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Abstract—Complex environment and objective obstacles are
causes that usually require more than one localisation modality.
In this work a novel multimodal fusion method for user local-
isation is presented which combines GPS, images and WLAN
signal strength data in order to more accurately find routes one
has traversed using all these three modalities at the same time.
This method outperforms each method separately and also shows
superiority over fusion of other two modalities. Thus it presents
a good framework for navigation and ambient assisted-living
applications.

I. INTRODUCTION

This paper addresses the automatic identification of often-
traversed routes for assisted living applications using three
different modalities. Such applications of using large amounts
of location data can be of benefit to a variety of users. Some
(runners) may wish to know how often they take a particular
route whilst jogging. In caring for the elderly, allowing a
mobile device to automatically determine whether they have
deviated from their normal routine can trigger a notification
to their carers. In the life-logging community, route matching
can add important structure to the months/years of recorded
daily activities. This problem is complicated by a number of
factors including the need to track users seamlessly in both
indoor and outdoor environments, the need for robustness to
slight deviations in the precise path and speed taken along
a route. Sometimes exists weak and inaccurate GPS signal
due to obstacles, multipath propagation and close buildings
that may cause serious errors [6], [1]; in the case of WLAN
there is changing and noisy nature of its channel which gives
big variation by uncluttered environment [3], [8]. For images
affected with great noise, blur and big change of light at
the place where they were taken may give very inaccurate
results as well[2]. In this work commonly traversed routes are
identified with clusters based on sensed data, two of which
take the form of wireless signals: GPS and WLAN. The latter
is particularly important as it can be used both indoors and out-
doors. In addition an efficient image matching algorithm [2] is
implemented to process data from images automatically taken
along the route. In this work a finite number of routes were
identified within the DCU campus. Each route was traversed
many times over a period of 6 weeks and data sequences
collected automatically on each occasion. Each such traversal
of a route is referred to as a trip in what follows. Section (II)
outlines the use of Multidimensional Dynamic Time Warping
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(MDTW) and Dynamic Time Warping (DTW) algorithm in
order to automatically compare trips corresponding to specific
routes based on wireless and image data sensed on each
trip. Section (III) outlines the manner in which data was
sensed while section (IV) presents results for each modality
individually as well as results based on a fusion of the data.
Also these results are visually presented in 2D space.

II. DTW AND MDTW

In order to find a similarity measure for data collected
during different trips the Multidimensional Dynamic Time
Warping Algorithm [4], [5] was employed. The classic DTW
algorithm uses a local distance measure to determine the
similarity between two sequences. These sequences may be
discrete signals (time-series) or, more generally, feature se-
quences sampled at equidistant points in time [9]. In order to
compare two different features from feature space F', a local
distance measure is defined: ¢ : F' x F' — R > 0. To measure
the similarity between two sequences of data, the first C' of
length I and the second T' of length J, an I x J distance table
D is constructed, where each element of D, d(i, j), represents
the local distance between C;, the i" element of C' and T;,
the j*" element of 7. Warping paths W are then calculated
from the distance table, each of which consists of a set of
distance table elements that define a mapping and alignment
between C' and T

W = { iula) ula)|
(n

with i,(¢) € {1,...,I} and j,(¢) € {1,...,J}. Given
(iw(Q)vjw(q)) and (iw (q - 1)’jw(q - 1))’ the Warping path is
restricted by the following conditions [4]: continuity (i,,(q) —
tw(g —1) < 1 and j,(q) — jw(g — 1) < 1), the endpoint
(tw(1) = ju(1) = 1 and i, (Q) = I and j,(Q) = J) and
the monotonicity (i, (¢ — 1) < 4(q) and j, (¢ — 1) < ()
). The similarity between the data sequences can be gauged
by identifying the optimal warping path which minimises the
overall distance. This minimised distance is given by

q:17"'7Q7
max([,J) <Q<IT+J-1

Q
DTW(C,T) = miny, (Z d(iw<q)7jw(Q))> 2)

DTW(C,T) is normalised with the length of the optimal path
(compensation due fact that warping paths may depend on the
paths’ lengths) [4].



