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Abstract—A numerical procedure for the treatment of the
singularity arising in the Method of Moments (MoM) solution
of the two-dimensional volume Electric Field Integral Equation
(EFIE) is introduced in this paper. The procedure expresses
the singular integral in terms of an analytic function and
employs a singularity isolation process coupled with numerical
quadrature along the domain perimeter to evaluate the self-
terms. Numerical results are presented comparing the method
to conventional techniques. In particular, fields scattered from a
dielectric cylinder, discretised with pulse basis and delta testing
functions, are computed and compared against those from a
reference Mie series solution. The results obtained using the
numerical procedure described are shown to be superior.

I. INTRODUCTION

Accurate numerical evaluation of the singular integrals that
arise in the Method of Moments (MoM) solution of the EFIE is
of fundamental importance to the accuracy of electromagnetic
wave scattering solvers. The singularity occurs in the Green’s
function of the self-term elements of the MoM impedence
matrix, where the testing and source domains coincide. Due
to the large contribution of the self-term component it is
important to evaluate its effect accurately [1].

There has been extensive research carried out in numerical
and analytical evaluation of singular integrals [2]–[4]. In this
paper we outline a novel singularity isolation approach for the
numerical evaluation of the two-dimensional Green’s function
singularity. This technique is based on the seminal work by [5],
[6] for the treatment of the self-term integral involving the
three-dimensional Green’s function, but differs in important
details as we consider the two-dimensional Green’s function
based on the Hankel function. In this approach the self-term
integral is split into two parts, namely an analytically-evaluated
integral that isolates the singularity as well as a numerically-
evaluated component.

We consider a two-dimensional dielectric cylinder char-
acterised by a permittivity ϵ(r) and permeability µ(r) for
a TMz configuration [1]. The object is illuminated by a
plane wave with time variation exp (ȷωt) (which is assumed
and suppressed in what follows). The corresponding integral

equation can be expressed in terms of the unknown electric
field Ez (r) [1], [7]

Ei
z (r) = Ez (r) +

∫
v

Ez (r
′) g (r, r′)O (r′) dv′ (1)

where the two-dimensional Green’s function is given by

g (r, r′) =
ȷ

4
H

(2)

0 (kb|r− r′|) (2)

where the background wavenumber is denoted by kb and
H

(2)

0 is the zero order Hankel function of the second kind.
The electrical properties of the scatterer are described by the
object function

O (r′) = k2 (r′)− k2b . (3)

where k (r′) is the wave number at a point in the scatterer. The
object function is thus zero outside the scattering structure.
Using the Method of Moments with m basis and testing
functions [1], [7], Equation 1 is discretised resulting in

(I+ Z)x = b (4)

where b is a vector containing information about the incident
field, Z is an m×m matrix containing coupling information
between the basis functions and x contains the unknown basis
function coefficients. In what follows we assume the use of
pulse basis functions and Dirac-Delta testing functions.

II. METHODOLOGY

The numerical difficulties arise in evaluating the integral
associated with the self-term diagonal matrix entries in Equa-
tion 4. A similar approach to [6] is undertaken, assuming the
basis domain to be a triangular cell T 1. Figure 1 illustrates
a typical triangular domain T whose perimeter is made up

1In this work we assume triangular basis domains in order to better
tessellate the scatterer and maximise accuracy when comparing to reference
solutions. Square domains associated with FFT-expedited solutions of the
volume EFIE can be easily handled, by considering each square as the union
of two triangles
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Fig. 1. Triangular cell T subdivided divided into subtriangles δTi [6].

of three edges δTi. r0 and r′ are the observation point and
integration points respectively, defined on a coordinate system
(u, v). The auxiliary polar coordinate system is defined by
(ρ, ϕ) where ρ is the distance between the integration and
observation points. ϕi

a and ϕi
b are the angles associated with

the endpoints of δTi relative to the coordinate system (u, v).
R (ϕ) is the distance between a point on δTi and the obser-
vation point. It is thus a function of ϕ, where ϕi

a < ϕ < ϕi
b.

We begin the procedure by substituting the singular Hankel
function in Equation 2 with a power series expansion which
is valid for small arguments x [1], [8]

H
(2)

0 (x) ≈
(
1− 2ȷ

π
ln
(γx

2

))
(5)

where γ = 1.781. The integral to be evaluated is

ϑ =

∫
v

H
(2)

0 (|r− r′|) dv′ (6)

We note the singular behaviour of the integrand at r′ =
r. In order to evaluate ϑ the singularity is isolated inside a
disc of radius ϵ and its contribution evaluated analytically. The
contribution from the remainder of the triangle is numerically

evaluated by dividing the triangle into three sub-triangles δTi

and summing the contribution from each sub-triangle, yielding

ϑ = ϑ1 +
3∑

i=1

ϑi
2 (7)

where

ϑ1 =

∫ 2π

0

lim
ϵ→0

∫ ϵ

0

(
1− j

2

π
ln

(
γkbρ

2

))
ρdρdϕ = 0 (8)

ϑi
2 =

∫ ϕi
B

ϕi
A

lim
ϵ→0

∫ R(ϕ)

ϵ

(
1− 2ȷ

π
ln

(
γkbρ

2

))
ρdρdϕ

=

∫ ϕi
B

ϕi
A

lim
ϵ→0

ρ2

2

∣∣∣∣∣
R(ϕ)

ϵ

dϕ

−
∫ ϕi

B

ϕi
A

lim
ϵ→0

∫ R(ϕ)

ϵ

2ȷ

π
ln

(
γkbρ

2

)
ρdρdϕ (9)

The singularity has thus been isolated inside a disc of radius ϵ
whose integral, ϑ1, has been analytically evaluated to zero
in the limit. The problem is now reduced to numerically
evaluating the triplet of integrals ϑi

2. Making the substitution

x =
γkbρ

2
(10)

yields [9]

ϑi
2 =

∫ ϕi
B

ϕi
A

lim
ϵ→0

ρ2

2

∣∣∣∣∣
R(ϕ)

ϵ

dϕ

− 2ȷ

π

∫ ϕi
B

ϕi
A

lim
ϵ→0

∫ γkbR(ϕ)

2

x=
γkbϵ

2

ln (x)

(
2

kbγ

)2

xdxdϕ.

