
Design, Implementation and Analysis of a
Twitter-based Social IoT Network

Danielle Sheridan∗, Anderson Augusto Simiscuka† and Gabriel-Miro Muntean‡
School of Electronic Engineering, Dublin City University, Dublin

Email: ∗danielle.sheridan37@mail.dcu.ie, †anderson.simiscuka2@mail.dcu.ie, ‡gabriel.muntean@dcu.ie

Abstract—The Internet of Things (IoT) is a fast-growing
phenomenon that interconnects machines to other machines to
communicate and share data. There is a new found interest to
connect every day objects to the internet, thus the emerging
smart homes and smart cities era, in which household objects
and devices throughout the city, such as traffic lights, are online.
Similarly, social media connects people to people, while IoT
mirrors these connections with devices. This paper introduces
a solution for interconnecting users and devices through the
use of Twitter, one of the most used social networks. Twitter
provides an extensive endpoint API and acts a suitable platform
for human-to-machine communication. The solution presented
allows human-to-machine connection through IoT protocols such
as REST and MQTT, and integrated IoT devices to Twitter and
a cloud-based server. Results analysis indicate the ideal settings
and protocols for this social IoT network.

Index Terms—IoT, social IoT, social media, cloud.

I. INTRODUCTION

The Internet of Things (IoT) enables a plethora of devices to
communicate with each other and share data through commu-
nication protocols such as WiFi, Bluetooth, IEEE 802.15.4,
Z-wave, Radio Frequency Identification (RFID), Near-field
communication (NFC) and SigFox [1]. Machine-to-machine
(M2M) features incorporated into IoT allow machines to make
decisions based on data. Several solutions aim to improve
service delivery and user experience in IoT, which can be
challenging due to the heterogeneity of the network and the
variety of devices [2], [3], [4], [5]. A new paradigm known as
the Social Internet of Things (SIoT) has emerged and it incor-
porates social networking concepts into IoT. These concepts
include a structure with guaranteed route navigation, which
will ensure scalability and effective discovery of connected
objects and trust between connected objects and users that are
‘friends’ within the SIoT platform [6].

Based on these concepts, this paper introduces a novel social
IoT network which uses the Twitter platform to allow users to
control IoT devices remotely. A detailed presentation of the
principle and testbed (illustrated in Fig. 1), is included, as well
as the associated algorithms and protocols. Noteworthy is that
a cloud-based server is integrated into the solution.

This paper is organised as follows. In section II, related
works are presented and section III introduces the technical
background of the solution. Section IV details the design
and implementation of the testbed, and section V presents
testing and results. Section VI finalises the paper indicating
the conclusions and future work directions.

Fig. 1. Twitter-based social IoT network testbed

II. RELATED WORKS

A. IoT Protocols

IoT devices use M2M communications to interact with each
other and it is estimated that by 2022, there will be 14.6 billion
M2M connections [7]. Due to this increase in network traffic,
it is critical for IoT protocols to meet requirements that will
lessen the load for the network. Examples of protocols being
employed in IoT are the Hypertext Transfer Protocol (HTTP)
and the Message Queuing Telemetry Transport (MQTT).

REST (Representational State Transfer) is an architectural
style over HTTP protocol that uses a request/response model.
It is stateless, which means that each request from a client
to the server must contain all data necessary for the server
to process the request, as the connection is always closed
after the request. One of the advantages of REST is the fact
it uses methods from the HTTP library such as GET, POST
and DELETE requests and can be implemented in most pro-
gramming languages and embedded devices as most operating
systems include this library [8]. However, constrained devices
with limited memory and power do not need all of these
methods, and other HTTP features prove useless in an IoT
environment, including design orientation. In [9], the author
demonstrated how RESTful interfaces can be used to create
a complex IoT structure, with several homogeneous devices.
However, due to the resources required to perform HTTP
requests, receive HTTP responses and, as pointed out in [10],
the high usage of network resources to establish a connection



each time there is any transfer of data, REST may not be the
most ideal protocol for lightweight M2M communications.

