
Validity Constraints and the TSP – GeneRepair of Genetic Algorithms

George G. Mitchell
Department of Computer Science

National University of Ireland, Maynooth
Ireland

georgem@cs.nuim.ie

Abstract
In this paper we present the outcome of a sets of
experiments to evaluate the effectiveness of a new
adjunct genetic operator GeneRepair. This operator was
developed to correct invlaid tours which may be
generated following crossover or mutation of our
particular implementation of the genetic algorithm.
Following implementation and testing of our genetic
algotihm with GeneRepair we found a significant
positive side in our results. Using GeneRepair along side
traditional crossover and mutation operators we have
been able to travers the search space of a problem and
generate very good results in an extremely efficent
manner, in both time and number of evaluations required.

KEY WORDS
Genetic Algorithms, TSP, Optimisation, Problem
Constraints, GeneRepair.

1 Introduction
In this paper we present a novel approach to solving
permutation problems that uses only standard crossover
and standard mutation. We isolate the problem constraints
in a separate operator, which operates as an adjunct
operator to the standard set of genetic operators.
This approach is applicable to any problem domain where
the solution constraints can be identified in the gene
string. In this paper we explore two different types of
permutation problems. We look at the Travelling
Salesman Problem (TSP), which is a well-known NP-
Complete problem [1]. The TSP involves visiting all cities
on a map, generating the shortest total tour distance. As
Mitchell [2] points out:

“some type of encoding require specially defined
crossover and mutation operators... like the Traveling
Salesman Problem in which the task is to find a correct
ordering for a collection of objects”.

2 Representation and Operators
The natural choice of representation for the TSP is an
Order-based representation. These have been successfully
applied to the TSP and the very similar Vechicle Routing
Problem VRP problems by Fogel [3, 4, 5], Banzhaf [6],
Ambati [7] and Pereira et al [8]. Additionally, the genetic
operators employed must also be Order-based. If either
the representation or the operators do not respect the
Order based nature of the problem, then invalid solutions
will be generated.

First, we looked at the crossover operators that respect the
Order-based nature of permutation problems, and prevent
the introduction of errors such as invalid tours [2]. The
order preserving crossover operators that have been
developed include: Order Crossover [9], Modified
Crossover [10], Partially Mapped Crossover [11], Cycle
Crossover [12], 2-quick / 2-repair [13], plus a number of
less frequently used crossover operators [14].

Secondly, we looked at Order-based mutation operators
developed for Order-based problems. These include:
Displacement Mutation [15], Exchange Mutation [6],
Insertion Mutation [3, 15], Simple Inversion Mutation
[16, 17], Inversion Mutation [4, 5] and other order
preserving mutation [18].

We present a solution for Order-based problems that uses
only standard crossover and standard mutation. To
counteract the invalid tours that occur as a result, we
introduce GeneRepair - a genetic repair operator that has a
number of positive effects: It allows the use of standard
GA libraries, with the addition of a single repair operator
for permutation problems. It simplifies the understanding
of the GA, by allowing the use of standard crossover and
mutation for Order-based problems. Finally, it removes
problem specific activities from the genetic operators
themselves, and isolates it in a single intra-generation
operation.

3 GeneRepair
The GeneRepair enhanced genetic algorithm operates in
the manner of traditional genetic algorithms, and can be
summarized as follows:

1. Generate the initial population P(0) at random
and set i = 0;

2. Evaluate the fitness of each individual in P(i);
3. Select parents from P(i) based on their fitness.
4. Apply standard crossover
5. Apply standard mutation.
6. Apply GeneRepair.
7. Repeat until convergence.

The TSP is NP-Complete, and may be characterized by
two separate facets: Optimisation and Permutation.
Responsibility for optimisation lies with the standard
genetic algorithm, which effectively remains unchanged
from Holland [16]. Responsibility for only allowing valid
permutation in the population lies solely with the
GeneRepair operator.

3.1 Solution Constraints

Combinatorial problems like the TSP place constrains on
the valid solutions. Solutions are only valid when all N
cities in the problem are present in the solution. Thus, we
use a fixed-length chromosome to represent our tours.
Furthermore, a solution is only considered valid when all
cities are represented once only in the solution, and no
cities are absent. These constraints act as a trigger for the
application of the GeneRepair operator.
Non order-preserving crossover (above) can cause a
violation of the validity constraint, by combining parent
strings, which result in invalid offspring. See Figure 1.
Similarly, non order-preserving mutation operators can
also generate invalid solutions. This happens when
mutation randomly inserts a city that already exists in the
solution.

