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Abstract 
In this paper we present the outcome of a sets of 
experiments to evaluate the effectiveness of a new 
adjunct genetic operator GeneRepair. This operator was 
developed to correct invlaid tours which may be 
generated following crossover or mutation of our 
particular implementation of the genetic algorithm. 
Following implementation and testing of our genetic 
algotihm with GeneRepair we found a significant 
positive side in our results. Using GeneRepair along side 
traditional crossover and mutation operators we have 
been able to travers the search space of a problem and 
generate very good results in an extremely efficent 
manner, in both time and number of evaluations required.      
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1 Introduction 
In this paper we present a novel approach to solving 
permutation problems that uses only standard crossover 
and standard mutation. We isolate the problem constraints 
in a separate operator, which operates as an adjunct 
operator to the standard set of genetic operators. 
This approach is applicable to any problem domain where 
the solution constraints can be identified in the gene 
string. In this paper we explore two different types of 
permutation problems. We look at the Travelling 
Salesman Problem (TSP), which is a well-known NP-
Complete problem [1]. The TSP involves visiting all cities 
on a map, generating the shortest total tour distance. As 
Mitchell [2] points out:  
 
“some type of encoding require specially defined 
crossover and mutation operators... like the Traveling 
Salesman Problem in which the task is to find a correct 
ordering for a collection of objects”. 

 

2 Representation and Operators 
The natural choice of representation for the TSP is an 
Order-based representation. These have been successfully 
applied to the TSP and the very similar Vechicle Routing 
Problem VRP problems by Fogel [3, 4, 5], Banzhaf [6], 
Ambati [7] and Pereira et al [8]. Additionally, the genetic 
operators employed must also be Order-based. If either 
the representation or the operators do not respect the 
Order based nature of the problem, then invalid solutions 
will be generated. 
 
First, we looked at the crossover operators that respect the 
Order-based nature of permutation problems, and prevent 
the introduction of errors such as invalid tours [2]. The 
order preserving crossover operators that have been 
developed include: Order Crossover [9], Modified 
Crossover [10], Partially Mapped Crossover [11], Cycle 
Crossover [12], 2-quick / 2-repair [13], plus a number of 
less frequently used crossover operators [14].  
 
Secondly, we looked at Order-based mutation operators 
developed for Order-based problems. These include: 
Displacement Mutation [15], Exchange Mutation [6], 
Insertion Mutation [3, 15], Simple Inversion Mutation 
[16, 17], Inversion Mutation [4, 5] and other order 
preserving mutation [18].  
 
We present a solution for Order-based problems that uses 
only standard crossover and standard mutation. To 
counteract the invalid tours that occur as a result, we 
introduce GeneRepair - a genetic repair operator that has a 
number of positive effects: It allows the use of standard 
GA libraries, with the addition of a single repair operator 
for permutation problems. It simplifies the understanding 
of the GA, by allowing the use of standard crossover and 
mutation for Order-based problems. Finally, it removes 
problem specific activities from the genetic operators 
themselves, and isolates it in a single intra-generation 
operation. 



3 GeneRepair  
The GeneRepair enhanced genetic algorithm operates in 
the manner of traditional genetic algorithms, and can be 
summarized as follows: 
 

1. Generate the initial population P(0) at  random 
and set i = 0; 

2. Evaluate the fitness of each individual in P(i); 
3. Select parents from P(i) based on their fitness. 
4. Apply standard crossover  
5. Apply standard mutation. 
6. Apply GeneRepair. 
7. Repeat until convergence. 

 
The TSP is NP-Complete, and may be characterized by 
two separate facets: Optimisation and Permutation. 
Responsibility for optimisation lies with the standard 
genetic algorithm, which effectively remains unchanged 
from Holland [16]. Responsibility for only allowing valid 
permutation in the population lies solely with the 
GeneRepair operator.  
 
 

3.1 Solution Constraints 

Combinatorial problems like the TSP place constrains on 
the valid solutions. Solutions are only valid when all N 
cities in the problem are present in the solution. Thus, we 
use a fixed-length chromosome to represent our tours. 
Furthermore, a solution is only considered valid when all 
cities are represented once only in the solution, and no 
cities are absent. These constraints act as a trigger for the 
application of the GeneRepair operator.  
Non order-preserving crossover (above) can cause a 
violation of the validity constraint, by combining parent 
strings, which result in invalid offspring. See Figure 1.  
Similarly, non order-preserving mutation operators can 
also generate invalid solutions. This happens when 
mutation randomly inserts a city that already exists in the 
solution. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Constraint violation by 2-Point Crossover. 
 