MQTT is an extremely lightweight messaging protocol that
uses TCP as the transport layer in the TCP/IP model [11].
MQTT uses a publish/subscribe messaging model. In this
model, there are subscribers, publishers and a broker. The
subscriber receives the data that is sent by the publisher if it
is subscribed to the data/topic being published, and the broker
remains centred within this message exchange to manage the
events. A subscriber can be subscribed to many topics at the
one time [12]. MQTT was created to achieve three main goals:
reliable degree of delivery assurance of messages, lightweight
design to minimise network bandwidth and easy to implement
on embedded devices with low resource requirements [13].
MQTT data is transferred as byte arrays unlike REST, which
needs to define content type. There are few messages types
included with MQTT such as, CONNECT, PUBLISH, SUB-
SCRIBE, UNSUBSCRIBE and DISCONNECT. Regarding
message size, MQTT uses short headers, two bytes is the
minimum packet size for a message, one byte for control field
and one byte for packet length field, which is all that is needed
in a DISCONNECT message.
B. IoT and Social Media

In [14], authors stated that the majority of young people
receive information on world events through the use of so-
cial media platforms such as Twitter, Instagram, YouTube,
Snapchat and WhatsApp, to name a few. Another application
of social media analytics was presented in [15], aiming to use
information concerning the emotional states of users through
content they shared. The real time sharing of these updates
could create faster emergency responses or improve crime
control. Social media allows users to update a status which can
be viewed by the user’s friends. Similarly, with the concept
SIoT, an object can update its status and location, and be
seen by the friends of this device, which may be people or
other objects. An implementation of an SIoT network in a
smart home environment using Facebook was introduced in
[16]. This study presented the benefits of using social media
features in IoT to monitor and control connected devices in a
home environment, taking advantage of the Facebook security
system to keep data private and visible to a chosen audience.
Authors, however, did not perform any network analysis.

Twitter is one of the world’s biggest social media platforms,
with around 500 million tweets sent each day by its about 326
million users [17]. It has an accessible API that can only be
accessed with an approved developers account. Twitter has a
character limit when creating tweets. This ensures that packets
being received through the API will not be too large and slow
down the transmission time. Twitter also prevents duplicated
posts, which display an error message on the Twitter UI if
attempted, in order to prevent spamming, also useful for the
solution presented in this paper.

III. TECHNICAL BACKGROUND

The solution design consists of mechanisms that allow
users to tweet actions to be performed by IoT devices and

Fig. 2. Tweet format

Fig. 3. Tweet response from device

receive tweets with notifications of status changes. This section
presents the technical details of the components that are part
of the Twitter-IoT solution.

A. Communication Structure

Users can interact with devices by writing tweets from any
twitter account, as long as not blacklisted in the IoT gateway.
Tweets need to follow a certain structure that can be translated
into device actions containing relevant information such as,
the device in which the user wants to access a component, the
target component on that device and the action desired (e.g.
turn on/off).

The use of the hash sign (#) at the start of a particular
word or phrase is an essential part of ‘Tweeting’ known as
‘hashtagging’. Hashtags are used to identify tweets that belong
to a certain subject or category. The hashtag used in the testbed
was “#GM22FYP__”, and it allows identification of messages
sent to the smart IoT gateway of the platform.

Tweets with the correct hashtag and user action are con-
verted into a JSON map, and device, component and status are
the keys of the JSON map. The value for each key would relate
to the chosen device, component or status update. For example,
a user that wishes to turn on an LED on a device would tweet
the following: #GM22FYP__ {“PI”: “pi_1”, “Component”:
“LED_1”, “Status”: “ON”}. This tweet information is then
converted into a JSON map. An example of this structure being
tweeted can be seen in Fig. 2, with a device response presented
in Fig. 3.

Twitter processes around eight thousand tweets sent every
second. In order to obtain the desired tweets, they must be
constantly searched, something possible thanks to the specified
hashtag previously mentioned. Once the tweet hashtag matches
the criteria the tweet data can be processed in order to
complete the user operation. Tweet content is analysed so the
expected map keys can be extracted. Once this is performed,
the data is transmitted by a communications protocol to a
cloud-based server. If a map or the appropriate keys are
not found, the data will not be sent. Twitter uses the REST
protocol for communications.

B. Protocols, Platform and Devices

Two communications protocols were implemented in the
solution for network analysis: MQTT and REST, which were
described in section 2.



