A MODEL FOR INVISIBLE RECOVERY APPLIED TO COMMUNICATIONS
NETWORKS

GEORGE G. MITCHELL

STEPHEN BROWN

Department of Computer Science,
National University of Ireland, Maynooth.
Maynooth,

Co. Kildare.

Ireland.

{ georgem, sbrown} @cs.may.ie

ABSTRACT

In this paper we present the advances we have made in our
network fault tolerant computing projed [1]. We examine
the problems of failures within network communications
and telecom systems and outline the usefulness of our
locdised Invisible Reaovery (IR) solution. We evaluate
the aurrent techniques [2,3,8] that provide recovery within
distributed / network systems; by doing so we then derive
atable of comparison that we use to pinpaint the different
approaches taken to providing reavery. With this table
we then construct state transition models in UML that
faithfully reproduce the operation of systems when in
failure and failure free states. These state models are
replicated for al the techniques that we examine and we
contrast them with our IR technique.

Our IR approach makes use of an envelope surrounding an
unchanged software protocol layer and operatesin a Super
Server fashion modelled on the Inetd daemon common in
UNIX systems. This envelope stores just sufficient
information on ead connedion to enable an invisible
recovery of the protocol layer after a software fault. IR
provides the means to permit a recnnedion to take the
placeof the original connedions. As a result of knowing
the necessary attributes that a recoverable network system
should have, including the required state information, our
technique dlows for the nea continuous operation of a
network system using software fault tolerance We
investigate the problems for the integration of the IR
technique into existing retwork protocols. We dso
explore the use of recverable techniques on the grounds
that they can be used as a means of providing solutions to
failures due to malicious attack or software faults.

We believe that with the dad of state modelling we have
refined our IR technique and have developed a system that
can provide norrinvasive fault tolerance to existing
network protocols. Our IR tednique has particular
applicdions in the highvolume @nsumertiechnology

market where st is paramount but where reliability is
equally important.

KEYWORDS

Recovery, Fault Tolerance, Communications Networks,
Reuse.

INTRODUCTION

Through the use of use modern software design
methoddogies reliability of software has been improved,
unfortunately experience [4,5,6,7] has iown that the use
of these done is inadequate. When deding with modern
Safety Criticd Systems auch as those in Avionics Control
Systems and those systems that must integrate with an
existing legacy system, software fault tolerance is
invaluable.

One important thing to note aout the implementation of
fault tolerant systems is that they generaly may be
implemented in two forms, the most predominant form is
that of code invasive design time fault tolerance the
seoond and also the far smaller is non code invasive
maintenance fault tolerance The fault tolerant technique,
which has been used in this projed, has been a non-code
invasive type and this has enabled us to extensively reuse
software. . It is notable that one should strive for the least
code invasve mechanism as this clealy reduce the
patential for the number of possble faults that could be
injeded in the system. We will examine our technique
from a muple of differing sides, from the current reseach
side and also from a state diagram approach so that we can
fully understand the workings of the system.

With these @nceptsin mind let us now focus on the issue
of network systems, the provision of fault tolerance to
network systems is one which primarily explores the
problems of hardware failures and also crashes system.
The problems of poar connedions resulting in lossof data
and or continuous remnnedion of the underlying protocol
daamons has to date been poaly explored. Development
of fault tolerant network systems without a mnsideration
for the simil arities between the current protocols resultsin
a diversity of fault tolerant mechanisms being employed.
We have developed a technique for network
communicaions recmvery through the use of a component,
IR Invisible Recovery, which is appliceble acoss a wide
variety of network protocols. Initially we examined UDP
over IP, but this we believe is only the start of the design
of a system that will have awide scope of use. Another
areain which the use of fault tolerant systems is in the
network defence and security field, by providing a
staggered reduction in the operability of the network
rather than a cmmplete failure users manage the shut down
of the system in an orderly manor in the event of a fail
whichisimpossble to recover from.

RELATED RESEARCH

The design and implementation of software fault tolerance
has taken a number of different approaches. Each of
which has provided improvement and extensions to the
ever-expanding requirement for reli able software. The use
of acceptance tests at points that the reasonableness of a
result is in question, through to the use or redundant
systems have dl helped in the provision of this fault
tolerance What we ae particularly interested in is those
techniques that make the most use of the existing system
that we ae dtempting to improve the reliability of
through the use of fault tolerance Therefore software
reuse techniques coupled with fault tolerance dtrad our
atention, it is interesting to note that communicaions
RFC's in the aea of fault tolerance ae direded at
developing rew protocols that provide reliability to the
protocol through code invasive tedniques rather that
stand alone non code invasive techniques as we discussed
in Mitchell 200Q

Probably the most significant related reseach in the aea
of fault tolerance gplied to processes and aso protocols
is in message logging and chedkpointing techniques sich
as those developed and used by D.B. Johnson [8] and
Elnozahy [3]. Using the well-developed chedkpointing
technique together with a logging system which both
dlows for forward rewmvery and badkward rewvery
enables the systems to provide ahigh degreeof reliability
to the communicaion system. Johnson designed two main
techniques pessimistic and aso optimistic message
logging.

