NATIONAL COLLEGE OF IRELAND

BSC (HONS) IN BUSINESS INFORMATION SYSTEMS

2013/2014

ANDERSON AUGUSTO SIMISCUKA
X13115642

ELF

TECHNICAL REPORT

"—‘-
\ National
College o

Ireland

Table of Contents

1. EXECULIVE SUMMAIY ..ooviiiiiiiiiieiie sttt sttt 3
2. INTFOAUCTION ..ot 4
0 I T Tod (o [£ o TS 4
2.2, ENVIFONMENT ..ottt 4
2 T - Tox a0 [0 1= TSRS 4
Y1 (] 1 PP RUPRPPRTPRN 5
TR (=0 01T (= =T 0 £SO 5
3.2, Design and ArChItECIUIEccveeiieee et 8
0 S U 1|V | ST OPR PP 9
3.3, IMPIEMENTALIONot 11
3.3.1. Subself Kiosk — Self Service application.............ccccocvreriiiiiiiieniienc e 11
3.3.2. Subself Cashier / Subself KitChen ... 12
30303, SUBSEIT SEALS....c.eiititiitiiiieiee e 12
3.3.4. Responsive IMplementation...........cccoviiiiriiiiin e 13
3.4. Testing and CUStOMEr TESHINGccecvieiieieeie e 13
3.5. GUI (Graphical User INterface)...........ccoveveiieiieiicic s 15
4. Conclusions and Further Development............cccccvoveiieii e 19
5. REFEBIENCES ... 19
T Y o] o 1= o T 1 GO SO PUSTROPPSON 20
6.1, Project PropoSal..........ccccoioiuiiiiiiiie ettt 20
6.2. Requirements SPeCIfiCatioNn..........cccceiieiiiiiiiece e 24
6.3. REFIECtIVE JOUMNAISocveiiiiieee s 38
B.3. 1. SEPIEIMDEL .. .ottt bbb 38
6.3.2. 1 OIS 39

1. Executive Summary

Subself is primarily a system in which people can create their sandwiches step-by-
step at sandwich stores without the need of waiting in a long queue and talking to an
attendant. Users can use Subself on interactive kiosks in shops or use their own devices.

This system allows the customer to choose between different types of bread, salad,
toppings, sauces and Drink selection.

The system contains other application to the kitchen and cashier staff, where they
can see the orders and queue. And an application for managers, where they can see their
shop stats and ingredients consumption using different timeframes.

The system will be web based and all applications will connect to the same
database.

Subself was implemented using Java (Object Oriented applications), Eclipse
platform — JavaServer Faces, customized Twitter Bootstrap for the mobile-desktop
enabled display and MySQL. Model View Controller is used and Photoshop for

customized buttons and logos.

2. Introduction

2.1 Background

There is a lack of interactive kiosks and apps for fast food ordering. Often you find
yourself waiting to order a sandwich because of a customer that takes a really long time
choosing their ingredients. Subself offers a solution for all these problems and also
administrative tools for shop staff and managers. It is possible to use any module on
desktops or on mobile devices, solving the problem of customers waiting in a long
queue and talking to an attendant for a long time.

2.2. Environment

Subself offers a self-service solution for mobile and desktop users, customers in the
shops and also administrative tools for shop staff and managers.

Subself allows the customer to choose between different types of bread, salad,
toppings, sauces and Drink selection.

The system contains other application to the kitchen and cashier staff, where they
can see the orders and queue. And an application for managers, where they can see their
shop stats and ingredients consumption using different timeframes.

2.3. Technologies

Subself was implemented using Java (Object Oriented applications), Eclipse
platform — JavaServer Faces (JSF), customized Twitter Bootstrap for the mobile-
desktop enabled display and MySQL. Model View Controller is used and Photoshop for
customized buttons and logos.

Model View Controller in Subself works like this: Model — Three classes:
Connection Factory, the different objects classes and a class containing methods to
handle the database according to the objects. View — XHTML pages to show contents.
Controller — Managed Beans with all the methods that users will access through the
XHTML pages. The managed beans also connect with model layer and controls view
layer.

3. System

This section presents the technical details of the project. These details will be

described in the sections Requirements, Design and Architecture, Implementation,

Testing and Graphical User Interface.

