
1

NATIONAL COLLEGE OF IRELAND

BSC (HONS) IN BUSINESS INFORMATION SYSTEMS

2013/2014

ANDERSON AUGUSTO SIMISCUKA

X13115642

TECHNICAL REPORT

2

Table of Contents

1. Executive Summary .. 3

2. Introduction ... 4

2.1. Background ... 4

2.2. Environment ... 4

2.3. Technologies ... 4

3. System ... 5

3.1. Requirements .. 5

3.2. Design and Architecture ... 8

3.2.1. UML ... 9

3.3. Implementation .. 11

3.3.1. Subself Kiosk – Self Service application ... 11

3.3.2. Subself Cashier / Subself Kitchen ... 12

3.3.3. Subself Stats ... 12

3.3.4. Responsive Implementation ... 13

3.4. Testing and Customer Testing ... 13

3.5. GUI (Graphical User Interface) ... 15

4. Conclusions and Further Development ... 19

5. References .. 19

6. Appendix .. 20

6.1. Project Proposal ... 20

6.2. Requirements Specification ... 24

6.3. Reflective Journals .. 38

6.3.1. September ... 38

6.3.2. April .. 39

3

1. Executive Summary

Subself is primarily a system in which people can create their sandwiches step-by-

step at sandwich stores without the need of waiting in a long queue and talking to an

attendant. Users can use Subself on interactive kiosks in shops or use their own devices.

This system allows the customer to choose between different types of bread, salad,

toppings, sauces and Drink selection.

The system contains other application to the kitchen and cashier staff, where they

can see the orders and queue. And an application for managers, where they can see their

shop stats and ingredients consumption using different timeframes.

The system will be web based and all applications will connect to the same

database.

Subself was implemented using Java (Object Oriented applications), Eclipse

platform – JavaServer Faces, customized Twitter Bootstrap for the mobile-desktop

enabled display and MySQL. Model View Controller is used and Photoshop for

customized buttons and logos.

4

2. Introduction

2.1. Background

There is a lack of interactive kiosks and apps for fast food ordering. Often you find

yourself waiting to order a sandwich because of a customer that takes a really long time

choosing their ingredients. Subself offers a solution for all these problems and also

administrative tools for shop staff and managers. It is possible to use any module on

desktops or on mobile devices, solving the problem of customers waiting in a long

queue and talking to an attendant for a long time.

2.2. Environment

Subself offers a self-service solution for mobile and desktop users, customers in the

shops and also administrative tools for shop staff and managers.

Subself allows the customer to choose between different types of bread, salad,

toppings, sauces and Drink selection.

The system contains other application to the kitchen and cashier staff, where they

can see the orders and queue. And an application for managers, where they can see their

shop stats and ingredients consumption using different timeframes.

2.3. Technologies

Subself was implemented using Java (Object Oriented applications), Eclipse

platform – JavaServer Faces (JSF), customized Twitter Bootstrap for the mobile-

desktop enabled display and MySQL. Model View Controller is used and Photoshop for

customized buttons and logos.

Model View Controller in Subself works like this: Model – Three classes:

Connection Factory, the different objects classes and a class containing methods to

handle the database according to the objects. View – XHTML pages to show contents.

Controller – Managed Beans with all the methods that users will access through the

XHTML pages. The managed beans also connect with model layer and controls view

layer.

5

3. System

This section presents the technical details of the project. These details will be

described in the sections Requirements, Design and Architecture, Implementation,

Testing and Graphical User Interface.

3.1. Requirements

3.1.1. Functional Requirements

Functional Requirements will be explained according to this Use Case diagram:

6

Choose Step by Step Order / Kiosk-Mobile-Desktop applications

Customer can customise his/her order. In the Step by Step option, ingredients and

additional items will be selected by the customer. In the mobile-desktop application,

customers need to select a shop where they want to pay and pick their order.

Open System

Managers will have access to Subself Admin, the application where they can select:

 Subself Kiosk module to be opened on the interactive kiosks;

 Subself Cashier module to show to the cashier the orders to be paid by

customers;

 Subself Kitchen module to show to kitchen staff the orders that were paid and

need to be prepared and, finally;

 Subself Stats module, where the manager will see the amount of orders sold as

well as each ingredient.

View Shop Stats

Shop Managers can use Subself Stats module, where the manager will see the

amount of orders sold as well as each ingredient.

Change Password

Shop Managers will have access to Subself Admin, where they can change the shop

password.