Since the data in this paper was multidimensional, we switch
to multidimensional sequences C'(I x V') and T'(J x V) (V
is the number of variables) and we use dg, the extended
Euclidean distance [4] as the local distance measure for
two vectors of length V. The DTW distance between two
multidimensional sequences C(I x V') and T'(J x V') can be
calculated recursively as [5]:

DTW(C(I x V), T(J x V)) =dg(Cy ,TY )+
min{ DTW (C((I — 1) x V), T(J x V)),
DTW(C((I —1) x V), T((J —1) x V)),
DTW(C(I x V), T((J —1) xV))}

For GPS and WLAN data DTW (C,T') can be thus computed
for each pair of trips, and used to populate a distance matrix.
In the case of image data the elements of the distance table
corresponded to the number of features, matched using the
SURF algorithm [2], between every two images (one from
each set). A greater weight was put on bi-directional matches
since the greater level of confidence ascribed to them (the
measure is d(i,j) = 10B + U;; + U;;, where B stands
for the number of bidirectional matches, U;; the number of
unidirectional matches from the i*” to the j*" image and vice
versa). The distance table is then multiplied by —1 so that
the optimal path corresponds to the path with most matches
[7]. To transform the number of SURF matches between two
trips into the distance matrix, a mapping process needed to be
defined. It should be monotonically decreasing and produce
non-negative values. While there are many such functions, the
reciprocal function was used for its simplicity [10].
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III. EXPERIMENTAL SET-UP

A set of training data was collected simultaneously using
a SenseCam, GiSTEQ GPS device and Campaignr software
(for collecting signal strengths data) installed on a N95 Nokia
cellphone. The data recording was collected at regular time
intervals (every 1, 15 and 30 seconds for GPS, SenseCam
and Campaignr respectively). Each route was traversed many
times over a period of 6 weeks, yielding 30 testing (6 routes x
5 trips) and 24 training (6 routes x 4 trips) sets of data. Signal
strength information is considered to be 3-dimensional as the
same 3 MAC addresses were discernible along each trip. GPS
data is deemed to be 2-dimensional. That gives two data-
matrices of order N x 3 and M x 2. The MDTW was then
applied to each pair of data sequences (for each modality) [4],
[5]. In the case of image data the DTW algorithm was applied
to every two sets of images taken by the SenseCam.

To find the fusion matrix and the accuracy of the algorithm
I-nearest neighbor approach (1-NN) was employed. There
were training and testing types of data that were collected
during the experiment process. The sets of training data consist
of three normalized 24 x 24 matrices (4 trips for the every
route) and these data are different to the testing data which
consist of three normalized 30 x 30 matrices (5 trips for the
every route). For each trip the nearest trip was found and was
checked whether that nearest trip belonged to the same route.
The number of all succesful nearest trip matches was divided
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with the total number of trips which gave the accuracy of the
algorithm. In order to fuse these modalities together and to
calculate the accuracy of such approach, weighting coefficients
wy, we and ws were introduced. For the training data set
matrices these weights corresponded to GP, IM and S (GPS,
image and signal strength training data). A new matrix

FZ = wGP + woIM + wsS

was defined and it was investigated using 1-NN what coeffi-
cient values wys, wos and wss would give maximal accuracy
for the F'Z under the condition of:

wy +we +ws =1

There were several different pairs of values wig, wos and wss
which were used for the calculation of the accuracy of the

w1sGPS + wos IMG + ws3gSS

matrix (GPS,IMG and SS are 30 x 30 testing set matrices)
again using 1-NN. For the only one pair the result gave the
maximum and those accuracy and coefficient values were
stored.

IV. ANALYSIS OF THE RESULTS

Table I clearly illustrates that GPS is the strongest individual
modality. This is further emphasised by the high weight that
is placed on this data source by the fusion process. As all our
trips were outdoors, this was to be expected.