3.1 Requirements

3.1.1. Functional Requirements

Functional Requirements will be explained according to this Use Case diagram:

Customer

\

Use kiosk or

mobileldesktop

application

<<incljde=>

Choose
ingredients

<<include==>
I

Choose
additional
items

. 1
=<inclyde==

Choose drink

SUBSELF

Choose step
by step order

Open system on
kiosks, cashier

and kitchen
T~
View Shop \
Stats
— Shop Manager

Change
Password

See queue of
orders

06

Finish orders

See orders to
be paid

Set orders as
paid

\

/

X

/@chen staff
Prepare Meal

Pay to t;\

cashier

N

Cashier

Choose Step by Step Order / Kiosk-Mobile-Desktop applications

Customer can customise his/her order. In the Step by Step option, ingredients and
additional items will be selected by the customer. In the mobile-desktop application,

customers need to select a shop where they want to pay and pick their order.

Open System

Managers will have access to Subself Admin, the application where they can select:

e Subself Kiosk module to be opened on the interactive kiosks;

e Subself Cashier module to show to the cashier the orders to be paid by
customers;

e Subself Kitchen module to show to kitchen staff the orders that were paid and
need to be prepared and, finally;

e Subself Stats module, where the manager will see the amount of orders sold as

well as each ingredient.

View Shop Stats

Shop Managers can use Subself Stats module, where the manager will see the

amount of orders sold as well as each ingredient.

Change Password

Shop Managers will have access to Subself Admin, where they can change the shop

password.

See Orders to Be Paid and Set Order as Paid

Through Subself Cashier module the cashier can see the orders to be paid and after

customer payment, set these orders as paid, so they will be shown at kitchen screen.

Queue of Orders

Through Subself Kitchen module kitchen staff can see the orders that were paid and

need to be prepared. Here kitchen staff can finish the orders too, to clean the queue.

3.1.2. Data Requirements

Subself relies on data transaction. Every order is stored on the MySQL database and
cashier, kitchen and stats modules retrieve information from this database. The database
also contains shops, their IDs and passwords.

When customers use the system, their orders are attached to a store. When Managers
login, they need to enter they shop number and password, so all the information shown
on cashier, kitchen and stats modules are related to his/her shop.

The kioks show the Subself Admin Subself Kiosk module, which is the same
application used by customers, but is logged using the administrator login and all the
orders will always be attached to this shop.

MySQL database contains two tables. Orders table contains order id (primary key),
shop id (foreign key), sandwich ingredients, drinks, extras, timestamp and order status.
Shops table contains shop id (primary key), shop name and shop password.

3.1.3. User Requirements

Any device capable of opening a web browser is needed to access the system if it is
in the cloud. Subself is screen responsive and adapts to large, medium and small
screens.

If it is running locally, it uses Glassfish server and needs the MySQL database
running, so the user needs to have these technologies available.

3.1.4. Environmental Requirements
Eclipse was used with Glassfish server to implement Subself. Twitter Bootstrap to

create screen responsive web pages. Photoshop used for icons, logos and buttons.

MySQL used to store and provide data.

3.1.5. Usability Requirements

Responsive, as the system is desktop-mobile enabled, Understandable, as it needs to
be user friendly, Learnable, as it needs to be fast used and Attractive, as users need to

wish to use it to make the fast food process faster.

3.2. Design and Architecture

Model View Controller was used in Subself like this: Model — Three classes:
Connection Factory, the different objects classes and a class containing methods to
handle the database according to the objects. View — XHTML pages to show contents.
Controller — Managed Beans with all the methods that users will access through the
XHTML pages. The managed beans also connect with model layer and controls view

layer.

JSF Application
Controller I View I Model I
HTML I
Browser
§ Backend Code/
@ Managed Beans
Q
&
Phone |

Source: http://karimdjaafar.wordpress.com/

3.2.1. UML

Use Case Diagram

P
i“‘““‘"—‘—-—

Customer

SUBSELF

Use kiosk or
mobileldesktop
application

Choose step
by step order

<<inclyde=>
]

Choose
ingredients

=<jinclude==
I

Choose
additional
items

U
=<inclyde==
I

Choose drink

Open system on
kiosks, cashier
and kitchen

View Shop
Stats

Change
Password

See queue of
orders

/

=X

— Shop Manager

A

f’_,,,.-/-
/lﬁchen staff

/ Prepare Meal

Finish orders

See orders to
be paid

Set orders as\
paid

Pay to th

T

cashier

Cashier

(o vpues ©
Bus -9saay o PIoA-(J3SYNSaY JUSUATE)S UoHIaULIC))3 oA
<Buns-jsrieny sbumoseas o IO A-(UCH2BULCDUCHBULICD3 50100
<Bulns=13Aely JS80nEs o PO A (JUBLIEYES UCT mccnoucu__omcccommu_omm
=Buns=1srAely SpeEs o PIOA(J3SHNS Y JUSWaE)S UOGI2ULICT) JUO! um::comwc_umm
Bung Hudde) o :a__um::Ru.C_..u__um::Ruumumm
Bugs peasy o ﬁumﬁuumu_:a_uomccno%
Japo i aseqeEp
YoImpues &) ", A1012B4UORIBULOD) &)
==STE) BAR[3= ==STED) BAR[E=