See Orders to Be Paid and Set Order as Paid

Through Subself Cashier module the cashier can see the orders to be paid and after

customer payment, set these orders as paid, so they will be shown at kitchen screen.

7

Queue of Orders

Through Subself Kitchen module kitchen staff can see the orders that were paid and

need to be prepared. Here kitchen staff can finish the orders too, to clean the queue.

3.1.2. Data Requirements

Subself relies on data transaction. Every order is stored on the MySQL database and

cashier, kitchen and stats modules retrieve information from this database. The database

also contains shops, their IDs and passwords.

When customers use the system, their orders are attached to a store. When Managers

login, they need to enter they shop number and password, so all the information shown

on cashier, kitchen and stats modules are related to his/her shop.

 The kioks show the Subself Admin Subself Kiosk module, which is the same

application used by customers, but is logged using the administrator login and all the

orders will always be attached to this shop.

MySQL database contains two tables. Orders table contains order id (primary key),

shop id (foreign key), sandwich ingredients, drinks, extras, timestamp and order status.

Shops table contains shop id (primary key), shop name and shop password.

3.1.3. User Requirements

Any device capable of opening a web browser is needed to access the system if it is

in the cloud. Subself is screen responsive and adapts to large, medium and small

screens.

If it is running locally, it uses Glassfish server and needs the MySQL database

running, so the user needs to have these technologies available.

3.1.4. Environmental Requirements

Eclipse was used with Glassfish server to implement Subself. Twitter Bootstrap to

create screen responsive web pages. Photoshop used for icons, logos and buttons.

MySQL used to store and provide data.

8

3.1.5. Usability Requirements

Responsive, as the system is desktop-mobile enabled, Understandable, as it needs to

be user friendly, Learnable, as it needs to be fast used and Attractive, as users need to

wish to use it to make the fast food process faster.

3.2. Design and Architecture

Model View Controller was used in Subself like this: Model – Three classes:

Connection Factory, the different objects classes and a class containing methods to

handle the database according to the objects. View – XHTML pages to show contents.

Controller – Managed Beans with all the methods that users will access through the

XHTML pages. The managed beans also connect with model layer and controls view

layer.

Source: http://karimdjaafar.wordpress.com/

9

3.2.1. UML

Use Case Diagram

10

Class Diagram

11

3.3. Implementation

I will explain the main implementation features of each module of Subself and its

responsive design.

3.3.1. Subself Kiosk – Self Service application

Through ManagedBean, the ingredients are added and removed. Example:

public String addBread(String bread) {
 if (this.order.getSandwich().getBread() != null

&&
this.order.getSandwich().getBread().equals(bread))

 return null;
 else
 this.order.getSandwich().setBread(bread);
 return null;

}

public String removeBread() {

 this.order.getSandwich().setBread(null);
 return null;

}

Then, according to the action, the webpage render to the user on a selection list the

items that he/she selected.

Also, this Bean is responsible to invoke methods in the Insert class, to insert the

final order in the database when the customer is finished.

public void insertDB() throws Exception{
 Insert ins = new Insert();
 Order order = this.order;
 ins.save(order);

}

The webpages handle the bean according to this snippet:

<h:commandButton type="button”
 class="img-responsive btn btn-success"
 image="img/salads/Lettuce.png"
 action="#{meuManagedBean.addSalad('Lettuce')}" />

12

3.3.2. Subself Cashier / Subself Kitchen

These two modules share the same Bean, they differ in the database Select and the

status of the order they display. The parameter id showed in the methods below, is the

order_id. LoadPaid and LoadNotPaid select orders to show in the kitchen and cashier

modules respectively.

public KitchenBean() {
 try {
 loadNotPaid(shop_id);
 loadPaid(shop_id);
 } catch (Exception e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 }

 public void removePaid(int id) throws Exception{
 SelectDB sel = new SelectDB();
 sel.removePaid(id);
 }

 public void removeFinished(int id) throws Exception{
 SelectDB sel = new SelectDB();
 sel.removeFinished(id);
 }

 public void cancelOrder(int id) throws Exception{
 SelectDB sel = new SelectDB();
 sel.cancelOrder(id);
 }

3.3.3. Subself Stats

This module allows managers to see stats accordingly to selected items and dates.

