A Platform Agnostic Solution for
Inter-Communication between Virtual Reality
Devices

Sami Abbas
School of Electronic Engineering
Dublin City University, Ireland
sami.abbas4 @mail.dcu.ie

Abstract—Virtual Reality (VR) allows users to interact with
intuitive environments to manipulate games, applications and
even other Internet of Things (IoT) devices. VR devices have been
brought to users by different vendors, supporting different devel-
opment platforms and features. Many VR applications, however,
do not support simultaneous VR devices from different vendors.
The few applications that support this feature are not open to
developers, with little information on their implementation and
application performance. Using VRTK and Unity, this paper
intends to present a VR application that supports multiple VR
hardware platforms with the use of the VRTK SDK along with
the appropriate VR hardware SDKSs. This application supports
multiple users in a VR environment where they can interact with
each other and with objects in the VR space. Other features
such as file transfer over the VR application are also supported.
Such an application is important to allow developers to design
future applications that support multiple devices regardless of
the vendor, creating convenient multiuser VR applications with
less limitations.

Index Terms—VR, inter-communication, application, interface

I. INTRODUCTION

Virtual Reality (VR) platforms are becoming a mainstream
technology and affordable to many users, resulting in many
VR applications being developed [1]. However, most of these
applications do not allow users of different VR hardware
platforms to interact with each other in the same VR appli-
cation. This is because the developers tend to design their
application to a specific platform that holds most of the
market share such as HTC Vive and Oculus Rift [2]. Some
VR applications are platform exclusive which is normally
established through a mutually-beneficial contract between
the VR platform company and the developer of the client
application. This limits the end user access to applications
that are only developed to specific vendors.

This paper proposes the design and implementation of a
VR application that allows multiple users to use different VR
hardware platforms on separate computers to interact with
each other in a universal virtual environment over a network.
This means that this VR application supports multiple users on
different hardware platforms. This integrated environment is

978-1-5386-4980-0/19/$31.00 (© 2019 IEEE

Anderson Augusto Simiscuka

School of Electronic Engineering
Dublin City University, Ireland

anderson.simiscuka2 @mail.dcu.ie

Gabriel-Miro Muntean
School of Electronic Engineering
Dublin City University, Ireland

gabriel. muntean @dcu.ie

VR Headset Network

Intarface Interface
1
UDP Socket TCP Socket
] Netwisk Chient Server

| Mogames A

VR Application

E Network Module| | r
Wl'lum:ﬁcu?rd File Manager T g
Object | ;
| 2
; | B ™ Windows Users
= Marker Object . E Directory
| 2
|]
Player Network Player Unit | B
| Link Object Object |
' ¥
VRTK SDK
Steam VR SOK | Oculus SDK Simulator
Unity Engine

Fig. 1. VR Block Diagram

aligned with the concept of seamlessly interconnecting devices
in an Internet of Things (IoT) network that also includes VR.
Developers can benefit from this approach to incorporate the
support of all platforms in future applications.

An approach to address the differences among VR platforms
is to develop a single software development kit (SDK) that
can communicate between the VR platform SDKs and the
VR application itself. This means that developers only have to
write the application code once and create an interface with the
SDK toolkit. Then the toolkit can interface with any number
of the VR SDKs that the developer wishes to support. A
popular toolkit for this purpose is called Virtual Reality Toolkit
(VRTK) [3]. VRTK, however, does not support networking.
Unity, one of the major game development engines in the
industry, has the capability of supporting networking in VR
applications [4]. Its support for high quality 2D and 3D video
games make it one of the leading development engines in VR
technology.

The proposed VR application supports multiple VR hard-
ware platforms such as the HTC Vive and Oculus Rift. A

shared VR environment is included, where users can interact
with each other. Objects such as a shared whiteboard and a
marker tool are also implemented in aplication. The appli-
cation is also able to handle the sending/receiving of files
between each machine connected to the host. This application
must have a type of network communication link between each
machine to support the transmission of data.

Using the VRTK toolkit and Unity engine, the application
can be built once and then linked to the official SDKs provided
by Oculus and HTC. Unity is be the Integrated Development
Environment (IDE) used for the development of the VR
application.