In practice, GeneRepair examines each tour in turn, 
enforcing the following: 
 
1. Correct number of cities in the tour 

2. No duplicate cities 
3. No missing cities  
 
These constrains invoke the GeneRepair operator, and 
identifies the string the location of duplicate cities (see 
Figure 2).  

 
Figure 2: GeneRepair- Invalid cities identified. 
 
 

3.2 Repair 

Knowing the location of the offending cities, GeneRepair 
replaces these cities iteratively with valid cities retrieved 
from a corrective template. The first strategy investigated 
was to replace the duplicate cities with the missing cities, 
according to a pre-determined template (see Figure 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: GeneRepair- correction of tour. 
 
The majority of GeneRepair replacements were 
performed in a left-to-right manner - replacing the left-
most duplicate city first. Additionally, the replacement 
city was retrieved from the template also in a left-to-right 
manner. However, brief evaluation of a random 
replacement technique, randomly selecting the 
replacement city from the template was also evaluated. 
Initial results show no identifiable difference between the 
two techniques. 
 
The replaced city is selected according to a corrective 
template. Three different types of template were 
investigated: 
 

1. Static template. This consisted of a preset valid 
tour, and remained constant throughout.  

2. Parent-based Template. Select the fitter parent, 
and use that as the corrective template. This 
template varied for every corrected individual. 

 

Parent 1     0 1 2 3 4 |5 6 7 8 |9  
Parent 2     8 4 1 6 3 |7 9 2 0 |5  
 
Child 1     0 1 2 3 4 |7 9 2 0 |9  
Child 2     8 4 1 6 3 |5 6 7 8 |5  

 
Detection of invalid cities: 
Child 1     0 1 2 3 4 7 9 2 0 9  
 
   
 

      

GeneRepair Template 0 1 2 3 4 5 6 7 8 9  
     | |  |   |  |  
(i) Child 1  0 1 2 3 4 7 9 2 0 9   
 
 (ii)Child 1GeneRepaired 0 1 2 3 4 7 9 5 6 8                                            
 
 
 



3. Random Template. For each corrected individual 
a new template of random numbers was 
generated, within the validity constraints of the 
TSP problem. 

 
Each of these techniques was tested on a select number of  
TSP problems. The parent-based solution produced the 
worst results. Both random and fixed template solutions 
produced good results, with the randomly generated 
template producing marginally better results.  
 

4 Experiment 1 - TSP 
We evaluated GeneRepair on the TSP benchmark 
problems from the Heidelberg TSPLIB problem set [19]. 
We previously investigated the use of GeneRepair versus 
non-GeneRepair Genetic Algorithm TSP and VRP search 
[20]. For these experiments we investigated the potential 
of the GeneRepair based solution, without reference to a 
non-GeneRepair implementation.  
We optimised the genetic parameters of crossover and 
mutation in order to produce the best solutions on selected 
TSP problems. This investigated the ability of 
GeneRepair to generate optimal solutions only, as the 
benchmark solutions are assured optimal solutions.  
We conducted approximately 6 experiments on each of 
the 3 following problem sets, eli51, st70 and eil101. 
Throughout all experiments the population size was the 
square of the number of cities in the problem set. 
Tournament and roulette wheel selection (but not 
truncation selection) were used. Only 1-point and 2-point 
crossover was investigated. Exchange mutation was used 
exclusively, with rates varying between 0% and 10%.  
The first problem set involved a 51-city TSP problem. 
Tests revealed the optimal mutation rate to be 0.75%.  
The second problem involved 70 cities and optimality was 
found with mutation at 0.76%.  
The final problem involved 101 cities and again a 
mutation rate of 0.76 was found to be the best. Figure 4 
illustrates the test conducted for each of the problem set to 
obtain the optima mutation rate. An experiment was 
conducted to evaluate the effects of an adaptive mutation 
rate Figure 5 illustrates the effect of this adaptive 
mutation rate. The Genetic Algorithm clearly improves 
following a mutation rate change with improvements 
being made at approximately 3,500, 7,000 and 17,000 
generations. The adaptive mutation rate initially changes 
at 5000 generations causing some diversity in the 
population and resulting in improvements in the tour 
length.  
The number of repairs for the first thousand generations 
of the algorithm is initially high, even when a low 
mutation rate is applied. The percentage of repairs 
declines rapidly to between 1% and 2%, as can been seen 
in figure 6. It is important to note that with a low mutation 
rate, information in the population is exploited and the 
mutation effect of GeneRepair is embraced. GeneRepair 

in essence can be viewed as a second mutation operator 
whilst maintaining problem validity.  
 