(11)

Then using the identity [8]

∫
x lnxdx =

x2

2
lnx− x2

4
+ c (12)

and the fact that

lim
x→0

x2

2
lnx = 0 (13)

we produce
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ϑi
2 =

∫ ϕi
B

ϕi
A

lim
ϵ→0

R (ϕ)
2 − ϵ2

2
dϕ

− 2ȷ

π

(
2

kbγ

)2 ∫ ϕi
B

ϕi
A

lim
ϵ→0

[(
1

2

(
γkbR (ϕ)

2

)2

ln

(
γkR (ϕ)

2

)
− 1

4

(
γkbR (ϕ)

2

)2
)

−

(
1

2

(
γkbϵ

2

)2

ln

(
γkbϵ

2

)
− 1

4

(
γkbϵ

2

)2
)]

dϕ

=

∫ ϕi
B

ϕi
A

R (ϕ)
2

2
dϕ

− 2ȷ

π

∫ ϕi
B

ϕi
A

(
R (ϕ)

2

2
ln

(
γkR (ϕ)

2

)
− R (ϕ)

2

4

)
dϕ

=

∫ ϕi
B

ϕi
A

R (ϕ)
2

2
− ȷR (ϕ)

2

π
ln

(
γkR (ϕ)

2

)
+

ȷR (ϕ)
2

2π
dϕ

=

∫ ϕi
B

ϕi
A

R (ϕ)
2

[
1

2
+

ȷ

2π

(
1− 2 ln

(
γkR (ϕ)

2

))]
dϕ.

(14)

The final step is the evaluation of the three integrals ϑi
2 over

the intervals ϕi
a < ϕ < ϕi

b. They can be numerically integrated
by employing a Gaussian quadrature formula [1], [6] yielding
finally

ϑ =
3∑

i=1

ϑi
2 (15)

≃
3∑

i=1

 α∑
j=1

wjfi (ϕj)

 (16)

where {wj}j=1,...,J and {ϕj}j=1,...,J are the weights and
abscissas adopted for each integral ϑi

2.

III. RESULTS

The accuracy of the singularity isolation method outlined in
this paper is investigated by comparing it against two classical
approaches. These approaches are the circular-cell approxima-
tion [1], [10], where the singularity is evaluated analytically
by approximating the basis domain shape by a circle of the
same area, and the Hankel power-series expansion [1], [8] for
small arguments. The analytical Mie series [11] is used to in-
dependently validate the accuracy of these methods. Numerical
experiments are performed for scattering problems involving
a cylinder illuminated by a TMz plane wave radiating at a
frequency of f = 300 MHz and propagating in the x-direction.

A. Example 1

We initially consider a cylinder centred at the origin with
radius r = 0.16λ and relative permittivity ϵr = 6 embedded
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Fig. 2. Comparison of the numerical and Mie series results for the TMz

electric field within a dielectric cylinder with radius r = 0.16λ, relative
permittivity ϵr = 6 (Note: MoM using circular-cell approximation and MoM
using power series expansion are overlapped)

in free space. The cylinder is discretised using m = 416
triangular cells and Ez is computed along a x-axis cut through
the centre of the cylinder using 0.001λ increments. Computed
Ez using the method of moments with various approaches
to dealing with the singularity as well a Mie series reference
solution are shown in Figure 2(a). Percentage relative errors
are shown in Figure 2(b). The singularity isolation technique
outlined in this paper achieves an average relative percentage
(ARP) error of 2.34% while yielding a maximum absolute
(MA) error of 0.061V/m. In contrast the circular-cell approx-
imation and the power series expansion technique achieve ARP
errors of 4.11%, 4.08% and MA errors of 0.0986V/m and
0.0981V/m respectively.
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Fig. 3. Comparison of the numerical and Mie series results for the TMz

electric field within a dielectric cylinder with radius r = 0.3λ, relative
permittivity ϵr = 5

B. Example 2

We now consider a cylinder of radius r = 0.3λ and relative
permittivity ϵr = 5. The number of basis functions used is
m = 1624 and Ez is again computed along a cut along the
x-axis through the cylinder centre. The singularity isolation
technique again outperforms the classical approaches with
an ARP error of 0.954% and MA error of 0.0097V/m.
This is highlighted in Figures 3(a) and 3(b) demonstrating
the improved accuracy of the singularity isolation technique
presented in this paper. The associated ARP and MA errors
for the circular-cell approximation and the power series ex-
pansion technique are 1.21%, 1.177% and 0.0262V/m and
0.0256V/m. respectively.

IV. CONCLUSION

A technique for the numerical treatment of the singularity
associated with the two-dimensional Green’s function for a
volume EFIE formulation is presented in the paper. The out-
lined method divides the singular integrand into an analytical
part, which isolates the singularity, and a triplet of integrals
which are numerically evaluated along the triangle perimeter.
Numerical results are presented which compare the electric
field calculated using the technique outlined in this paper with
those of conventional approaches and a Mie series analytic
reference solution. The numerical results demonstrate the
improved accuracy of the scattered field solution when using
the proposed method compared to conventional techniques.
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