Figure 1: Constraint violation by 2-Point Crossover.

In practice, GeneRepair examines each tour in turn,
enforcing the following:

1. Correct number of cities in the tour

2. No duplicate cities
3. No missing cities

These constrains invoke the GeneRepair operator, and
identifies the string the location of duplicate cities (see
Figure 2).

Figure 2: GeneRepair- Invalid cities identified.

3.2 Repair

Knowing the location of the offending cities, GeneRepair
replaces these cities iteratively with valid cities retrieved
from a corrective template. The first strategy investigated
was to replace the duplicate cities with the missing cities,
according to a pre-determined template (see Figure 3).

Figure 3: GeneRepair- correction of tour.

The majority of GeneRepair replacements were
performed in a left-to-right manner - replacing the left-
most duplicate city first. Additionally, the replacement
city was retrieved from the template also in a left-to-right
manner. However, brief evaluation of a random
replacement technique, randomly selecting the
replacement city from the template was also evaluated.
Initial results show no identifiable difference between the
two techniques.

The replaced city is selected according to a corrective
template. Three different types of template were
investigated:

1. Static template. This consisted of a preset valid
tour, and remained constant throughout.

2. Parent-based Template. Select the fitter parent,
and use that as the corrective template. This
template varied for every corrected individual.

Parent 1 0 1 2 3 4 |5 6 7 8 |9
Parent 2 8 4 1 6 3 |7 9 2 0 |5

Child 1 0 1 2 3 4 |7 9 2 0 |9
Child 2 8 4 1 6 3 |5 6 7 8 |5

Detection of invalid cities:
Child 1 0 1 2 3 4 7 9 2 0 9

GeneRepair Template 0 1 2 3 4 5 6 7 8 9
 | | | | |
(i) Child 1 0 1 2 3 4 7 9 2 0 9

 (ii)Child 1GeneRepaired 0 1 2 3 4 7 9 5 6 8

3. Random Template. For each corrected individual
a new template of random numbers was
generated, within the validity constraints of the
TSP problem.

Each of these techniques was tested on a select number of
TSP problems. The parent-based solution produced the
worst results. Both random and fixed template solutions
produced good results, with the randomly generated
template producing marginally better results.

4 Experiment 1 - TSP
We evaluated GeneRepair on the TSP benchmark
problems from the Heidelberg TSPLIB problem set [19].
We previously investigated the use of GeneRepair versus
non-GeneRepair Genetic Algorithm TSP and VRP search
[20]. For these experiments we investigated the potential
of the GeneRepair based solution, without reference to a
non-GeneRepair implementation.
We optimised the genetic parameters of crossover and
mutation in order to produce the best solutions on selected
TSP problems. This investigated the ability of
GeneRepair to generate optimal solutions only, as the
benchmark solutions are assured optimal solutions.
We conducted approximately 6 experiments on each of
the 3 following problem sets, eli51, st70 and eil101.
Throughout all experiments the population size was the
square of the number of cities in the problem set.
Tournament and roulette wheel selection (but not
truncation selection) were used. Only 1-point and 2-point
crossover was investigated. Exchange mutation was used
exclusively, with rates varying between 0% and 10%.
The first problem set involved a 51-city TSP problem.
Tests revealed the optimal mutation rate to be 0.75%.
The second problem involved 70 cities and optimality was
found with mutation at 0.76%.
The final problem involved 101 cities and again a
mutation rate of 0.76 was found to be the best. Figure 4
illustrates the test conducted for each of the problem set to
obtain the optima mutation rate. An experiment was
conducted to evaluate the effects of an adaptive mutation
rate Figure 5 illustrates the effect of this adaptive
mutation rate. The Genetic Algorithm clearly improves
following a mutation rate change with improvements
being made at approximately 3,500, 7,000 and 17,000
generations. The adaptive mutation rate initially changes
at 5000 generations causing some diversity in the
population and resulting in improvements in the tour
length.
The number of repairs for the first thousand generations
of the algorithm is initially high, even when a low
mutation rate is applied. The percentage of repairs
declines rapidly to between 1% and 2%, as can been seen
in figure 6. It is important to note that with a low mutation
rate, information in the population is exploited and the
mutation effect of GeneRepair is embraced. GeneRepair

in essence can be viewed as a second mutation operator
whilst maintaining problem validity.