The solution uses Adafruit IO, which is an online cloud
platform designed to store IoT data. Adafruit keeps data private
by default and supports data protocols such as REST and
MQTT. The stored data can be accessed by using a username
and a security key [18]. There are feeds in Adafruit which
hold the metadata sent to the server. Each feed represents a
value of a component, which in the testbed represent values
for each component on each device. The data can be accessed
and updated by a device by supplying the feed name.

Testbed also includes Raspberry Pis [19], which are
systems-on-a-chip widely used in IoT solutions. Several LEDs
and breadboards are also part of the testbed.

IV. DESIGN AND IMPLEMENTATION

The solution design is illustrated in Fig. 4. Design and
implementation details are presented in this section. The
implementation and the testbed allow for testing of the pro-
posed architecture and solution performance analysis in a real
scenario.

A. Testbed Setup

One of the Raspberry Pis acts as a gateway to bridge
Twitter to Adafruit, running specific scripts for Twitter and
Adafruit connection. The remaining Raspberry Pis act as IoT
devices with components (e.g. LEDs) that can be controlled
through Twitter, running scripts to read Adafruit’s feeds and
act accordingly. The gateway Raspberry Pi can also act as an
IoT device and have components attached to it.

The gateway Raspberry Pi connects to Twitter, search for
relevant tweets, analyse them, connects to Adafruit and send
the appropriate data. The gateway also continuously check for
changes in the Adafruit feeds informing users about new status
updates generated in the IoT devices.

Each Raspberry Pi acting as an IoT device contains two
LEDs, red and green, which can be ‘ON’ and ‘OFF’. These
Raspberry Pis constantly check their corresponding feed on
Adafruit and change act appropriately responding to the latest
user action.

In order to determine resistor values used for each LED,
voltage supplied is considered, which in the testbed is 5V.
Voltage-drop across the LED is taken away from the supplied
voltage, and for the red LED this value is 3.2V. The desired
current that will flow through the LEDs must be about 25mA.
Using Ohm’s Law which states Voltage=Current x Resistance,
the resistance value needed for the red LED is about 128
Ohms, which will be rounded to 150 Ohms. The green LED
which has a voltage drop of about 3.3V so it needs a resistance
value of around 68 Ohms, therefore, a 100 Ohm resistor will
be used with the green LED.

Raspberry Pis’ GPIO pins supply the power to the LEDs
through resistors and a breadboard. The required pins are set
as outputs. Values considered in the Raspberry Pis in order to
update LEDs are 1 for on and 0 for off.
B. Twitter Streams Filtering

Twitter’s API can be accessed with a developer account, in
which the user is given OAuth authorisation to send requests

Fig. 4. Solution design

to the API. Requests are sent over a TCP connection using a
RESTful connection. The Twitter API contains several relevant
endpoints that can be used for tasks such as tweet filtering
in real time. The parameters for this endpoint are optional,
and an example of its use is to track a specific keyword in
a specific language. By selecting English in this parameter, it
avoids misinterpretation of other languages. The programming
language used in the scripts running in the gateway Raspberry
Pi is Python, and a Python library called ‘Twython’ [20]
is employed with the tasks of connecting to Twitter and
setting up a stream (TwitterStreamer()). In order to avoid
delays in searching for relevant tweets, the TwitterStreamer()
is threaded and the tweets are put into a Queue() to be handled
appropriately, as presented in Algorithm 1.

During the stream filtering phase, it is also possible to add
security measures. The hashtag filtering is the first one, as only
users who know the hashtag can control the objects. Addition-
ally, filtering by username is also possible, as Twython receives
the username related to all tweets. The gateway Raspberry
Pi contains a list of ‘whitelisted’ users whose tweets must
be processed, increasing network security. Twitter already
performs a reliable authentication process during login.

C. Tweet Processing

Tweet content validation is performed before data is sent
to Adafruit, so it receives data in the format it expects, as
demonstrated in Algorithm 2. Twitter API sends responses
in JSON format, encoding instructions in the ‘text’ field of
the JSON response. An example of a JSON response when
updating a status is presented in Fig. 5. The format used in
the text field is a map and so the symbol ‘{’ is searched
first in the text and split using the function split(), in order
to extract the contents of the map removing the unnecessary
initial curly bracket. The string is split into two halves and



Fig. 5. Twitter JSON response

second half also needs to be split() in order to remove the
closing curly bracket ‘}’. The first half of the new content
generated by split() contains the string with the data from the
tweet. If the text extracted from the tweet does not contain
the curly brackets in the desired way, an exception thrown. If
the split() function succeeds in removing both curly brackets,
the function json.loads() converts the map into JSON format,
generating an exception if the conversion is unsuccessful. The
keys of the JSON map are then checked to ensure that all keys
where inserted by the Twitter user (i.e. device, component and
status). If the keys are present, then the data is sent to Adafruit.

