
A MODEL FOR INVISIBLE RECOVERY APPLIED TO COMMUNICATIONS
NETWORKS

GEORGE G. MITCHELL STEPHEN BROWN

Department of Computer Science,
National University of Ireland, Maynooth.

Maynooth,
Co. Kildare.

Ireland.
{ georgem, sbrown} @cs.may.ie

ABSTRACT

In this paper we present the advances we have made in our
network fault tolerant computing project [1]. We examine
the problems of failures within network communications
and telecom systems and outline the usefulness of our
localised Invisible Recovery (IR) solution. We evaluate
the current techniques [2,3,8] that provide recovery within
distributed / network systems; by doing so we then derive
a table of comparison that we use to pinpoint the different
approaches taken to providing recovery. With this table
we then construct state transition models in UML that
faithfully reproduce the operation of systems when in
failure and failure free states. These state models are
replicated for all the techniques that we examine and we
contrast them with our IR technique.
Our IR approach makes use of an envelope surrounding an
unchanged software protocol layer and operates in a Super
Server fashion modelled on the Inetd daemon common in
UNIX systems. This envelope stores just sufficient
information on each connection to enable an invisible
recovery of the protocol layer after a software fault. IR
provides the means to permit a reconnection to take the
place of the original connections. As a result of knowing
the necessary attributes that a recoverable network system
should have, including the required state information, our
technique allows for the near continuous operation of a
network system using software fault tolerance. We
investigate the problems for the integration of the IR
technique into existing network protocols. We also
explore the use of recoverable techniques on the grounds
that they can be used as a means of providing solutions to
failures due to malicious attack or software faults.
We believe that with the aid of state modell ing we have
refined our IR technique and have developed a system that
can provide non-invasive fault tolerance to existing
network protocols. Our IR technique has particular
applications in the high-volume consumer-technology

market where cost is paramount but where reliabili ty is
equally important.

KEYWORDS
Recovery, Fault Tolerance, Communications Networks,
Reuse.

INTRODUCTION
Through the use of use modern software design
methodologies reliabili ty of software has been improved,
unfortunately experience [4,5,6,7] has shown that the use
of these alone is inadequate. When dealing with modern
Safety Critical Systems such as those in Avionics Control
Systems and those systems that must integrate with an
existing legacy system, software fault tolerance is
invaluable.
One important thing to note about the implementation of
fault tolerant systems is that they generally may be
implemented in two forms, the most predominant form is
that of code invasive design time fault tolerance, the
second and also the far smaller is non code invasive
maintenance fault tolerance. The fault tolerant technique,
which has been used in this project, has been a non-code
invasive type and this has enabled us to extensively reuse
software. . It is notable that one should strive for the least
code invasive mechanism as this clearly reduce the
potential for the number of possible faults that could be
injected in the system. We will examine our technique
from a couple of differing sides, from the current research
side and also from a state diagram approach so that we can
fully understand the workings of the system.

With these concepts in mind let us now focus on the issue
of network systems, the provision of fault tolerance to
network systems is one which primarily explores the
problems of hardware failures and also crashes system.
The problems of poor connections resulting in loss of data
and or continuous reconnection of the underlying protocol
daemons has to date been poorly explored. Development
of fault tolerant network systems without a consideration
for the similarities between the current protocols results in
a diversity of fault tolerant mechanisms being employed.
We have developed a technique for network
communications recovery through the use of a component,
IR Invisible Recovery, which is applicable across a wide
variety of network protocols. Initially we examined UDP
over IP, but this we believe is only the start of the design
of a system that will have a wide scope of use. Another
area in which the use of fault tolerant systems is in the
network defence and security field, by providing a
staggered reduction in the operabili ty of the network
rather than a complete failure users manage the shut down
of the system in an orderly manor in the event of a fail
which is impossible to recover from.

