the
two partner objeds control the updating of there own
ODS, objed data store. This together with NVP design
and implementation provides for a more reliable result for
the AT'sin question.

At this point we must note that al the previous reseach
was extensively code invasive and what foll ows is the best
of the non-code techniques. This brings us to the reseach
conducted by Tso in SoHaR Corporation [3] over the past
ten yeas. Much of the work they have published has been
focused on the use of fault tolerancein the aeaof criticd
computer systems such as hedth care and aircraft control.
The extent of there reseach in the aess of networks is
aso interesting, although they have developed al of there
systems with the use of one single ewvironment, Ada. By
the use of recovery block programming they provide a
recmverable mechanism to network systems primarily
Digtributed Systems. Again al of their techniques are
code invasive except for reusable watchdog processes that
are incorporated ion to all of their systems.

Gonzdez [8] developed a method for a gracdul
degradation of a system which was intended to provide a
mechanism to alow the crred control of an avionics
system but his technique raised the idea of allowing our
system to continue to work for a length of time so as to
permit the controlled shut down o the system if it so
happened that it was impaossible to continue to work with
our recvered connedion.

Huang and Kintalas [6, 9] fault tolerant network systems,
made use of application level software components for the
detedion and recovery from faults not handled by the
operating system or the hardware fault mechanism built

into the adual networking computer system. What was
significant about this work was the novel idea of a self
remvering component which was a watch dog daemon
that monitored the running of the system and was merely
used to flag the occurrence of a deteded error (fault) this
ran in parale with the rest of the system and was
implemented in the for m of a C library for inclusion in
the implementation / design of the system. Although the
self-recmvering daemon was not used dredly in the adual
recmvery of the system it did raise the posshili ties which
we intend to explore in our work. Whilst Huang and
Kintalas work was developed to cope with static erors we
are more interested in the exploration of software fault
tolerance in applicaions diredly affeded by transient
software failures/ errors.

INVISIBLE RECOVERY

Our invisible recovery technique takes on three separate
and dstinct parts:

» Timing
* Restart
* Protocol Mangling

Time:

Crucial to the corred operation of many network systems
is the timing both of padkets and the overall session. The
OSl protocol stack introduced sesson layers that provided
a ompensation operation for intermittent connedions by
token management and check-pointing data transfer. This
permits multiple network sessions to be integrated
together to form one @ntinues data transfer. This type of
method is not available in al network and telecom
protocols for example, TCP / IP, the timing and also the
norrinterrupted communicaion between networked
machines is crucial to the ontinues operation of the
protocol. The length of time that a padket remains
unacknowledged is diredly linked with the retransmission
of the data padet in question. Our system must contend
with this and it is anticipated to take no more than a 2-3
seoonds for the mmplete resumption of normal service,
through the use of our restart / protocol mangling.

Restart:

The initial communication required for a nnedion
between networked computers normally requires the
issuing a number of protocol data units (PDU). Each of
these ae used to enable the dient to register itself with the
server, typicdly 3 to 5 PDU's are required, in the TCP
protocol, 3 PDU's are used in the well know 3-way hand
shake. Our IR system operates in the form of an envelope
that surrounds an urchanged protocol entity, with this
design it is possble to operate between upper and lower
network layers providing a "restartable" component for
most telecommunicaions and network protocols. Our
envelope makes a data copy of all datathat passes through
the layer. On detedion of a fault our restart component

reinitialises the mnnedion by reissuing PDU's and then
creding a new connedion. Our envelope, running as a
process uses a database @ntaining the state information
of the gplication process and also the protocol process
Typicdly this consists of; port number, IP address
unacked data, last_seq_number, last_aded request, etc.
This provides sifficient information to enable the IR
process to restart and to then hide the failure of the
underlying network entity, we acomplish this with the ad
of protocol mangling.

Protocol mangling:

This is esentially a mapping of al the last known good
state information to the current new state information. It is
necessary so as to cope with the newly regenerated
protocol entity that will have been "reincarnated” with
differing sequence numbering, possbly different port
information and pcsshly incorredly matched data. We
use the stored data to corred the data problems of
adknowledged verses unadknowledged data. Then by
mangling the state information such as old_pat addressto
new_pat addresses, old_ip to new_ip and so forth we
make it is possble to disguise the fad of a protocol entity
failure, and continue to operate crredly.