For pesgmistic message logging a new sender-based
message logging protocol was developed. Each message
was logged in a locd volatile memory of the sending
machine and ordering of the receved messages was
organised by a recave sequence number. Logging of
messages overlapped the exeaution of the recever until
the recaver attempted a new send message. With this
form of fault tolerance @plied to a mmmunicaing
protocol system applicaions had an overhead under 16
percent and an average overhead measured 2 percent or
lessdepending on the size and communication intensity.

Optimistic message logging outperformed pessmistic
loggng since the logging occurred asynchronoudly.
Johnson presented a new optimistic message logging
system that guarantead to find the maximum possble
recverable system state which had not to-date been
previously attained by other optimistic methods. All
messages and chedpoints are utilised in his method and
thus ome messages recaved by a process before
chedkpointing were not necessarily required to be logged.
With this technique overhead was kept to between 1 and 4
percent.

INVISIBLE RECOVERY

Our invisible recovery tedchnique has three separate and
distinct parts:

1. Timing
2. Redart
3. Protocol Manding

1Time:

Crucial to the corred operation of many network systems
is the timing both of padets and the overall session. The
OSl protocol stack introduced sesson layers that provided
a mompensation operation for intermittent connedions by
token management and check-pointing data transfer. This
permits multiple network sessions to be integrated
together to form one cntinues data transfer. This type of
method is not available in all network and telecom
protocols for example, TCP / IP, the timing and aso the
nor-interrupted communication between networked
madines is necessry for the continues operation of the
protocols. By providing a proxy server IR to the dient we
maintain the acknowledgement of data padets and also
enable the system to disguise the fad of restarting other
servers, dl of this is acomplished in under a cuple of
sends when the eitire system is in a non congested
state, to understand the adual operation of IR it is
necessary to examine its two fundamental parts; Restart &
Protocol Mangling.

2 Restart:
The initial communication required for a nnedion
between networked computers normally requires the

issuing a number of protocol data units (PDU). Each of
these ae used to enable the dient to register itself with the
server, typicdly 3 to 5 PDU' s are required, in the TCP
protocol, 3 PDU' s are used in the well know 3-way hand
shake. Our IR system operates in the form of an envelope
that surrounds an urchanged protocol entity, with this
design it is possble to operate between upper and lower
network layers providing a "restartable” component for
most telecommunications and network protocols. Our
envelope makes a data mpy of all data that passes through
the layer. On detedion of a fault our restart component
reinitialises the mnnedion by reissuing PDU' s and then
credaing a new connedion. Our envelope, running as a
process uses a database ntaining the state information
of the gplication process and aso the protocol process
Typicdly this consists of; port number, IP address
unacked _data, last_seq_number, last_adked_request, etc.
This provides afficient information to enable the IR
process to restart and to then hide the failure of the
underlying network entity, we acomplish this with the ad
of protocol mangling.

3 Protocol mangling:

This is esentially a mapping of al the last known good
state information to the current new state information. It is
necessary so as to cope with the newly regenerated
protocol entity that will have been "reincarnated” with
differing sequence numbering, possbly different port
information and possbly incorredly matched data. We
use the stored data to corred the data problems of
adknowledged verses unadknowledged data. Then by
mangling the state information such as old_pat addressto
new_pat addresses, old_ip to new_ip and so forth we
make it is posgble to dsguise the faa of a protocol entity
failure, and continue to operate wrreadly.

Unchanged network
layer N +1

4

Y

Protocol Entity

Unchanged network
layer N- 1

Figure 1. IR envelope communication

STATE DIAGRAM FRAMEWORK

Taking a very ssimplified initial example we can view a
communicéion between two communicating processs p
and q (figure 2), we introduce atoken datagram which we
pass badckwards and forward between the two
communicaing processes using the socketscand c'.

Figure 2. Simple Network example socketsc & ¢’

We can describe the internal operation of the p processas
two states © and sl and a recave and send operation
enabling transition (figure 3)

Recieve token

Send tok en

Figure 3. State of processp.

With the simple notation of the network we an introduce
the Invisble Rewovery (IR) process which we have
designed to provide fault tolerance in communicating
systems. IR is postioned logicdly between the
communicding processes as in figure 4.1. With this
understanding of the logicd layout of the IR processwe
can now develop aur model to fully encompass the state
transitions of the network operating with IR. We now
present the operation of the network system with IR in a
failure free evironment. Firstly we spedfy that the
network consists of proceses P,Q,R, four socket
connedions and a single systems cdl for the
determination of the ProcessState of Q.