RELATED RESEARCH

The design and implementation of software fault tolerance
has taken a number of different approaches. Each of
which has provided improvement and extensions to the
ever-expanding requirement for reliable software. The use
of acceptance tests at points that the reasonableness of a
result is in question, through to the use or redundant
systems have all helped in the provision of this fault
tolerance. What we are particularly interested in is those
techniques that make the most use of the existing system
that we are attempting to improve the reliabili ty of
through the use of fault tolerance. Therefore software
reuse techniques coupled with fault tolerance attract our
attention, it is interesting to note that communications
RFC’s in the area of fault tolerance are directed at
developing new protocols that provide reliabili ty to the
protocol through code invasive techniques rather that
stand alone non code invasive techniques as we discussed
in Mitchell 2000.

Probably the most significant related research in the area
of fault tolerance applied to processes and also protocols
is in message logging and checkpointing techniques such
as those developed and used by D.B. Johnson [8] and
Elnozahy [3]. Using the well-developed checkpointing
technique together with a logging system which both
allows for forward recovery and backward recovery
enables the systems to provide a high degree of reliabil ity
to the communication system. Johnson designed two main
techniques pessimistic and also optimistic message
logging.

For pessimistic message logging a new sender-based
message logging protocol was developed. Each message
was logged in a local volatile memory of the sending
machine and ordering of the received messages was
organised by a receive sequence number. Logging of
messages overlapped the execution of the receiver until
the receiver attempted a new send message. With this
form of fault tolerance applied to a communicating
protocol system applications had an overhead under 16
percent and an average overhead measured 2 percent or
less depending on the size and communication intensity.

Optimistic message logging outperformed pessimistic
logging since the logging occurred asynchronously.
Johnson presented a new optimistic message logging
system that guaranteed to find the maximum possible
recoverable system state which had not to-date been
previously attained by other optimistic methods. All
messages and checkpoints are util ised in his method and
thus some messages received by a process before
checkpointing were not necessarily required to be logged.
With this technique overhead was kept to between 1 and 4
percent.

INVISIBLE RECOVERY
Our invisible recovery technique has three separate and
distinct parts:

1. Timing
2. Restart
3. Protocol Mangling

1 Time:
Crucial to the correct operation of many network systems
is the timing both of packets and the overall session. The
OSI protocol stack introduced session layers that provided
a compensation operation for intermittent connections by
token management and check-pointing data transfer. This
permits multiple network sessions to be integrated
together to form one continues data transfer. This type of
method is not available in all network and telecom
protocols for example, TCP / IP, the timing and also the
non-interrupted communication between networked
machines is necessary for the continues operation of the
protocols. By providing a proxy server IR to the client we
maintain the acknowledgement of data packets and also
enable the system to disguise the fact of restarting other
servers, all of this is accomplished in under a couple of
seconds when the entire system is in a non congested
state, to understand the actual operation of IR it is
necessary to examine its two fundamental parts; Restart &
Protocol Mangling.

2 Restart:
The initial communication required for a connection
between networked computers normally requires the

issuing a number of protocol data units (PDU). Each of
these are used to enable the client to register itself with the
server, typically 3 to 5 PDU' s are required, in the TCP
protocol, 3 PDU' s are used in the well know 3-way hand
shake. Our IR system operates in the form of an envelope
that surrounds an unchanged protocol entity, with this
design it is possible to operate between upper and lower
network layers providing a "restartable" component for
most telecommunications and network protocols. Our
envelope makes a data copy of all data that passes through
the layer. On detection of a fault our restart component
reinitialises the connection by reissuing PDU' s and then
creating a new connection. Our envelope, running as a
process, uses a database containing the state information
of the application process and also the protocol process.
Typically this consists of; port number, IP address,
unacked_data, last_seq_number, last_acked_request, etc.
This provides sufficient information to enable the IR
process to restart and to then hide the failure of the
underlying network entity, we accomplish this with the aid
of protocol mangling.