The snippet below shows the StatsBean constructor. “Total of Salads” and “Total of

Orders” are also available at this module. The StatsBean asks to the database class the

proper MySQL Selects.

public StatsBean() {
 this.form_stats = new Stats();
 try {

loadStats(shop_id, form_stats.getItem(),
form_stats.getDate());

 }

13

3.3.4. Responsive Implementation

The snippet below shows how divs and buttons are responsive according to screen

size. The properties lg, sm, and xs are related to large screens, medium screens and

mobile screens respectively. The numbers are the space they represent in a grid with 12

slots.

In this example, in large screens, 12 buttons appear in a row, and only 3 on a phone

screen.

<ui:repeat value="#{meuManagedBean.order.sandwich.salads}"
 var="salad">
 <div class="col-lg-1 col-sm-1 col-xs-4">
 <p>
 <h:commandButton action="#{meuManagedBean.removeSalad(salad)}"
 image="img/salads/#{salad}.png" class="btn-remove thumbnail" />
 </p>
 </div>

</ui:repeat>

Data Tables are also responsive:

<div class="table-responsive">
 <h:dataTable value="#{kitchenBean.selectNotPaid}"
 rendered="#{authBean.form_auth.cont}" var="dataItem"
 class="table table-striped table-condensed">

<h:column>
 <f:facet name="header">
 <h:outputText value="Order No." />
 </f:facet>
 <h:outputText value="#{dataItem.order_id}" />
 </h:column>

3.4. Testing and Customer Testing

The test plans consisted of selects on the database and comparison to results

showed on the modules of Subself.

I asked roommates to use the Kiosk application and give me feedback of the

usability.

Initially, for example, to remove an item, you should touch the same item again.

After user feedback, you remove an item in the selections list by touching it.

When touching it, the button gets red, to show you are going to delete it.

14

Authentication tests were extensive. The system rigorously asks for a shop

selection in the beginning. No screens are available when the user do not select a shop.

In the Subself Admin mode, any module only display the logged shop information,

and every screen always check if the admin user is correctly logged.

Because of the functionality of twitter bootstrap, all tests used Google Chrome as a

browser. Every screen also was tested on a smaller window to show its responsiveness.

Examples:

15

3.5. GUI (Graphical User Interface)

Twitter Bootstrap was used and customised for this project. Screenshots are shown

below with a description of the screen.

User login page. It only asks for a shop number.

Shop login page. Subself Admin.

16

Subself Admin. Module selection page.

Toppings selection page.

17

 Order confirmation.

 Order number.

 Subself Cashier.

18

Subself kitchen.

 Subself Stats.

No user logged trying to access Subself Cashier.

19

4. Conclusions and Further Development

This report discussed the technical and also user related characteristics of Subself. I

hope the reader may have understood the differences between Subself and Subself

Admin with its administrator modules.

For future development, I think this system could generate the images and new

items according to user insertion. They could also create their screens and the system

could become a framework for “create it yourself” restaurants.

The development had some hurdles regarding college exams, but JSF was a smart

choice for me.

In the beginning, Twitter Bootstrap and JSF was something totally new, as I could

not find examples on the Internet to help me, but in the end both work together very

well. JSF tags accept bootstrap CSS classes and it was very helpful.

5. References

JSF Tutorials (Accessed between 09/2013 – 05/2014):

 http://balusc.blogspot.ie/2011/01/jsf-20-tutorial-with-eclipse-and.html

 http://balusc.blogspot.ie/2006/06/communication-in-jsf.html

Others:

 Object Aid Eclipse Plugin and Astah Community for Diagrams

 www.subway.ie, www.subway.com, www.subway.com.br for pictures

 Twitter Bootstrap 3

 Eclipse Kepler

 Glassfish 4

 JSF 2

 Google Chrome

http://balusc.blogspot.ie/2011/01/jsf-20-tutorial-with-eclipse-and.html
http://balusc.blogspot.ie/2006/06/communication-in-jsf.html
http://www.subway.ie/
http://www.subway.com/
http://www.subway.com.br/

20

6. Appendix

6.1. Project Proposal

Project Proposal

SELF SERVICE SYSTEM FOR SANDWICH STORES

Anderson Simiscuka, 13115642, Anderson.simiscuka@student.ncirl.ie

BSc (Hons) in Business Information Systems

September 30th 2013

21

1. Objectives
The creation of a system in which people can create their sandwiches step-by-
step at sandwich stores without the need of waiting in a long queue and talking
to an attendant.

This system will allow the customer to choose between different types of bread,
salad, toppings, sauces, Drink selection, Combo selection, Payment to the
machine or print a receipt and take to the cashier.