Figure 4: Distance at various mutation rates

Figure 5: Adaptive mutation effect on GA convergence

Figure 6: Percentage of repairs for each problem

Another important metric to be considered when
examining GeneRepair enhanced Genetic Algorithms is
the number of improvements versus mutation rate, this is
illustrated in figure 7.

Figure 7: No of improvements at specific Mutation rates

Figure 8: No of generations to find best average solution

Figure 9: No of generations to find best average solution

Figure 7 and 8 illustrate how poor selection of mutation
rate can lead to wasteful use of computation time. Figure
10 illustrates the impact that selection operator and
crossover type together with mutation rate has on the best
solution found.

Figure 10: Effect of mutation, crossover & selection

5 Explanation for GENEREPAIR
GeneRepair is composed of two distinct tasks: fault
detection and fault correction. To help identify the exact
reason for GeneRepairs‘ improvement in performance, we
analysed each phases in turn.
First we measure the frequency with which GeneRepair
was invoked. GeneRepair repaired approximately 11% of
the alleles, while solving the benchmark TSP problems.
Additionally, some of these alleles required multiple
repair operations. (As may be expected, these figures are
higher during the first 100 epochs). For comparison, we
recorded the number of invalid tours generated by our
solution without GeneRepair [20]. Approximately 15% of
individuals were found to violate the TSP validity
constraint.
In general, GeneRepair does increase the number of
generated individuals that form part of the valid search
space. However, this relatively modest increase in the
search space does not adequately account for the
significant increase in performance obtained. For
example, increasing the population size to allow for this
11% wastage, had little effect on the quality of the results
generated.
Next we investigated the fault correction part of
GeneRepair. First, we analyse how errors are introduced.
Crossover introduces the majority of errors as it is always
applied. It does this by combining incompatible sections
of tours. (See figure 1)
N-point-Crossover preserves the identicallity between
both parents. Thus, the GeneRepair operator is invoked

more during early evolution than it is when we reach
convergence.
Secondly, the replacement strategy replaces invalid (i.e.
duplicate) genes with missing genes, according to the
replacement strategy described above. So, in conclusion,
GeneRepair is a multi-point mutation operator, that is
applied heavily during early evolution and rarely applied
when convergence is achieved.
1-point mutation tends to introduce errors and,
GeneRepair will Fix the error, but it does So randomly.
Either the mutation will remain unaffected by GeneRepair
and another duplicate city will be replaced. This has tie
effect of causing 2-point mutation. Alternatively, the
mutation itself will be repaired, which Reduces the level
of mutation. Importantly, the mutation introduced by
GeneRepair is Not an alternative to standard mutation, as
standard mutation is still required when near-optimal
convergence is reached. Initial results seem to indicate
that the reduction in mutation is (at least partly)
counteracted by GeneRepair's introduction of its own
mutogenic effect, but investigations are ongoing.
This may account for our improved performance as it
effectively prohibits the problem of premature
convergence. Furthermore, it is applied less frequently
during final convergence, allowing an optimal to be
achieved. (This seems to mimic the operation of a
Boltzman machine on simulated annealing problems.)
However, investigations are at a relatively early phase,
and research is ongoing.

6 Future work
The experiments performed so far highlight the need for a
number of further investigations. Future work is necessary
to compare the effectiveness of GeneRepair against the
order-preserving crossover and mutation operators. We
will also conduct experiments to evaluate the
effectiveness of GeneRepair on large problems with more
than 1000 cities. Finally, we will explore the interplay
between standard mutation and the mutogenic effects of
GeneRepair. This may involve the use of an adaptive
mutation rate in conjunction with GeneRepair.

7 Conclusion
We solved a permutation problem by combining standard
genetic operators with a novel genetic repair operator -
GeneRepair. Validity constraints that originate in the
problem domain are thus centralized in a single repair
operator. We explored the use of GeneRepair on the TSP,
using the fitness function to optimise the solution while
GeneRepair ensures the validity of solutions. This
approach is potentially applicable to any domain where
the solution constraints can be separated from the fitness
function. Results produced so far have either reached
global optimal solutions, or have been close to optimal

solutions. Furthermore, solutions appear to be produced in
a relatively small number of generations. We examined
the higher levels of early mutation that result from
GeneRepair operations, as one possible explanation for
the results produced so far.