170 \u21 mpues- .

pios(Bunslynsayias @
Buns:unsawat &
pioA(CuS)alemas @

., proa-(Buslaweu doysias @
e Buns:(Jeweu doysiab &
pioA(UBICCg U2 SN JUCDIaS @

Bus {jeecHab &
oA (I UNCW dwnw. L]

uespoog:(asn ueos &
pioa(ueaooqUeDIas &

1‘Buins ‘Buns Buns Buns Buns Buns Buns Buns Hu mvm@mu;on%

0sueni0 B M (LnowAa0 ©) .

w dousTp poa(Bunzluanas @ pioA-{upidoysyes @
prispi 3 Buis-(wamsb @ .| <smssis{bung Sung w)sbuddoy 16 @ yr{)pi-doysyab @
Buns ‘soud o § (epi0® ; unS)pUDRaS & <SIEIS>ISTT:(BUS Buns Jur) sbuo seaciet @ Do (BULS)DIC MssEd dousias @&
SuLS “SenXs o 1w prdoys o> e Sus:(pungast @ <spEg=is{Buns Buns) senaiet @ Buns:()p1o mssed doysiab @
Bus ‘spees o i IBqWNUTIapI0 0 (Bug)sies o <sEyg=1sr:(Buins Buns W) suugst @ (Bung Suns wuny &
Bugs :sasnes o 3gnop 3gsenXa o Osms @ buins Buls LnseseREiEt @ Ouny &

P A-(JUIDIEGI AOWA) @ Amﬁ_m.lmjauc_.:m.uc_huw.uccmgwamgu 5@

< :sBunosess o 3|IN0P BOUHULD o - BuLs unsal o

N L UESJ00q JIASN U0 o
Bus Buido) o s v’) BULIS 315D o <@QuepIO=isT-(Ju)piegioses @ pioA:(uiBungs)pao mssed mau @ el 52157, (Bugg Buins u)saoneget @ UESIBOg JU0T
Buge Bssayo o anop ougeu o pion:(1apig)anes & | =easspig=1smiwipegonoeEs @ apny=sr{yinyeh @ =SS 15T-(Buns Buns) spejesiat @ a pidoys o
Buns peaxg o Bung=1srfeny senxs o 4 ccmm_._.um Buns way o Cmaﬁm_mmum omoz_:dum B Omn_m:gmum Buns -aweu"doys o
Suns Juup o SuNS Jup o | venosuuen wuso o Guns purf o UORDALLIDD JLLD3 o UORDALLIDD LGS o UOROAULIDYD JLLDD o Sus o mssed dous o
13p0 13p0 sseqeEp 13p0 sseqeEp aseqeEp aseqeiep 13p
aa1epi0 & B0 uasulE) S181S &) aa10213s @ aquiny &) aasiels @ wunv &)
<<SSED) BARDsx <<SSED) BARDsx <<STELD BARPES <<STED BARM=E L <<STED BAR =S <<SSED) BARDsx <<SSE) BAERT <<STELD BARPES

270f siEs- L0 | sielsTwioy-

= O 0 z8jas- 10| sspic-

=0 ne- 10 \WneTwe -

poa(laaussu &
pioa(jueagies|s &
amnop:(Buns)asugbuddolab @
apgnop:(Buns)aoupuumatb &
spanep-ibunsjasugsenaysh &
pieA(1apI0)IapIoIas @ | .
Japag(Japigiat @
Bung: (funs e nxganrowas & o
Buns:(qugasowal & ‘
Buns:(funs)fuucseasanowal @

Buns-(fumgaonesarowar®
Bung{Bungpeesantwal @
uczuwucu:ﬁmmpmsc._n._ (]
Buwyg: Omwmmﬁmém_ @