The system can be displayed in different languages, so communication
problems between customer and attendant, in cities with people from many
different countries, could be solved.

The system will contain another application to the kitchen staff, where they can
see the orders and queue.

2. Background
Restaurants like the Subway franchise generally are able to have only one
queue of customers, and it takes more time than having, for example, three
terminals where three customers could order their sandwiches at the same
time.

3. Technical Approach
The system will be web based and both applications, store and kitchen, will
connect to the same database.

It will be implemented using Java (Object Oriented applications), Eclipse
platform - JSF, Bootstrap for the display, open source database (i.e. MySQL).

The display is intended to have a similar Microsoft Metro User Interface
navigation, and to be used in touch screens

22

4. Project Plan

5. Technical Details
Java (Object Oriented applications), Eclipse platform - JSF, Bootstrap for the
display, open source database (i.e. MySQL).

6. Evaluation
Extensive black-box and white-box testing. User forms with opinions about the
interface. Connection and data insertion testing.

7. Consultation with Project Specialisation Coordinator
Anu Sahni and Jonathan McCarthy. Positive feedback of the main idea.

23

8. Consultation with Academic Staff
The project Specialisation Coordinator will point you to a suitable staff member
for consultation. Please include the name of the second academic staff member
consulted and a summary of their feedback.

9. Proposed Supervisor
Names of academic staff member that has agreed to act as a supervisor for this
project.

Signature of student and date

24

6.2. Requirements Specification

25

Requirements Specification (RS)

Document Control

Revision History

Date Version Scope of Activity Prepared Reviewed Approved

13/10/2013 1 Create

20/10/2013 2 Update

Distribution List

Name Title Version

Kyra McKenna Lecturer / Project Supervisor

Jonathan McCarthy Lecturer

Related Documents

Title Comments

Title of Use Case Model

Title of Use Case Description

26

1 User

Purpose

The purpose of this document is to set out the requirements for the
development of a Self Service System for Sandwich Stores.

The intended customers are stores that sell Sandwiches that the final customer
choose each ingredient.

Project Scope

The scope of the project is to develop a Self Service System for Sandwich
Stores. The system shall allow the customer to choose between different types
of bread, salad, toppings, sauces, Drink selection, Combo selection, Payment to
the machine or print a receipt and take to the cashier.

The system can be displayed in different languages, so communication
problems between customer and attendant, in cities with people from many
different countries, could be solved.

The system will contain another application to the kitchen staff, where they can
see the orders and queue.

Schedule:

2 User Requirements Definition
Faster queues
More people being attended at the same time
Possibility to communicate in more than a language

27

3 Requirements Specification

Functional requirements

Use Case Diagram

Requirement 1: Insert Customer Loyalty Code

Description & Priority

When the customer start using the touch screen, selecting the language, it will
be possible to register the customer code for future discounts or promotions.
Low priority.

28

Use Case

Scope

How the customer will insert the loyalty code.

Description

In the first screen, the customer will choose between inserting or not the code. If
code insertion selected, a keyboard will appear, and the code can be inserted.
The information of the meal will go to the customer database and it can be used
for discounts in the website, vouchers and promotion.

Use Case Diagram

Actor Customer and use case Insert Customer Loyalty Code.

Flow Description

Precondition

Customer started to interact to the touch screen.

Activation

This use case starts when a Customer selects to insert a Loyalty Code.

Main flow

The system identifies the option inserted

The Customer insert its code if decided to do so

The system upload this information to the database

Termination

The system presents the next screen (Type of meal)

Post condition

The system goes into a wait state

Requirement 2: Choose Step by Step Order

Description & Priority

Customer can choose between a regular combo or customise its order. In the
Step by Step option, ingredients and additional items will be selected by the
customer. High priority.

Use Case

Scope

Customer will select the ingredients of the meal and Drink.

Description

After selecting Step by Step Order, the customer needs to choose ingredients,
additional items like crisps or cookies and the drink.

Use Case Diagram

29

Actor customer and use case Choose Step by Step Order and its inclusions.

Flow Description

Precondition

Step by Step Order selected on the screen

Activation

This use case starts when a Customer selected Step by Step Order

Main flow

The system identifies the option selected

The Customer selects the ingredients, then if wants additional items and finally
the drink

Termination

The system presents the next screen (Print order)

Post condition

The system goes into a wait state

Requirement 3: Choose Combo

Description & Priority

Customer can choose between a regular combo or customise its order. In the
Combo option, the customer can see regular sandwiches with included drinks
and additional items. According to the day, combos can change. High priority.