 
 

 
Figure 4: Distance at various mutation rates 
 
 

Figure 5: Adaptive mutation effect on GA convergence  
 

 
Figure 6: Percentage of repairs for each problem 



 
Another important metric to be considered when 
examining GeneRepair enhanced Genetic Algorithms is 
the number of improvements versus mutation rate, this is 
illustrated in figure 7.  
 

 
Figure 7: No of improvements at specific Mutation rates 

 
Figure 8: No of generations to find best average solution 

 

 
Figure 9: No of generations to find best average solution 
 
 

Figure 7 and 8 illustrate how poor selection of mutation 
rate can lead to wasteful use of computation time.  Figure 
10 illustrates the impact that selection operator and 
crossover type together with mutation rate has on the best 
solution found. 
 

 
 

Figure 10: Effect of mutation, crossover & selection 
 
 

5   Explanation for GENEREPAIR 
GeneRepair is composed of two distinct tasks: fault 
detection and fault correction. To help identify the exact 
reason for GeneRepairs‘ improvement in performance, we 
analysed each phases in turn. 
First we measure the frequency with which GeneRepair 
was invoked. GeneRepair repaired approximately 11% of 
the alleles, while solving the benchmark TSP problems. 
Additionally, some of these alleles required multiple 
repair operations. (As may be expected, these figures are 
higher during the first 100 epochs). For comparison, we 
recorded the number of invalid tours generated by our 
solution without GeneRepair [20]. Approximately 15% of 
individuals were found to violate the TSP validity 
constraint.  
In general, GeneRepair does increase the number of 
generated individuals that form part of the valid search 
space. However, this relatively modest increase in the 
search space does not adequately account for the 
significant increase in performance obtained. For 
example, increasing the population size to allow for this 
11% wastage, had little effect on the quality of the results 
generated.  
Next we investigated the fault correction part of 
GeneRepair. First, we analyse how errors are introduced. 
Crossover introduces the majority of errors as it is always 
applied. It does this by combining incompatible sections 
of tours. (See figure 1) 
N-point-Crossover preserves the identicallity between 
both parents. Thus, the GeneRepair operator is invoked 



more during early evolution than it is when we reach 
convergence.  
Secondly, the replacement strategy replaces invalid (i.e. 
duplicate) genes with missing genes, according to the 
replacement strategy described above. So, in conclusion, 
GeneRepair is a multi-point mutation operator, that is 
applied heavily during early evolution and rarely applied 
when convergence is achieved.  
1-point mutation tends to introduce errors and, 
GeneRepair will Fix the error, but  it does So randomly. 
Either the mutation will remain unaffected by GeneRepair 
and another duplicate city will be replaced. This has tie 
effect of  causing 2-point  mutation. Alternatively, the 
mutation itself will be repaired, which Reduces the level 
of mutation. Importantly, the mutation introduced by 
GeneRepair is Not an alternative to standard mutation, as 
standard mutation is still required when near-optimal 
convergence is reached. Initial results seem to indicate 
that the reduction in mutation is (at least partly) 
counteracted  by GeneRepair's introduction of its own 
mutogenic effect, but investigations are ongoing.      
This may account for our improved performance as it 
effectively prohibits the problem of premature 
convergence. Furthermore, it is applied less frequently 
during final convergence, allowing an optimal to be 
achieved. (This seems to mimic the operation of a 
Boltzman machine on simulated annealing problems.) 
However, investigations are at a relatively early phase, 
and research is ongoing.    
 

6 Future work         
The experiments performed so far highlight the need for a 
number of further investigations. Future work is necessary 
to compare the effectiveness of GeneRepair against the 
order-preserving crossover and mutation operators. We 
will also conduct experiments to evaluate the 
effectiveness of GeneRepair on large problems with more 
than 1000 cities. Finally, we will explore the interplay 
between standard mutation and the mutogenic effects of 
GeneRepair.  This may involve the use of an adaptive 
mutation rate in conjunction with GeneRepair.   
 
 

7 Conclusion   
We solved a permutation problem by combining standard 
genetic operators with a novel genetic repair operator - 
GeneRepair. Validity constraints that originate in the 
problem domain are thus centralized in a single repair 
operator. We explored the use of GeneRepair on the TSP, 
using the fitness function to optimise the solution while 
GeneRepair ensures the validity of solutions. This 
approach is potentially applicable to any domain where 
the solution constraints can be separated from the fitness 
function. Results produced so far have either reached 
global optimal solutions, or have been close to optimal 

solutions. Furthermore, solutions appear to be produced in 
a relatively small number of generations. We examined 
the higher levels of early mutation that result from 
GeneRepair operations, as one possible explanation for 
the results produced so far. 
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