Bus-(Jpesiganowas &
Buns:(funs)enappe @

pioA:(u)pi doysias &
Mo A (UIMSPIOIaoUED &

PO A (Jupay S I2 AOWa) & . Buns:(Buns uugppe @ pioA(upidoysias @ - poA(fugs)pIo Msseg mau &
pio - (ulprega sowal & - Buns:(Buns)Buo seasppe & w(pdoysiat @ | . . pion{lasniuoD &
Mo A (UIpIedIONDED] & Buns:(Buns)asanesppe & PICA(SIBIS)SIElS WIcas @ poA(uos &
m =pepI0=1spedioNioaRsiet @ Suns(Buns)peeseoe @ speis:(ispe)sTwiopab @ pioA(uInyuINeTwIcHas @
(41 piea-(jujpregpeo) @ Bugs-(Buys)Buido| ppe @ <sjeg=ien()sesist @ yiny-(uine w0yt @
md =BI8pI0=1s (Jpiedioeesiat @ Buns-(bung)assauoppe @& pioa(Bung Bung wsieispeo) & <pny=1s (uinyEst @&
(] or_.wmm_._n:uﬁum Buns:(Buns)peaigppe & Ocummm_swum poA(UINyDeo] &
.m 1 pidoys o (Ouvagpabeuwpnap @ u prdoys o Oueaguiny @
n Buoy anuoisiayeua S Py Buoy ONuoIsIaNEIRS oy Buoy ONuoIsIaNEIRS oy Buo ONuoIsIaNRLEs oy
% 100q 009 1009 100g
— ueaguaydy &) ueagpabeuepnap &) ueagsiels &) ueagyiny &)
C <<SSBY) BABD> <<SSRY) BABD> <<SSBY) BABD>> <<SSED) BABP=>

3.3. Implementation

I will explain the main implementation features of each module of Subself and its

responsive design.

3.3.1. Subself Kiosk — Self Service application

Through ManagedBean, the ingredients are added and removed. Example:

public String addBread(String bread) {
if (this.order.getSandwich().getBread() != null
&&
this.order.getSandwich().getBread().equals(bread))
return null;
else
this.order.getSandwich().setBread(bread);
return null;

}

public String removeBread() {
this.order.getSandwich().setBread(null);
return null;

Then, according to the action, the webpage render to the user on a selection list the
items that he/she selected.

Also, this Bean is responsible to invoke methods in the Insert class, to insert the
final order in the database when the customer is finished.

public void insertDB() throws Exception{
Insert ins = new Insert();
Order order = this.order;
ins.save(order);

}

The webpages handle the bean according to this snippet:

<h:commandButton type="button”
class="img-responsive btn btn-success"”
image="1img/salads/Lettuce.png”
action="#{meuManagedBean.addSalad('Lettuce')}" />

11

3.3.2. Subself Cashier / Subself Kitchen

These two modules share the same Bean, they differ in the database Select and the
status of the order they display. The parameter id showed in the methods below, is the
order_id. LoadPaid and LoadNotPaid select orders to show in the kitchen and cashier

modules respectively.

public KitchenBean() {

try {
loadNotPaid(shop_id);
loadPaid(shop_id);

} catch (Exception e) {
// Auto-generated catch block
e.printStackTrace();

}
}

public void removePaid(int id) throws Exception{
SelectDB sel = new SelectDB();
sel.removePaid(id);

}

public void removeFinished(int id) throws Exception{
SelectDB sel = new SelectDB();
sel.removeFinished(id);

}

public void cancelOrder(int id) throws Exception{
SelectDB sel = new SelectDB();
sel.cancelOrder(id);

}

3.3.3. Subself Stats

This module allows managers to see stats accordingly to selected items and dates.
The snippet below shows the StatsBean constructor. “Total of Salads” and “Total of
Orders” are also available at this module. The StatsBean asks to the database class the

proper MySQL Selects.

public StatsBean() {
this.form_stats = new Stats();

try {
loadStats(shop_id, form_stats.getItem(),
form_stats.getDate());

12

3.3.4. Responsive Implementation

The snippet below shows how divs and buttons are responsive according to screen
size. The properties Ig, sm, and xs are related to large screens, medium screens and
mobile screens respectively. The numbers are the space they represent in a grid with 12
slots.

In this example, in large screens, 12 buttons appear in a row, and only 3 on a phone

screen.

<ui:repeat value="#{meuManagedBean.order.sandwich.salads}"
var="salad">
<div class="col-lg-1 col-sm-1 col-xs-4">
<p>
<h:commandButton action="#{meuManagedBean.removeSalad(salad)}"
image="1img/salads/#{salad}.png" class="btn-remove thumbnail" />
</p>
</div>
</ui:repeat>

Data Tables are also responsive:

<div class="table-responsive”>
<h:dataTable value="#{kitchenBean.selectNotPaid}"
rendered="#{authBean. form_auth.cont}" var="dataItem"
class="table table-striped table-condensed">
<h:column>
<f:facet name="header">
<h:outputText value="Order No." />
</f:facet>
<h:outputText value="#{dataItem.order_id}" />
</h:column>

3.4. Testing and Customer Testing

The test plans consisted of selects on the database and comparison to results
showed on the modules of Subself.

| asked roommates to use the Kiosk application and give me feedback of the
usability.