Use Case

Scope

Customer will select the meal and Drink.

Description

After selecting Combo option, the customer needs to choose the combo.

Use Case Diagram

Actor customer and use case Choose Combo and its inclusions.

Flow Description

Precondition

Combo option selected on the screen

Activation

This use case starts when a Customer selected Combo option

Main flow

The system identifies the option selected

The Customer selects the combo

30

Termination

The system presents the next screen (Print order)

Post condition

The system goes into a wait state

Requirement 4: Print Order and Payment

Description & Priority

Customer will finalise the process printing the order with the price and items
selected. High priority.

Use Case

Scope

Customer will finish the meal selection and print the order.

Description

The printed order needs to be presented to the cashier that will accept card or
money. The kitchen already received the order from the system.

Use Case Diagram

Actors customer and cashier and use cases Pay Printed Order to the cashier
and Register Payment.

Flow Description

Precondition

All previous screens completed.

Activation

This use case starts when a Customer finishes the order

Main flow

The system identifies the meal and its price

The Customer finishes the process and accept the price

The system prints the order and send the order to the kitchen

The Customer pays to the cashier

Termination

The system prints the order.

Post condition

The system goes into a wait state

31

Requirement 5: Prepare the Meal

Description & Priority

Kitchen staff have a system to see the orders. High priority.

Use Case

Scope

Customer will finish the meal selection and the kitchen see the order on a
screen.

Description

The order is going to be prepared according to what was selected by the
customer.

Use Case Diagram

Actor Kitchen Staff and use case Prepare the Meal.

Flow Description

Precondition

Order completed.

Activation

This use case starts when a Customer finishes the order

Main flow

The system prints the order and send the order to the kitchen

The Kitchen Staff prepares the meal and bring to the customer

Termination

The meal is prepared.

Post condition

The customer receives its meal.

32

Non-Functional Requirements

Specifies any other particular non-functional attributes required by the system.
Examples are provided below.Remove the requirement headings that are
not appropriate to your project.

Performance/Response time requirement

The system needs to be fluid and fast.

Availability requirement

At least one terminal needs to be working in the store.

Security requirement

Customer code needs to travel secure to the network.

Maintainability requirement

Combo prices change according to the day of the week.

Extendibility requirement

The same store has more one terminal that connect to the same database and
kitchen system.

Reusability requirement

The system is the same in different terminals

33

4 Interface requirements

GUI

34

35

36

Application Programming Interfaces (API)
Printing interface

37

5 System Architecture

6 System Evolution

The system can accept new ingredients, combos and prices.

38

6.3. Reflective Journals

6.3.1. September

Reflective Journal

Student name: Anderson Augusto Simiscuka

Programme (e.g., BSc in Computing): BSc (Hons) in Business Information Systems

Month: September

1. My Achievements
This month, I was able to think of an idea that became my Project Proposal after that. I have

focused on the first layout ideas of the Self Service System for Sandwich Stores.

The display is intended to have a similar Microsoft Metro User Interface navigation, and to be

used in touch screens.

My contributions to the projects included defining the core ideas, writing down the first

features and functionalities.

2. Reflection
I felt, it worked well to create the system concept and defining its functionalities.

3. Intended Changes
Next month, I will try to create diagrams, wireframes, and start coding the first functionalities.

39

6.3.2. April

Reflective Journal

Student name: Anderson Augusto Simiscuka

Programme (e.g., BSc in Computing): BSc (Hons) in Business Information Systems

Month: April

1.My Achievements
New modules are available. Kitchen and Cashier modules. User Authentication and

Administrator Authentication.

Kitchen and Cashier modules retrieve data from the database according to their status and

allow the cashier to insert payment on new orders and the kitchen employees to finish orders.

User Authentication is intended for mobile or desktop users to select a store, make their order

and pick it up.

Administrator Authentication is intended to be used on shops. It also contains the Kiosk

module. The Kiosk module is the same as the application of Users, where they create their

sandwiches, however, to be used on kiosks/interactive totems in the shops.

2.Reflection
Those modules were challenging but JSF showed a nice tool to be used to create data tables

and for user administration.

3.Intended Changes
Next month, I intend to create a new module, the Stats module. Managers will be able to see

each item consumption using different timeframes.

40

 CD

 SUBSELF