Figure 4 gives a visual representation of the similarities
between trips in different modalities. We used the distance-
matrix visualisation algorithm given in [10] to display in
2D a representation of the multidimensional trips and their
similarities. This algorithm takes the difference between every
two trips ( distance matrix elements) and makes a chart (trips
on the chart are presented as circles) in which the distances
between them on the chart match those differences. This
iterative algorithm first calculates the target distances between
all the trips. Next all the trips were placed randomly on
the two-dimensional chart. For every pair of trips the target
distance is compared to the current distance and en error term
is calculated. Then every trip is moved a small amount closer
or further in proportion to the error between the two trips.
This procedure is repeated many times until the total amount
of error cannot be reduced by moving the trips any more.
Examining the GPS results in figure 4(a), it can be seen that
the fourth route (trips 16 — 20) and the sixth route (trips
26 — 30) do not cluster well (red and purple routes shown
in fig 3). They traversed environments where the GPS signal
was degraded and attenuated (shown as green circles in fig
3), due to tall buildings (the sixth route) and to part of the
path going into a tunnel (the fourth route), both of which are
known to affect GPS signal quality [6], [1]. The reason why
the second and the fourth route failed as the image data were
collected randomly during a variety of different conditions
(rain/sun, morning/evening/nighttime, obstacles). While SURF
features are somewhat robust to changes in lighting [2], large
changes cause problems, as shown in figure 1. Consequently



Sources w1 wo w3 Acc (%)
SS - - - 56.66
IMG - - - 66.66
GPS - - - 80.00
GPS,IMG 0.9720 | 0.0280 - 80.00
IMG,SS - 0.8050 | 0.1950 70.00
GPS,SS 0.9840 - 0.0160 80.00
GPS,IMG,SS | 0.8310 | 0.0090 | 0.1600 83.33

TABLE I

TRIP CLASSIFICATION PERFORMANCE: THE LEARNED WEIGHTS FOR EACH
OF THE THREE SOURCES, AND THE ACCURACY (ACC) OF THE CLASSIFIERS
USING DIFFERENT SOURCES.

the results show that only 4 of the 6 routes could be properly
clustered using image data alone. For the other routes image-
matching performed quite well, considering the low sampling
rate it used (1/15Hz). The format above the image describes
the matching process and is given as [Uj2:Uz1]:[B], where
Ui2 is represented with red lines which connect matches on
the two images, Us; with blue lines and B with the green
lines. On its own, WLAN signal strength readings perform
worst for trip classification, which was expected due to the
many environmental factors that can influence signal strengths
outdoors and the fact that only 3 MACs were discernible.
Figure 2 shows signal readings for 3 trips from the same route,
illustrating the degree of variability inherent in the readings.
While each source independently has its own problems, by
fusing the three modalities together, we achieved greater
accuracy than any individual/combined modality.

Future work will further investigate others weighting meth-
ods especially adaptive weighting based on confidence, differ-
ent fusion methods and the possibility of tracking indoor trips
where GPS fails.
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Fig. 2. Signal strengths distribution example: Data from 3 MAC addresses
shown in red, green and blue, corresponding to trip 16, 17 and 18 (plotted with
circles, crosses and asterisks) respectively in figure 4(b). Note the discrepancy
in signal strengths for trip 18 compared to others.
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Fig. 3.

DCU map with the routes overlaid
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Matches = [11, 12]:[B] Matches = [1, 1]:[0]
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Fig. 1. Image matching examples for trips taken in different light conditions: (a) in similar lighting conditions, many matches are found, (b) matching is
more difficult due to lighting changes.
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(c) Image-based matching (d) Fusion of all three sources

Fig. 4. Visualisation of trip similarity using different localisation sources: We project the distances between trips into 2-dimensions for visualisation. Circles
are drawn to show trips from the same route that tightly cluster together. Route 1 contains trips {1,..,5}, Route 2 contains trips {6...,10}, etc.
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