Initially, for example, to remove an item, you should touch the same item again.
After user feedback, you remove an item in the selections list by touching it.

When touching it, the button gets red, to show you are going to delete it.

13

Authentication tests were extensive. The system rigorously asks for a shop
selection in the beginning. No screens are available when the user do not select a shop.

In the Subself Admin mode, any module only display the logged shop information,
and every screen always check if the admin user is correctly logged.

Because of the functionality of twitter bootstrap, all tests used Google Chrome as a
browser. Every screen also was tested on a smaller window to show its responsiveness.

Examples:

SVUBSELF - TorPING [ReNSN SALADS = SAUCES SEASONINGS

Select your salads. ouch to select €3,00 as built

Select your
salads. Touch to select

What you have selected. Touch to remove.

S

ITAUAN 8READ cncxen
ewon BREAsT

SVUBSELF Welcome!

SUBSELF |

Shop Number: S‘L\UBSE&F

Shop Number:
Password:

Password:

Insert valid credentials

' Insert valid credentials

14

3.5. GUI (Graphical User Interface)

Twitter Bootstrap was used and customised for this project. Screenshots are shown

below with a description of the screen.

SVUBSELF Welcome! enter the Shop Number of the shop you are no

SVUBSELF

Shop Number:

2

[Eimesar

Shop: Dundrum

User login page. It only asks for a shop number.

SVUBSELF Welcome! enter your Shop Number and the Password

SUBSELF

Shop Number:

Password:

Shop login page. Subself Admin.

15

Welcome! Shop: Dundrum

OPEN THIS MODULE ON THE USE THIS MODULE TO
INTERACTIVE KIOSKS REGISTER CUSTOMER PAYMENT

o

&
USE THIS MODULE TO USE THIS MODULE TO
SEE THE QUEUE OF ORDERS SEE YOUR SHOP STATS

Subself Admin. Module selection page.

TOPPING

Select your topping. Touch to select c-

“RREVIOUS

v

What you have selected. Touch to remove.

TALAN HERSS
Ao CHEESE
ewcn

Toppings selection page.

16

SVUBSELF Please, check your order: Final Price: € 7,50

Bread and Topping: N

" o
o] A
Cheese:
=
Salads: é !
Tousto o]
Sauces:
o
soimatlt
Seasonings: L1
=
war
Drink and Extras:
Lance
PN

MAKE CHANGES

Order confirmation.

SVUBSELF This is your order number, please go to cashier:

Final Price: € 7,50

Order number.

SVUBSELF Orders to be paid:

Order

No. Bread Topping Cheese Salads Sauces Seasonings Extras Drink Price Paid?

255 Italian Herbs and Cheese Chicken Hot Cheddar Tomato Chipotle Salt Cookie Large Fountain 7.50 m
6-inch Tikka Cheese Cucumber Southwest Soda

256 Italian Herbs and Cheese Beef Black Olives Bottled Water 5,00 m
6-inch

257 Flatbread Footiong Ham Red Onion Sweet Onion Vinegar Tropicana 7.00 m

Subself Cashier.
17

SVUBSELF Orders to be prepared: ciceinves

Order

No. Bread Topping Cheese Salads sauces Seasonings Extras Drink Price Finished?

255 ltalian Herbs and Cheese Chicken Hot Cheddar Tomato. Chipotle Salt Cookie Large Fountain 7,50 E
B-inch Tikka Cheese Cucumber Southwest Soda

257 Flatbread Footlong Ham Red Onion Sweet Onion Vinegar Tropicana 7.00 m

Subself kitchen.

SVUBSELF Stats: enterat an tem ws Shop: Dundrum

Timeframe:

2014-05-20

. Cheeses = . . . E] Totals | «

Item selected: Total of Breads

Bread Orders sold Timeframe

Total of Breads 2 2014-05-20

Subself Stats.

SVUBSELF Orders to be paid: cickin-ves

Please, login first. Click here to login.

No user logged trying to access Subself Cashier.

18

4. Conclusions and Further Development

This report discussed the technical and also user related characteristics of Subself. |
hope the reader may have understood the differences between Subself and Subself
Admin with its administrator modules.

For future development, | think this system could generate the images and new
items according to user insertion. They could also create their screens and the system
could become a framework for “create it yourself” restaurants.

The development had some hurdles regarding college exams, but JSF was a smart
choice for me.

In the beginning, Twitter Bootstrap and JSF was something totally new, as | could
not find examples on the Internet to help me, but in the end both work together very

well. JSF tags accept bootstrap CSS classes and it was very helpful.