Unchanged network
layer N+ 1

A

A 4

Protocol Entity

Unchanged network
layer N -1

Figure 2. IR envelope communication

CURRENT WORK

Currently we ae in the processof validating the operation
of our techniqgue. Examining Figure 2 we see the
unchanged network layers and the envelope surrounding
the protocol entity that may have undergone alocdised
failure. What is important to note here is the requirement
for the extra two jumps incurred in our system, although
this is a dight overheal we believe that it is small when
compared against a mmplete system failure which may
have occurred when our technique is not in use. The
relationship aur system has with other systems is depicted
in Figure 3 here our system, with its IR process running
between the network application and the network process

can communicae effedively with a standard system
which remains unchanged.

Applicaion
eg. Telnet/ TV

o R

Network protocol Network protocol
UDP/TCP/DSL UDP/TCP/DSL

Applicaion
eg. Telnet/ TV

Figure 3. IR system communications with standard system

VALIDATION & TESTING

Validation of the mrredness and performance of the
invisible recovery model is currently in progress We ae
using LINUX as the initial operating system environment,
as it provides a number of highly desirable atributes that
we required in the anstruction o our test model. By
effecting the inetd process which is in control of the
socket requests for the system it is possible to cause a
protocol failure and examine the quality of our technique.
We have of late dedded upon the use of SHT, Software
Fault Insertion Testing. The testing of transient errors is
completely unpredictable but it is pasgble to mimic them
by inserting errors to cause aprocesscrash or even by the
removal of the hardware network connedion. SFIT the
Federal Communications Commission (FCC) Network
Reliability Council (NRC) conducted an extensive study
that involved al maor key telecommunicdions /
computer networking system suppliers and reseach
institutions and issued a report entitted Network
Reliability: A Report to the Nation [10]. In this report
Software Fault Insertion Testing, SFIT was recommended
to be peformed a a sandad pat of a
telecommunicaions system supplier's development
processfor improving fault tolerance.

We intend to measure the restart time required for the
system and also the overhead impaad of introducing two
further data jumps in the protocol this together with the
small amount of data aping that is required will have a
performanceisue but one which will be small.

CONCLUSION & FUTURE WORK

Invisble Reoovery is important for the provision of
software fault tolerance to existing network protocol
systems. It enables code reuse and provides a high
avail abili ty of the protocol entiti es that are surrounded buy
the protedive envelope. With knowledge of the necessary

attributes that a recverable network system must have,
we @n derive adesign pattern for use on a wide range of
protocols.

Once we have validated our design pattern on UDP and
then TCP, we intend to complete further work on
validating the model for significantly different protocols
such as ADSL or xDSL. With the increased interest in
providing digital television to the domestic market our
tedhnique should enable the recover of such systemsin a
fast and low cost manner.

REFERENCES

[1] J.Gray, Why computers stop and what can be done
about it? Procealings of the 5" Symposium on the
Reliability in Distributed Software axd Database
Systems, 1986 3-12.

[2] A. Spedor & D. Gifford, The Space Shuttle Primary
Computer System, Communicaions of the ACM,
27(9), 1984.

[3] K. Tso, E. Shokri, A. Tai , R. Dziegiel, J. A Reuse
Framework for Software Fault Tolerance, AIAA
Computing in Aerospace 10 Conference, 1995 490-
500

[4] B.Randell, System structure for software fault
tolerance, |IEEE Transadions on Software
Engineeing, SE 1, June 1975 220-232

[5] P.A.Lee and T. Anderson, Fault Tolerant Principles
and Practice 2 ed., (Wien - New York: Springer -
Verlag, 1990.

[6] M.R. Lyu, Software Fault Tolerance, (New York:
JohnWiley and Sons Inc, 1995.

[7] K.H. Kim and C. Subbaraman, Fault Tolerant Real-
time Objects, Communicaions of the ACM, 40(1),
1997 75- 82

[8] H. Gonzdez Adaptive Fault Tolerance and Graceful
Degradation Under Dynamic Hard Real-Time
Scheduling, Proceedings of the 18"™ IEEE, RTSS
1997

[9] C. Kintala, Software Implemented Fault Tolerance:
Technologies and Experience, Proceadings of the 23
Annual International Symposium on Fault-Tolerant
Computing, 1993 2-9.

[10] NRC, Network Reliability: A Report to the Nation,
Network Reliability Council, USA,1993