3 Protocol mangling:
This is essentiall y a mapping of all the last known good
state information to the current new state information. It is
necessary so as to cope with the newly regenerated
protocol entity that will have been "reincarnated" with
differing sequence numbering, possibly different port
information and possibly incorrectly matched data. We
use the stored data to correct the data problems of
acknowledged verses unacknowledged data. Then by
mangling the state information such as old_port address to
new_port addresses, old_ip to new_ip and so forth we
make it is possible to disguise the fact of a protocol entity
failure, and continue to operate correctly.

Figure 1. IR envelope communication

STATE DIAGRAM FRAMEWORK

Taking a very simplified initial example we can view a
communication between two communicating processes p
and q (figure 2), we introduce a token datagram which we
pass backwards and forward between the two
communicating processes using the sockets c and c`.

Figure 2. Simple Network example sockets c & c`

We can describe the internal operation of the p process as
two states s0 and s1 and a receive and send operation
enabling transition (figure 3)

Figure 3. State of process p.

With the simple notation of the network we can introduce
the Invisible Recovery (IR) process which we have
designed to provide fault tolerance in communicating
systems. IR is positioned logically between the
communicating processes as in figure 4.1. With this
understanding of the logical layout of the IR process we
can now develop our model to fully encompass the state
transitions of the network operating with IR. We now
present the operation of the network system with IR in a
failure free environment. Firstly we specify that the
network consists of processes P,Q,IR, four socket
connections and a single systems call for the
determination of the Process State of Q.

In state diagram 4.1 we see the initial state of the system,
with p in state S1 i.e. with control. Stated diagram 4.2,
control has left p and therefore p now has state S0. A
token (message, packet or datagram) has been issued to IR
and is in transit within the socket, in state diagram 4.3 the
token is received by IR and changes the state of IR from
S0 to S1. When control passes to IR a series of operations
occur which we will examine in more detail l ater in this

Unchanged network
layer N + 1

Unchanged network
layer N - 1

Protocol Entity

P Q

C

C `

S0 S1

R e cie ve to k e n

S e n d tok e n

paper, initially let use just allow IR to act as a message
forwarding server. State diagram 4.4 show the sending of
token to process Q, control passes from IR.

Figure 4. State diagrams 1 to 4 of network with IR

In state diagrams 5 through 8 we conduct the same
operations looking at the return of the token following its
receipt by q. This simplified model demonstrates clearly
the operation of IR within a communicating system. To
understand the inner operation of IR we now expand the
IR process state diagram and in figure 6 we examine the
steps that IR takes in the forwarding of messages. State
diagrams 6.1 to 6.4 outline how IR checks first for the

status of Q the server process and if following a successful
outcome to this query IR proceeds to send the message to
Q and then receive the resulting response from Q.

Figure 5. State diagrams 5 to 8 of network with IR

State diagrams 7 outline how IR detects a failed server
process, since IR is styled on the inetd super server it is
easy for the IR process to detect the failure of a child
server process and as such take the appropriate action in
storing incoming messages form P and also restarting the
failed process. Let us now examine how IR contends with
this. Initially we sate the operations that are performed in
the IR process as follows;

P

IR
em

pty

1

Q

em
pty

em
pty

em
pty

S1

S0

S0

sys ok

P

IR
to

ken

2

Q

em
pty

em
pty

em
pty

S0

S0

S0

sys ok

P

IR
em

pty

3

Q

em
pty

em
pty

em
pty

S0

S1

S0

sys ok

P

IR
em

pty

4

Q

em
pty

em
pty

token

S0

S0

S0

sys ok

P

IR
em

pty

5

Q

em
pty

em
pty

em
pty

S0

S0

S1

sys ok

P

IR
em

pty

7

Q

em
pty

em
pty

token

S0

S1

S0

sys ok

P

IR
em

pty

8

Q

to
ken

em
pty

token

S0

S0

S0

sys ok

P

IR
em

pty

6

Q

em
pty token

token

S0

S1

S0

sys ok

�
 Receive message from p

�
 Check status of server process (Q)

�
 If Q OK send message

�
 Else save message to store

�
 Restart failed server

�
 Re-send all save messages form store.