D. Protocols Implementation

The gateway Raspberry Pi sends (i.e. maps of information
from tweets into feeds) and receives (i.e. confirmation of
insertion of data into feeds) data to and from Adafruit. Rasp-
berry Pis used with IoT components read feeds on Adafruit.
The communications of Raspberry Pis with Adafruit was
implemented with the library Adafruit_IO_Python [21], and
both REST and MQTT were employed for testing, as both
protocols’ implementations are available in the library.

The gateway Raspberry Pi sends the data received from
Twitter to Adafruit, in the appropriate format. Once the client
(i.e. gateway Raspberry Pi) is initialised and connected to
Adafruit, there are functions available to be used according
to the actions of the client, and shown in Algorithm 3. For
instance, when the client connects, the function “connect()”
is responsible for subscribing the client to the appropriate
feed. There are other functions for disconnections and updates
from Adafruit when topics are changed and the new status is
tweeted to inform the relevant audience. The publishData()
function sends data to Adafruit. The MQTT client package
contains the function loop_background(), which creates a new
thread that continuously listen for changes in feeds without
disconnections.

The connected devices that are being controlled through
Twitter, listen continuously for updates in the feed that they are
subscribed to. For instance, in the testbed, the first Raspberry
Pi will subscribe the feeds where “pi-1” is featured, as
demonstrated in Fig. 6, which shows the feed “pi-1” and two

Fig. 6. Adafruit feeds page

Algorithm 1 Twitter Stream Filtering

Track_term = '#GM22FYP__'
Class TwitterStreamer(TwythonStreamer):

def __init__(Oauth_tokens, Oath_secret, queue):
super(TwitterStreamer).__init__(

↪→ Oauth_tokens, Oath_secret, queue)
def on_success(data):

if 'text' in data: put_data_in_queue()
def on_error(data): print data

def receive_tweets(queue):
TwitterStreamer(Oauth_tokens, Oath_secret, queue)
TwitterStreamer.statuses.filter(track=Track_term,

↪→ language=English)
def handle_tweets(tweet_queue):

while true:
get_from_queue()
get_map_from_data()
if (all_keys_present()): send_data()

def main:
Thread(target=receive_tweets,args=[Queue()]).start()

subgroups, “led1”, “led2”. If a value of 1 or 0 is presented in
the feed “pi-1.led1”, the LED will reflect this, 1 represents on
and 0 represents off.

V. RESULTS AND DISCUSSION

For testing purposes, the time between sending of the
tweets and the acknowledgment were recorded to determine
the average, maximum and minimum time in which the user
would perceive instructions being implemented.

Initial tests consisted of several tweets being sent at a low
frequency to ensure they were processed with no packet loss.
The timestamps were computed to determine maximum, min-
imum and mean time of transactions. The frequency of tweets
being sent was then increased in order to determine latency and
packet loss at different rates. Timestamps were computed just
as soon as a tweet was received from Twitter, before data being
sent to Adafruit, and then another timestamp was recorded
when data was received from Adafruit. Frequencies analysed
were every 5 seconds, 2 seconds, 500 milliseconds and 100
milliseconds.