References:

[1] M.R Garey and D.S. Johnson (1979). Computers and
Intractability. A Guide to the Theory of NP-Completeness.
New York, NY: W. H Freeman and Company.

[2] M. Mitchell (1999). An Introduction to Genetic
Algorithms, Cambridge USA, London UK: MIT Press.

[3] D.B. Fogel (1988), An Evolutionary Approach to the
Travelling Salesman Problems , Biological Cybernetics,
60 : 139-144.

[4] D.B. Fogel (1993), Empirical Estimation of the
Computation Required to Discover Approximate
Solutions to the Travelling Salesman Problem Using
Evolutionary Programming, Proceedings of 2nd Annual
Conference on Evolutionary Programming, 56-61.

[5] D.B. Fogel (1993), Applying Evolutionary
Programming to Selected Travelling Salesman Problems,
Cybernetics and Systems: An International Journal, 24 :
27-36

[6] W. Banzhaf (1990), The “Molecular” Travelling
Salesman, Biological Cybernetics, 64 : 7-14.

[7] B.K. Ambati, J. Ambati and M.M. Mokhtar (1991),
Heuristic Combinatorial Optimisation by Simulated
Darwinian Evolution: a Polynomial Time Algorithm for
the Traveling Salesman Problem, Biological Cybernetics,
65 : 31-35.

[8] F. B. Pereira, J. Tavares, P. Machado, and E. Costa
(2002), GVR: a New Genetic Representation for the
Vehicle Routing Problem, Proceedings of the 13th Irish
Conference on Artificial Intelligence and Cognitive
Science, 95-102.

[9] G. Syswerda (1991), Schedule Optimization Using
Genetic Algorithms, Handbook of Genetic Algorithms,
New York NY, Van Nostrand Reinhold, 350-372.

[10] L. Davis (1985), Applying Adaptive Algorithms to
Epistatic Domains, Proceedings of the International Joint
Conference on Artificial Intelligence, 162-164.

[11] D.E. Goldberg and R. Lingle (1985), Alles, Loci and
the TSP, Proceedings of the First International
Conference on Genetic Algorithms and Their
Applications, 154-159.

[12] I.M. Oliver, D.J. Smith and J.R.C. Holland (1987),
A Study of Permutation Crossover Operators on the TSP,
Genetic Algorithms and Their Applications: Proceedings
of the Second International Conference, 224-230.

[13] M. Gorges-Schleuter (1989) ASPARAGOS An
Asynchronous Parallel Genetic Optimization Strategy,
Proceedings of the Third International Conference on
Genetic Algorithms, 422-427.

[14] Crawford, K. D., R. Wainwright (1996), Research
Question: How does one go about developing a new
crossover operator with an a priori expectation of its
merit? (A Survey of Crossover Operators for Genetic
Algorithms), Technical Report UTULSA-MCS-96-2, The
University of Tulsa, USA.

[15] Z. Michalewicz (1992), Genetic Algorithms + Data
Structures = Evolution Programs, Berlin Germany,
Springer Verlag.

[16] J. Holland (1975), Adaptation in Natural and
Artificial Systems, Ann Arbor USA, University of
Michigan.

[17] J. Grefenstette, R. Gopal, B. Rosmaita and D. Van
Gucht (1985), Genetic Algorithms for the TSP,
Proceedings of the First International Conference on
Genetic Algorithms and Their Applications, 160-65.

[18] P. Larrañaga, C.M.H Kuijpers, R.H. Murga, I. Inza
and S. Dizdarevic (1999), Genetic Algorithms for the
Travelling Salesman Problem A Review of
Representations and Operators, Artificial Intelligence
Review, 13 : 129 – 170.

[19] G. Reinelt. (1991), TSPLIB: A traveling salesman
problem library. ORSA Journal on Computing, 3:376—
384.

[20] G.G. Mitchell, D. O’Donoghue, D Barnes, M
McCarville (2003), GeneRepair - A Repair Operator for
Genetic Algorithms, Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO ’03,
LBP, 88-93.