�
 Return to normal operation.

Figure 6. IR process state diagrams 1 to 4.

From these diagrams we can see that there is little if any
cost introduced into the communicating process. Although
IR acts as a message forwarding system no memory
caching is necessary and therefor the transit across the IR
process along with the extra two sockets is the entire
overhead of the system this too is on a complete round
trip. If we now introduce the state transition diagrams that

represent the workings of IR while in a state that permits
failures, we see the extra states necessary for the detection
and reconfiguration of the communicating system.

Figure 7. IR detecting crashed server.

Figure 8. IR operating in fail state with dbase.

Figure 8 above show the logical lay out of the dbase
which is used to record incoming messages from P while
Q is being restarted and initialised. Figure 9 outline the
restart and re-sending of messages stored on the dbase
while Q was being reinitialised. Once the store is emptied
IR returns to its standard failure free operation and
continues to do so until a terminal error e.g. shut down,
power failure etc.

IR

1

Q

S 1

S 0

S ys tem

em pty

em pty

k ill pid (Q)

S 0

P

5a

System
S0

S1

Q dead

em pty

em pty kill

P

5b

System
S0

S0Q dead

em pty

c hec k fail kill

P

5c

System
S1

S0Q dead

em pty

em pty

kill

IR

2

Q

S 0

S 1

S ys tem

em pty

em pty

k ill pid(Q)

S 0

IR

3

Q

S 1

S 0

S ys tem

em pty

em pty

k ill pid (Q)

S 0

IR

4

Q

S 0

S 0

S ys tem

token

em pty

k ill pid (Q)

S 0

P

1

IR

Q dead

dbase

Figure 9. IR restart

CONCLUSION & FUTURE WORK
IR appears to be successful and now we intend to examine
its usefulness against other protocols such as DSL. It is
our view that IR can be used in a wide variety of roles
such as those depicted in figure 10.

Figure 10. IR system communications with other protocols

We intend to validate each of these applications with
testing and formal verification particularly for
significantly different protocols such as ADSL or xDSL.

With the increased interest in providing digital television
to the domestic market our technique should enable the
recovery of such systems in a fast and low cost manner.

REFERENCES
[1] Mitchell , G.G., Brown, S., "An Approach for

Network Communications Systems Recovery",
Applied Informatics 2000, Innsbruck, Austria, pp
575-578, 0-88986-280-X, 2000.

[2] Johnson D.B., Personal communication. June 2000.

[3] Elnozahy, M., Alvisi, A., Wang, Y., Johnson D.B.,
"A Survey of Rollback-Recovery Protocols in
Message-Passing Systems" School of Computer
Science Carnegie Mellon University, Pittsburgh, PA
15213 USA. CMU-CS-99-148, June 1999.

[4] A. Spector & D. Gifford, The Space Shuttle Primary
Computer System, Communications of the ACM,
27(9), 1984.

[5] B.Randell , System structure for software fault
tolerance, IEEE Transactions on Software
Engineering, SE 1, June 1975, 220-232.

[6] P.A. Lee, and T. Anderson, Fault Tolerant Principles
and Practice 2 ed., (Wien - New York: Springer -
Verlag, 1990).

[7] M.R. Lyu, Software Fault Tolerance, (New York:
John Wiley and Sons Inc, 1995).

[8] Johnson D.B, “Distributed System Fault Tolerance
Using Message Logging and Checkpointing” , Rice
University, Houston, Texas, December 1989.

IR

Application
 e.g. Telnet / TV

Network protocol
UDP / TCP / DSL

Network protocol
UDP / TCP / DSL

Application
 e.g. Telnet / TV

Dbase

I R

1

System

new Q

I R

2

System

Qi

kill

Q ok

I R

3

System

Qi

kill

Q ok

dbase

send
recieve