Network tools provided by the Unity platform are used to
establish a communications pipeline between the VR applica-
tions. Socket programming is used to transfer the files across
the network between the two VR application instances. The
diagram presented in fig. 1 shows the block layout of the
modules that are included in this VR application.

This paper is organised as follows. In section II related
works are presented and section III introduces the technical
description of the application. Section IV details the perfor-
mance analysis, and section V presents conclusions and future
work directions.

II. RELATED WORKS

There is a wide range of IoT services, from low bandwidth
smart metering to high bitrate rich media applications. At the
same time there is a large number of rich media-enabled IoT
devices (i.e. there are more than 0.2 million AR/VR devices
globally), which generate a massive amount of data traffic at
data rates, often at more than 1 Gbps and with an expected
latency of less than Ims [5]. These services use diverse
solutions to enable data transmission at high quality, including
network selection [6], load balancing [7], personalised content
adjustment [8] and adaptive delivery [9]. More recently there
has been a significant increase in demand for very high bitrate
rich media services, including VR, in general context and in
particular that of IoT [10].

VR and IoT have also been integrated in order to maximize
the high inter-operability of IoT services with the intuitive
nature of VR [11], [12]. This integration also allowed the
creation of an immersive virtual representation of a smart city
with remote sensing [13]. These VR-IoT integrated platforms
can provide a customizable and user-friendly environment for
controlling real IoT devices in virtual environments.

An approach for exchanging avatars for collaborative VR
systems was presented in [14]. The focus relies on the transfer
of emotions in real-time by using a software- independent data
representation.

Authors in [15] explore hardware interactivity and VR
devices through two games designed to use the Oculus Rift
SDK technology with alternative methods of hardware for
communication.

III. TECHNICAL DESCRIPTION
A. VR Room

The VR room accommodates the users in the VR space. It
allows users to interact with each other or with other objects. It
consists of a ground plane and a set of four walls that encloses
the room to prevent the users from going too far and falling
off the edge of the 3D environment. The room was created
using the Unity 3D editor to create 3D shapes and move the
objects around the room. Fig. 2 shows the overall room layout.

Fig. 2. VR Room

B. WhiteBoard Objects

A set of objects consisting of a whiteboard, table and marker
were created for use in the VR room. Users can pick up
the marker from the table and write on the whiteboard to
communicate with each other in this VR space. The other
user wearing a different VR headset is able to see the changes
made on the board. Fig. 3 shows the whiteboard object in the
VR room. Oculus Rift and HTC Vive provide controllers for
users to manipulate the application.

Fig. 3. Whiteboard Objects

The whiteboard and the marker have C scripts attached to
them to enable the intended functions of the board. Once the
user picks up the marker the scripts start.

First, the marker script finds the current position of the
marker in the VR room. Then it gets the distance between
the marker tip and another object in the VR room. As soon as
the marker collides with another object it is able to record

Algorithm 1 Marker Behaviour

Algorithm 2 Whiteboard Behaviour per Frame

Require: marker_position; marker; whiteboard_object
Output : whiteboard_x_y_position; whiteboard_touch;
marker_rotation_lock; last_hit; server_touch
if (marker hits an_object) then
if (an_object == whiteboard_object) then
set whiteboard_x_y_position
whiteboard_touch = true
marker_rotation_lock = true
return whiteboard_x_y_position,

touch, marker_rotation_lock
end

whiteboard_

end

else
whiteboard_touch = false

last_hit = false
server_touch = false
if (marker != touch) then
| marker_rotation_lock = false
end

end
return whiteboard_touch,
marker_rotation_lock

last_hit, server_touch,

the exact position of the marker. It, then, checks if the
object it has hit was the whiteboard. If it is, then it informs
the whiteboard at what point (x, y) the marker has been
pressed. The whiteboard, then, starts recording the information
written on the board. It also locks the rotation of the marker
so that when the user moves their hands the marker stays
perpendicular to the whiteboard. This prevents the marker
from passing through the whiteboard object.