5. References

JSF Tutorials (Accessed between 09/2013 — 05/2014):
e http://balusc.blogspot.ie/2011/01/jsf-20-tutorial-with-eclipse-and.html

e http://balusc.blogspot.ie/2006/06/communication-in-jsf.html

Others:
e Object Aid Eclipse Plugin and Astah Community for Diagrams

e Www.subway.ie, www.subway.com, www.subway.com.br for pictures

Twitter Bootstrap 3

Eclipse Kepler
Glassfish 4
JSF 2

Google Chrome

19

http://balusc.blogspot.ie/2011/01/jsf-20-tutorial-with-eclipse-and.html
http://balusc.blogspot.ie/2006/06/communication-in-jsf.html
http://www.subway.ie/
http://www.subway.com/
http://www.subway.com.br/

6. Appendix

6.1. Project Proposal

Project Proposal

SELF SERVICE SYSTEM FOR SANDWICH STORES

Anderson Simiscuka, 13115642, Anderson.simiscuka@student.ncirl.ie

BSc (Hons) in Business Information Systems

September 30th 2013

20

1. Objectives

The creation of a system in which people can create their sandwiches step-by-
step at sandwich stores without the need of waiting in a long queue and talking
to an attendant.

This system will allow the customer to choose between different types of bread,
salad, toppings, sauces, Drink selection, Combo selection, Payment to the
machine or print a receipt and take to the cashier.

The system can be displayed in different languages, so communication
problems between customer and attendant, in cities with people from many
different countries, could be solved.

The system will contain another application to the kitchen staff, where they can
see the orders and queue.

2. Background

Restaurants like the Subway franchise generally are able to have only one
queue of customers, and it takes more time than having, for example, three
terminals where three customers could order their sandwiches at the same
time.

3. Technical Approach

The system will be web based and both applications, store and kitchen, will
connect to the same database.

It will be implemented using Java (Object Oriented applications), Eclipse
platform - JSF, Bootstrap for the display, open source database (i.e. MySQL).

The display is intended to have a similar Microsoft Metro User Interface
navigation, and to be used in touch screens

21

4. Project Plan

I Task [Task Name Duration |Start | 21 September | 11 November |ﬂlJanuar|,' | 21 February | 11 April |£}1 June
8 |Mode 02/09[23/09 [14/10 [04/11 [25/11 [16/12 [06/01 [27/01 [17/02 [10/03 [31/03 [21/04 [12/05 [02/06 |
1 = Project Proposal 1 day Mon 30/09/13 °E
B =* Requirement Specification 14 days Tue 01/10/13 [|
'3 | =" Classes and DB Tables Creation 9 days Mon 21/10/13 Eaa
2| =" |Initial Displays - User Interface 11 days Fri0l/11/13 | = |
s | =" Complete User Interface Interaction 21 days Fri 15/11/13 | = |
s | =" Mid-point and Prototype Presentation 5 days Mon 16/12/13 =]
7] =" Kitchen Application Creation 45 days Mon 231213 CEssd
s | =" Kitchen - Store - DB Integration 45 days Mon 24/02/14 Ll
EX =" Project Beta version 1 day Mon 28/04/14 X
10| =* Final Documentation Creation 10 days Tue 29/04/14 [|
11| =* Project Final Documentation and code 1 day Tue 13/05/14
12| =" Project Presentations 5 days Mon 19/05/14
13| =" Project Showcase 1 day Wed 28/05/14
Task SN External Milestone ¢ Manual Summary Rollup c——
Split Inactive Task C | Manual Summary —
Project: Projectl Milestone L Inactive Milestane o Start-only C
Date: Mon 30/09/13 Summary Pemm————— |nactive Summary U————% Finish-only |
Project Summary Py Manual Task ERd Deadline ¥+
External Tasks] Duration-only Progress D ——

Page 1

5. Technical Details

Java (Object Oriented applications), Eclipse
display, open source database (i.e. MySQL).

6. Evaluation

Extensive black-box and white-box testing. U
interface. Connection and data insertion testin

7. Consultation with Project Spe

platform - JSF, Bootstrap for the

ser forms with opinions about the
g.

cialisation Coordinator

Anu Sahni and Jonathan McCarthy. Positive feedback of the main idea.

22

8. Consultation with Academic Staff

The project Specialisation Coordinator will point you to a suitable staff member
for consultation. Please include the name of the second academic staff member
consulted and a summary of their feedback.

9. Proposed Supervisor

Names of academic staff member that has agreed to act as a supervisor for this
project.

Signature of student and date

23

6.2.