Algorithm 2 Tweet Processing

def analyse_tweet(tweet):
try:

get_map(tweet)
catch IndexError:

print(error)
try:

convert_to_json(map)
catch ValueError:

print(error)
if(keys "PI", "Component", "Status" are present)

send_data()
def get_map(tweet)

return(data.split('{')[1].split('}')[0])
def convert_to_json(map):

return json.loads(map)

Algorithm 3 Cloud Communications

def connected():
subscribe(feeds)

def disconnected():
system.exit()

def message(feed, payload): //only for Gateway
tweet_change_in_component(feed, payload)

def message(feed, payload): //only for Connected Device
change_status(payload)

def send_message_to_adafruit(tweet): //only for Gateway
if(Component==led1)

if(status=="ON")
send_to_Adafruit(component, {

↪→ value: 1}, feed)
elif(status=="OFF")

send_toAdafruit(component, {
↪→ value: 0}, feed)

if(Component==led2)
if(status=="ON")

send_to_Adafruit(component, {
↪→ value: 1}, feed)

elif(status=="OFF")
send_toAdafruit(component, {

↪→ value: 0}, feed)
def main:

createClient(Adafruit_username, Adafruit_key)
if (connected_to_client)

loop_background()
else

print(error)

The graphs presented in Figs. 7, 8 and 9 show average,
minimum, and maximum latency, respectively, considering the
time tweets were received by the Twitter streamer before
publishing it to Adafruit, plus the time needed for the data

Fig. 7. Average total latency

Fig. 8. Minimum total latency

Fig. 9. Maximum total latency

to be sent to Adafruit and be updated in the feed. These
tests considered REST for Twitter and MQTT for Adafruit
connections.

Each tweet sent was processed by the scripts, demonstrating
that there was no packet loss in these scenarios. A limitation
of using Twitter’s API for real time data only allows 1% of the
tweets containing the search term being retrieved, which did
not impact testing due to the hashtag used being very specific
for the testbed and not having widespread use.

From the results from the graphs in Figs. 7, 8 and 9, it
is possible to notice that tweets are processed with varying
latency. For instance, when a few hundred of tweets were
sent every 5 seconds, the minimum latency observed until the



Fig. 10. Delay in connecting to four feeds in Adafruit (MQTT vs. REST)

feed in Adafruit was updated was less than 0.3s whereas the
maximum latency was around 0.6s. If the tweet frequency is
very high, for instance, one tweet every 100ms, the latency
varied from 0.33s (min.) to 34.6s (max.). The results show
that the latency is low if tweets are sent every 500ms, 2s and
5s, but can be very high when tweets are sent every 100ms,
due to high processing in the gateway Raspberry Pi and delays
in the connections with Twitter and Adafruit. Therefore, a
scenario with tweet frequency of 100ms is not recommended,
as the maximum latency observed was 43 times higher than
the maximum latency observed in the 500ms frequency (34.6s
versus 804ms).

For protocol comparisons, the gateway Raspberry Pi com-
municated with Adafruit using REST and MQTT. Delay was
measured for both protocols, as seen in Fig. 10, for the
connection with the four feeds available on Adafruit. MQTT
performed much better than REST, as REST creates new
connections every time it needs to transmit data. On average,
in order to connect to the four feeds on Adafruit, the gateway
Raspberry Pi experienced 82% less delay on communications
when using MQTT instead of REST.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented the design, implementation and anal-
ysis of a Twitter-based IoT Network. MQTT and REST
protocols were examined and tests demonstrated that MQTT
performs with much less delay when connecting to the cloud
server. Raspberry Pis were controlled by tweets turning on
and off LEDs and that allowed further analysis on the best
scenarios for the solution, such as tweet frequency which
perform well up to 500ms. Future work includes support
to different protocols, such as CoAP, and other types of
sensors and IoT devices. Multiple developers accounts could
also be tested, allowing multiple gateways with diverse IoT
components. The feasibility of other social networks, such as
Facebook, could also be investigated.

ACKNOWLEDGEMENT

This work was supported by the Irish Research Council
and Dublin City University, grant number EPSPG/2015/178,
and in part by European Union’s Horizon 2020 Research and
Innovation programme under Grant Agreement no. 688503 for
NEWTON project (http://newtonproject.eu).

REFERENCES

[1] S. Al-Sarawi, M. Anbar, K. Alieyan, and M. Alzubaidi, “Internet of
Things (IoT) communication protocols: Review,” in ICIT 2017 - 8th
International Conference on Information Technology, Proceedings, 2017,
pp. 685–690.

[2] A. A. Simiscuka and G. M. Muntean, “Age of Information as a
QoS Metric in a Relay-Based IoT Mobility Solution,” in Proc. of the
14th International Wireless Communications and Mobile Computing
Conference (IWCMC), 2018, pp. 868–873.