When the marker stops touching the whiteboard, it informs
the whiteboard it is no longer touching it. It also communicates
to the server that the marker is no longer touching the
whiteboard allowing other users to draw. On the whiteboard
script, the colour of the marker is first be set to the color black.
The reason it is controlled on the whiteboard and not in the
marker is to allow marker to simply find the x, y coordinates
when it collides. The rest is be handled by the whiteboard
script.

Updates on the whiteboard are sent by the server to all
clients. If there is an update, the x and y coordinates points are
sent by the server, painting the pixels on the 2D texture plane
of the whiteboard. When the marker is touching the board, the
pixels of that point can be painted on the 2D texture plane.
The server updates all clients with changes on the whiteboard.

Algorithms 1 and 2 represent the behaviour of the marker
and whiteboard, respectively.

C. Player Avatar Unit

Avatars represent the players in the VR room. They enable
each local player to see the location of the remote player in the
VR room. Avatars are solid objects of a capsule style structure
that represent the players position in the room. This object

Require: server; marker_touch
Output : marker; whiteboard

if (server changes) then
server.cmd client with new server.z,y_position

if (skip_over == true) then

| draw z,y_points from server
end
save server.x,y_position
apply new textures to whiteboard
reset change and Stepln if statements

end
get marker.position
if (marker == touch) then

draw z,y_position
notify server of updates

apply new textures to whiteboard
end

save marker.x,y_position
save marker.touch
return marker, whiteboard

Fig. 4. Player Avatar Unit

follows the location of the player wherever they are in the
room, as seen in fig. 4.

D. Network Manager

The network manager has several responsibilities inside the
VR application. It has a UI so that the user can select whether
it wants to host as a server or connect as a client to another
VR instance. It also has the responsibility to spawn the player
units in the room and to track their positions across all clients
and to issue new position updates when needed.

It also handles whiteboard updates, this is done when the
user communicates commands to the server with the new
whiteboard (X, y) position points updates that need to be
marked on all clients. The server, then, relays this information
to all clients, as seen in the diagram of fig. 5.

The Network Manager uses Unity’s Server command and
Client RPC protocol. When the user issues an update it
communicates with the server to do the task. The server then
executes the update. It also synchronises all clients using the
RPC functions with the updated parameters, using the UDP
protocol. If the player position is lost (UDP packet dropped),
it is unimportant, as each time the player moves slightly, new
updates are sent, so the VR application can refresh its current
position with the new information. Regarding the whiteboard,
a function joins all points on the board as one line to make

Once On StartUp Start() \ Server \ All Clients

Start Sending Thread (Server) Start Receiving Thread (Client) |
False It | OpenFile |
Local User Spawn Player Unit
?
(| Populate Buffer |
True | Cmd all Clients
To Do The Same I
Cmd Server Spawn | Extract File ext. |
- - B 4
L Retum y. (BEsGER Lol [CloseFile |
Once Per Frame Update() Create Socket
L
False " Bind Socket Connection Get Address
Local User Listen to Conn Established Create Socket
& SO———— Accept Conn Connect to Server
- Update WB (x,y) Data
It Update WB (x,y) T '
Receive File.Len
() Data
o ol Cmd all Clients n ‘
Update To Do The Same Receive File
‘ True
—_— | Retun | Return
Cmd Server Loop
File.Length
s
—_— Data

Transmission

A1 Update WB Touch v '
oucl
ot _l_' Update WB Touch Data L""_'_""ET"-L‘EM
T (' D -
R Cmd all Clients | Receive s
Cmd Server To Do The Same

=== r Loop Loop
__Retum | \ |_Retum | Retum | Ext.Length Ext.Length
Fig. 5. Network Manager Flow Chart
Destroy
. : : : R " Build File ext.
the overall experience smooth which results in users drawing
continuous lines. Open New File
E. File Manager Buffer to File
The file manager script from fig. 6 is responsible to send Close File
and receive files between each VR instance. The script itself =
| Thread

setup the directories in Windows on the VR application startup.
This means that users can simply drag files into the appropriate
output folder for possible data transmissions. Fig. 6. File Manager Flow Chart

A script is activated when the user pushes the M button for
sending or N button for receiving files. When the M button
is pressed, the user intends to send files. The file selected is
sent to a buffer and the server waits for a client to connect
to receive the files. When the N button is pressed, it connects
to a new waiting server. The data is then transmitted over the
network. After file transmission, both programs at each side
end connection and close the sockets. Threads are used for
this to prevent the VR application from freezing up.