Requirements Specification

BSHC4, BSHCE4, BSHBIS4, BSHBISE4

Requirements
Specification (RS)

Anderson Augusto Simiscuka
10/20/2013

24

Requirements Specification (RS)

Document Control

Revision Histo
Date ‘ Version ‘ Scope of Activity Prepared Reviewed Approved

13/10/2013 1 Create
20/10/2013 2 Update

Distribution List

Name Title Version
Kyra McKenna Lecturer / Project Supervisor
Jonathan McCarthy Lecturer

Related Documents

Title ‘ Comments

Title of Use Case Model
Title of Use Case Description

1 User

Purpose

The purpose of this document is to set out the requirements for the
development of a Self Service System for Sandwich Stores.

The intended customers are stores that sell Sandwiches that the final customer
choose each ingredient.

Project Scope

The scope of the project is to develop a Self Service System for Sandwich
Stores. The system shall allow the customer to choose between different types
of bread, salad, toppings, sauces, Drink selection, Combo selection, Payment to
the machine or print a receipt and take to the cashier.

The system can be displayed in different languages, so communication
problems between customer and attendant, in cities with people from many
different countries, could be solved.

The system will contain another application to the kitchen staff, where they can
see the orders and queue.

Schedule:

Classes and DB Tables Creation 9 days Mon 21/10/13
Initial Displays - User Interface 11 days Fri01/11/13
Complete User Interface Interaction 21 days Fri 15/11/13
Mid-point and Prototype Presentation 5 days Mon 16/12/13
Kitchen Application Creation 45 days Mon 23/12/13
Kitchen - Store - DB Integration 45 days Mon 24/02/14
Project Beta version 1 day Mon 28/04/14
Final Documentation Creation 10 days Tue 29/04/14
Project Final Documentation and code 1 day Tue 13/05/14
Project Presentations S days Mon 19/05/14
Project Showcase 1 day Wed 28/05/14

2 User Requirements Definition

Faster queues
More people being attended at the same time
Possibility to communicate in more than a language

26

3 Requirements Specification

Functional requirements

Use Case Diagram

)

Insert
Customer

/ Loyalty Code

Customé T
Choose step
by step order
\ ‘|ndu£je>>
Choose
combo Choose
ingredients

<<| gae=>

\\
\\
<<intlude>> Choose
\) .
\ aditional items

\ <<inclyde>>
N 7’

A7

.L}

Choose drink

@ Prepare the
meal
Register
payment

Cashier

Pay printed
order to the
cashier

Kitchen staff

Requirement 1: Insert Customer Loyalty Code

Description & Priority

When the customer start using the touch screen, selecting the language, it will
be possible to register the customer code for future discounts or promotions.

Low priority.

27

Use Case

Scope

How the customer will insert the loyalty code.
Description

In the first screen, the customer will choose between inserting or not the code. If
code insertion selected, a keyboard will appear, and the code can be inserted.
The information of the meal will go to the customer database and it can be used
for discounts in the website, vouchers and promotion.

Use Case Diagram

Actor Customer and use case Insert Customer Loyalty Code.
Flow Description

Precondition

Customer started to interact to the touch screen.

Activation

This use case starts when a Customer selects to insert a Loyalty Code.
Main flow

The system identifies the option inserted

The Customer insert its code if decided to do so

The system upload this information to the database
Termination

The system presents the next screen (Type of meal)

Post condition

The system goes into a wait state

Requirement 2: Choose Step by Step Order

Description & Priority

Customer can choose between a regular combo or customise its order. In the
Step by Step option, ingredients and additional items will be selected by the
customer. High priority.

Use Case

Scope

Customer will select the ingredients of the meal and Drink.

Description

After selecting Step by Step Order, the customer needs to choose ingredients,
additional items like crisps or cookies and the drink.

Use Case Diagram

28

Actor customer and use case Choose Step by Step Order and its inclusions.
Flow Description

Precondition

Step by Step Order selected on the screen

Activation

This use case starts when a Customer selected Step by Step Order

Main flow

The system identifies the option selected

The Customer selects the ingredients, then if wants additional items and finally
the drink

Termination

The system presents the next screen (Print order)
Post condition

The system goes into a wait state

Requirement 3: Choose Combo

Description & Priority

Customer can choose between a regular combo or customise its order. In the
Combo option, the customer can see regular sandwiches with included drinks
and additional items. According to the day, combos can change. High priority.
Use Case

Scope

Customer will select the meal and Drink.

Description

After selecting Combo option, the customer needs to choose the combo.

Use Case Diagram

Actor customer and use case Choose Combo and its inclusions.