[3] A. A. Simiscuka and G.-M. Muntean, “A Relay and Mobility Scheme for
QoS Improvement in IoT Communications,” in Proc. of the IEEE Inter-
national Conference on Communications Workshops (ICC Workshops),
2018, pp. 1–6.

[4] A. A. Simiscuka, T. M. Markande, and G.-M. Muntean, “Real-Virtual
World Device Synchronisation in a Cloud-enabled Social Virtual Reality
IoT Network,” IEEE Access, vol. 7, pp. 1–12, 2019.

[5] A. A. Simiscuka and G.-M. Muntean, “Synchronisation between Real
and Virtual-World Devices in a VR-IoT Environment,” in Proc. of
the IEEE International Symposium on Broadband Multimedia Systems,
2018, pp. 1–6.

[6] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The social internet of
things (SIoT) - When social networks meet the internet of things: Con-
cept, architecture and network characterization,” Computer Networks,
vol. 56, no. 16, pp. 3594–3608, 2012.

[7] Cisco, “Cisco Visual Networking Index: Forecast and
Trends, 2017-2022 White Paper,” 2019. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-741490.html

[8] V. Lampkin, W. T. Leong, L. Olivera, S. Rawat, N. Subrahmanyam,
and R. Xiang, “Building Smarter Planet Solutions with MQTT
and IBM WebSphere MQ Telemetry,” 2012. [Online]. Available:
https://www.redbooks.ibm.com/redbooks/pdfs/sg248054.pdf

[9] C. Prehofer, “Models at REST or modelling RESTful interfaces for the
Internet of Things,” in IEEE World Forum on Internet of Things, 2015,
pp. 251–255.

[10] T. Yokotani and Y. Sasaki, “Transfer protocols of tiny data blocks in
IoT and their performance evaluation,” in IEEE 3rd World Forum on
Internet of Things, 2017, pp. 54–57.

[11] S. Sreeraj, N. Suresh Kumar, and G. Santhosh Kumar, “A framework for
predicting the performance of IoT protocols, a use case based approach,”
in International Conference On Smart Technology for Smart Nation,
(SmartTechCon), 2017, pp. 577–580.

[12] H. W. Chen and F. J. Lin, “Converging MQTT resources in ETSI
standards based M2M platform,” in IEEE International Conference on
Internet of Things, iThings, IEEE International Conference on Green
Computing and Communications, and IEEE International Conference
on Cyber-Physical-Social Computing, 2014, pp. 292–295.

[13] M. H. Asghar and N. Mohammadzadeh, “Design and simulation of
energy efficiency in node based on MQTT protocol in Internet of
Things,” in International Conference on Green Computing and Internet
of Things, ICGCIoT, 2016, pp. 1413–1417.

[14] M. A. Alharbe, “Awarenessability and influences on raising of traffic
accidents through the content of social media in the internet of things:
A practical empirical study by the internet of things and multimedia on
university students in western Saudi Arabia,” in International Confer-
ence on I-SMAC (IoT in Social, Mobile, Analytics and Cloud), I-SMAC
2018, 2018, pp. 48–51.

[15] P. Yenkar and S. D. Sawarkar, “A survey on social media analytics
for smart city,” in International Conference on I-SMAC (IoT in Social,
Mobile, Analytics and Cloud), I-SMAC 2018, 2019, pp. 87–93.

[16] B. Jadhav and S. C. Patil, “Wireless Home monitoring using Social
Internet of Things (SIoT),” in International Conference on Automatic
Control and Dynamic Optimization Techniques, ICACDOT 2016, 2016,
pp. 925–929.

[17] P. Cooper, “28 Twitter Statistics All Marketers Should Know in 2019,”
2019. [Online]. Available: https://blog.hootsuite.com/twitter-statistics/

[18] “Adafruit IO,” 2019. [Online]. Available: https://io.adafruit.com/
[19] “Raspberry Pi,” 2019. [Online]. Available: https://www.raspberrypi.org/
[20] “Twython - Twython 3.6.0 documentation,” 2019. [Online]. Available:

https://twython.readthedocs.io/en/latest/
[21] “Adafruit_IO_Python on GitHub,” 2019. [Online]. Available:

https://github.com/adafruit/Adafruit_IO_Python/tree/master/Adafruit_IO