The maximum permitted size that can be sent over is 2.1
GB due to a signed 32-bit integer value holding the number
of the file size in bytes.

IV. PERFORMANCE ANALYSIS

Figs. 7, 8 and 9 demonstrate users testing the controls and
the whiteboard and the screen view of the application. Other
tests related to the network performance when running the
platform were executed. Wired and wireless sessions were Fig. 7. Controls Testing
analysed, as well as the file transfer feature.

Results for the wired session are available in fig. 10. It
can be seen that the peaks of the graph (from 50s to 125s)

Fig. 9. Screen View of the Whiteboard

show the users moving around the room very quickly, requiring
more data to be transferred. It reduces when they approach
the whiteboard and start to draw on the whiteboard. This test
resulted in less than 1% utilization of the 1Gbps link. The
maximum bandwidth consumed on the link was 0.12 Megabits
per second.

The wireless session results are shown in fig. 11. The overall
speed is reduced due to the payloads of the wireless TCP
packets being larger than the wired TCP packets. The speed
reduction can also be caused by the communications link that
requires a 3-way TCP handshake. Maximum speed in wireless
link was 0.104 Megabits per second.

Wired file transfer results are shown in fig. 12. The first
bump in the graph is related to a file being sent the second
bump related to the file being received. The maximum speed
achieved was 2.632 Megabits per second.

Wireless file transfer results are available in fig. 13. The
maximum speed was 1.456 Megabits per second.

Table I shows both the wired and wireless file transfer
results. Sending files over the wired and wireless network took

LT

Bytes/1 sec
~
g
T

0kt L L L i 1 L
0 25 50 75 100 125 150
Time (s)

Fig. 10. Wired Test Results

Bytes/1 sec

Time (s)

Fig. 11. Wireless Test Results

! I I ! I L
10 20 30 40 50 60

Time (s)

320000 -

280000 [~

240000 [~

200000 |-

160000 -

Bytes/1 sec

120000 [

80000 -

40000 -

0Fe

Fig. 12. Wired File Transfer Test Results

180000 -
150000 -
120000 -

90000 -

Brtes/1 sec

60000 -

30000 -

0

! L ! L !
10 20 30 40 50

Time (s)

Fig. 13. Wireless File Transfer Test Results

approximately the same amount of time. The overall speed in
the wireless network, however, was lower than in the wired
network.

The VR application was also tested in a 3 user scenario.
The network performance results can be seen in fig. 14.
The network usage was less than 1% of the links resources.

TABLE I
PEAK SPEEDS

‘Wired Connection Wireless Connection |
Time (S)|Peak Speed (Bytes/S)| Time (S)|Peak Speed (Bytes/S)
Asus Send to Dell 9 329000 9 182000
Dell Send to Asus 23 235000 27 80000

Between seconds 36s and 48s, all three users were using the
whiteboard one after another. Fig. 15 shows the 3 users avatars
in the shared VR room.

18000 -
\/\
15000

12000 -

9000 -

Bytes/1 sec

6000 -

N

L
0 10 20 30 40
Time (5)

Fig. 14. Network Test 3-Player Session

|20 % |4) | W -] [Gizmos -]

Fig. 15. Avatar Units for 3 Players

V. CONCLUSIONS AND FUTURE WORK

This paper presented the design and implementation of a
VR application that allows multiple users to use different VR
hardware platforms on separate computers to interact with
each other in a universal virtual environment over a network.
Oculus Rift and HTC Vive headsets were employed in the
testbed which includes an application that work seamlessly in
both platforms with simultaneous users.

The overall VR application load on the network was sig-
nificantly low as results demonstrated, which means that the
network could support many instances of the VR application
provided that the computer can handle the graphical load of
the VR application.

Future work includes improvements on the file transfer
module, which can use multi-threaded sockets to speed up
the transfer process. Other textures can be added to the VR

room to make it more appealing. More efforts can also put
into support for additional VR hardware platforms.