In state diagram 4.1 we seethe initial state of the system,
with p in state Sl i.e. with control. Stated dagram 4.2,
control has left p and therefore p now has date SO. A
token (message, padket or datagram) has been issued to IR
and isin transit within the socket, in state diagram 4.3 the
token is recaved by IR and changes the state of IR from
S0 to S1. When control passes to IR a series of operations
occur which we will examine in more detail later in this

paper, initialy let use just allow IR to act as a message
forwarding server. State diagram 4.4 show the sending of
token to process Q, control passes from IR.

Figure 4. State diagrams 1 to 4 of network with IR

In state diagrams 5 through 8 we conduct the same
operations looking at the return of the token following its
receipt by q. This smplified model demonstrates clearly
the operation of IR within a communicating system. To
understand the inner operation of IR we now expand the
IR process state diagram and in figure 6 we examine the
steps that IR takes in the forwarding of messages. State
diagrams 6.1 to 6.4 outline how IR checks first for the

status of Q the server process and if following a successful
outcome to this query IR proceeds to send the message to
Q and then receive the resulting response from Q.

S1

SO

SO

SO

Figure5. State diagrams 5 to 8 of network with IR

State diagrams 7 outline how IR detects a failed server
process, since IR is styled on the inetd super server it is
easy for the IR process to detect the failure of a child
server process and as such take the appropriate action in
storing incoming messages form P and also restarting the
failed process. Let us now examine how IR contends with
this. Initially we sate the operations that are performed in
the IR process as follows,

¢ Receive message from p

Check status of server process (Q)

If Q OK send message

Else save message to store

Restart failed server

Re-send all save messages form store.

Return to normal operation.
0
N‘ 0
M@

7 7
4 0.0

%

X3

%

X3

%

X3

8

X3

%

Kill pid(Q)

S1

Kill pid(Q)

SO

1
N‘ 0
‘M@

Figure6. IR process state diagrams 1 to 4.

From these diagrams we can see that there is little if any
cost introduced into the communicating process. Although
IR acts as a message forwarding system no memory
caching is necessary and therefor the transit across the IR
process along with the extra two sockets is the entire
overhead of the system this too is on a complete round
trip. If we now introduce the state transition diagrams that

represent the workings of IR while in a state that permits
failures, we see the extra states necessary for the detection
and reconfiguration of the communicating system.

) empty
empty
5a

S0 empty
System
check fail

Qdead SO

A

\/

630

A

5b
s1 empty
P System
empty

Qdead SO

0

5¢c

Figure7. IR detecting crashed server.

Figure8. IR operating in fail state with dbase.

Figure 8 above show the logical lay out of the dbase
which is used to record incoming messages from P while
Q is being restarted and initialised. Figure 9 outline the
restart and re-sending of messages stored on the dbase
while Q was being reinitialised. Once the store is emptied
IR returns to its standard failure free operation and
continues to do so until a terminal error e.g. shut down,
power failure etc.

o)

new Q
R

Q ok < System ’

dbase

Figure9. IR restart

CONCLUSION & FUTURE WORK

IR appeasto be successul and now we intend to examine
its usefulness against other protocols sich as DSL. It is
our view that IR can be used in a wide variety of roles
such as those depicted in figure 10.

Applicaion
eg. Telnet/ TV

Applicaion
eg. Telnet/ TV

IR

Network protocol Network protocol
UDP/TCP/DSL UDP/TCP/DSL

Figure 10. IR system communications with ather protocols

We intend to validate exzh of these gplicaions with
testing and formal verificaion particularly for
significantly different protocols sich as ADSL or xDSL.

With the increased interest in providing digital television
to the domestic market our technique should enable the
recovery of such systemsin afast and low cost manner.

REFERENCES

[1] Mitchell, G.G., Brown, S., "An Approach for
Network Communications Systems Reovery”,
Applied Informatics 200Q Innsbruck, Austria, pp
575578, 0-88986-280-X, 2000.

[2] Johnson D.B., Personal communication. June 200Q

[3] Elnozahy, M., Alvis, A., Wang, Y., Johnson D.B.,
"A Survey of Rollbak-Remvery Protocols in
Messge-Passing Systems' School of Computer
Science Carnegie Mellon University, Pittsburgh, PA
15213 USA. CMU-CS-99-148 June 1999

[4] A. Spedor & D. Gifford, The Space Shuttle Primary
Computer System, Communicaions of the ACM,
27(9), 1984.

[5] B.Randell, System structure for software fault
tolerance, |IEEE Transadions on Software
Engineaing, SE 1, June 1975 220-232

[6] P.A.Lee and T. Anderson, Fault Tolerant Principles
and Practice 2 ed., (Wien - New York: Springer -
Verlag, 1990.

[71 M.R. Lyu, Software Fault Tolerance, (New York:
John Wiley and Sons Inc, 1995.

[8] Johnson D.B, “Distributed System Fault Tolerance
Using Message Logging and Checkpointing”, Rice
University, Houston, Texas, December 1989