Flow Description

Precondition

Combo option selected on the screen

Activation

This use case starts when a Customer selected Combo option

Main flow

The system identifies the option selected

The Customer selects the combo

29

Termination

The system presents the next screen (Print order)
Post condition

The system goes into a wait state

Requirement 4: Print Order and Payment

Description & Priority

Customer will finalise the process printing the order with the price and items
selected. High priority.

Use Case

Scope

Customer will finish the meal selection and print the order.

Description

The printed order needs to be presented to the cashier that will accept card or
money. The kitchen already received the order from the system.

Use Case Diagram

Actors customer and cashier and use cases Pay Printed Order to the cashier
and Register Payment.

Flow Description

Precondition

All previous screens completed.

Activation

This use case starts when a Customer finishes the order
Main flow

The system identifies the meal and its price

The Customer finishes the process and accept the price
The system prints the order and send the order to the kitchen
The Customer pays to the cashier

Termination

The system prints the order.

Post condition

The system goes into a wait state

30

Requirement 5: Prepare the Meal

Description & Priority
Kitchen staff have a system to see the orders. High priority.

Use Case
Scope

Customer will finish the meal selection and the kitchen see the order on a
screen.

Description

The order is going to be prepared according to what was selected by the
customer.

Use Case Diagram

Actor Kitchen Staff and use case Prepare the Meal.

Flow Description

Precondition

Order completed.

Activation

This use case starts when a Customer finishes the order
Main flow

The system prints the order and send the order to the kitchen
The Kitchen Staff prepares the meal and bring to the customer
Termination

The meal is prepared.

Post condition

The customer receives its meal.

31

Non-Functional Requirements

Specifies any other particular non-functional attributes required by the system.
Examples are provided below.Remove the requirement headings that are
not appropriate to your project.

Performance/Response time requirement

The system needs to be fluid and fast.

Availability requirement
At least one terminal needs to be working in the store.

Security requirement
Customer code needs to travel secure to the network.

Maintainability requirement
Combo prices change according to the day of the week.

Extendibility requirement

The same store has more one terminal that connect to the same database and
kitchen system.

Reusability requirement
The system is the same in different terminals

32

4 Interface requirements

GUI

English O

Espanol

Portugués

| do not have a | have a
loyalty card loyalty card

(Y,

33

| wanta combo

(Y,

745256845

alty card number

| will choose
my
ingredients

34

Select your
combo

Select your
fillings

Back

35

Select your
bread

Application Programming Interfaces (API)
Printing interface

36

5 System Architecture

pkg

Customer

-id:int
- name : String

Order

- customerld : int
- combo : Combo

Ingredients
Sandwich A
- ingredientsList : Ingredients - name : String
Drinks
-id:int
Combo / - name : String
- Sandwich : Sandwich
- Drink : Drinks
- Addtion : Addition
T~ [Acdiion
-id:int
- name : String

6 System Evolution

The system can accept new ingredients, combos and prices.

37

6.3. Reflective Journals

6.3.1. September

Reflective Journal

Student name: Anderson Augusto Simiscuka

Programme (e.g., BSc in Computing): BSc (Hons) in Business Information Systems

Month: September

1. My Achievements
This month, | was able to think of an idea that became my Project Proposal after that. | have
focused on the first layout ideas of the Self Service System for Sandwich Stores.

The display is intended to have a similar Microsoft Metro User Interface navigation, and to be
used in touch screens.

My contributions to the projects included defining the core ideas, writing down the first
features and functionalities.

2. Reflection

| felt, it worked well to create the system concept and defining its functionalities.

3. Intended Changes

Next month, | will try to create diagrams, wireframes, and start coding the first functionalities.

38

6.3.2. April

Reflective Journal

Student name: Anderson Augusto Simiscuka

Programme (e.g., BSc in Computing): BSc (Hons) in Business Information Systems

Month: April

1.My Achievements
New modules are available. Kitchen and Cashier modules. User Authentication and
Administrator Authentication.

Kitchen and Cashier modules retrieve data from the database according to their status and
allow the cashier to insert payment on new orders and the kitchen employees to finish orders.

User Authentication is intended for mobile or desktop users to select a store, make their order
and pick it up.

Administrator Authentication is intended to be used on shops. It also contains the Kiosk
module. The Kiosk module is the same as the application of Users, where they create their
sandwiches, however, to be used on kiosks/interactive totems in the shops.

2.Reflection
Those modules were challenging but JSF showed a nice tool to be used to create data tables
and for user administration.

3.Intended Changes

Next month, | intend to create a new module, the Stats module. Managers will be able to see
each item consumption using different timeframes.

39

CD
SUBSELF

40