ACKNOWLEDGEMENT

This work was supported by the Irish Research Council and
Dublin City University, grant number EPSPG/2015/178, and
in part by Dublin City University Entwine Research Centre
and European Union’s Horizon 2020 Research and Innovation
programme under Grant Agreement no. 688503 for NEWTON
project (http://newtonproject.eu).

REFERENCES

[1] N. Singh and S. Singh, “Virtual Reality: A Brief Survey,” in Proc. of the
International Conference on Information Communication and Embedded
Systems (ICICES), Feb. 2017, pp. 1-6.

[2] M. Suznjevic, M. Mandurov, and M. Matijasevic, “Performance and
QoE assessment of HTC Vive and Oculus Rift for pick-and-place tasks
in VR,” 2017 9th International Conference on Quality of Multimedia
Experience, QoMEX 2017, pp. 1-3, 2017.

[3] G. Regal, R. Schatz, J. Schrammel, and S. Suette, “VRate: A Unity3D

Asset for integrating Subjective Assessment Questionnaires in Virtual

Environments,” 2018 10th International Conference on Quality of Mul-

timedia Experience, QoMEX 2018, pp. 1-3, 2018.

M. Hubbell and J. Kepner, “Large scale network situational awareness

via 3D gaming technology,” 2012 IEEE Conference on High Perfor-

mance Extreme Computing (HPEC), pp. 1-5, 2012.

P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila, and T. Taleb,

“Survey on multi-access edge computing for internet of things realiza-

tion,” IEEE Communications Surveys Tutorials, pp. 1-1, 2018.

[6] O. Ormond, G.-M. Muntean, and J. Murphy, “Network Selection Strat-
egy in Heterogeneous Wireless Networks,” Information Technology and
Telecommunications Conference (ITT), October 2005.

[71 A.Hava, Y. Ghamri-Doudane, G.-M. Muntean, and J. Murphy, “Increas-
ing user perceived quality by selective load balancing of video traffic in
wireless networks,” IEEE Transactions on Broadcasting, vol. 61, no. 2,
pp. 238-250, June 2015.

[8] C. H. Muntean and J. McManis, “A qos-aware adaptive web-based
system,” in IEEE International Conference on Communications, vol. 4,
June 2004, pp. 2204-2208.

[91 G.-M. Muntean, “Efficient delivery of multimedia streams over broad-
band networks using qoas,” IEEE Transactions on Broadcasting, vol. 52,
no. 2, pp. 230-235, June 2006.

[10] “Cisco Visual Networking Index:
and Trend,” 2017-2022. [Online].
https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/white-paper-c11-741490.pdf

[11] M. L. Choi, L. W. Park, S. Lee, J. Y. Hwang, and S. Park, “Design and
implementation of Hyper-connected IoT-VR Platform for customizable
and intuitive remote services,” 2017 IEEE International Conference on
Consumer Electronics, ICCE 2017, pp. 396-397, 2017.

[12] A. A. Simiscuka and G.-M. Muntean, “Synchronisation between Real
and Virtual-World Devices in a VR-IoT Environment,” in Proc. of
the IEEE International Symposium on Broadband Multimedia Systems,
2018, pp. 1-6.

[13] Z. Lv, T. Yin, H. Song, and G. Chen, “Virtual Reality Smart City Based
on WebVRGIS,” IEEE Internet of Things Journal, vol. 4662, no. c, pp.
1-1, 2016.

[14] R. Klauck, S. Lorenz, and C. Hentschel, “Collaborative work in VR
Systems: A software-independent exchange of avatar data,” IEEE In-
ternational Conference on Consumer Electronics - Berlin, ICCE-Berlin,
vol. 2016-October, pp. 133-136, 2016.

[15] M. Mentzelopoulos, F. Tarpini, A. Emanuele, and A. Protopsaltis,
“Hardware interfaces for VR applications: Evaluation on prototypes,”
2015 IEEE International Conference on Computer and Information
Technology,; Ubiquitous Computing and Communications; Dependable,
Autonomic and Secure Computing; Pervasive Intelligence and Comput-
ing Hardware, pp. 1578-1583, 2015.

[4

=

[5

=

Forecast
Available:

