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Abstract

Multimedia traffic and real-time e-commerce applica-
tions can experience quality degradation in traditional
networks such as the Internet. These problems can be
overcome in networks which feature dynamically set up
paths with bandwidth and delay guarantees. Multi Pro-
tocol Label Switching (MPLS) shows promise as a net-
working protocol which can provide such capabilities.
However, existing routing protocols need to be enhanced
or replaced by QoS-aware algorithms if this potential is
to be realised.

Several routing methods for selecting paths satisfying
QoS requirements have been recently proposed. In prac-
tice they must work well in the presence of inaccurate
state information.

In this paper we propose the Adaptive Link Cost Func-
tion Routing Algorithm (ALCFRA). By modifying the
process of generation of link state updates, our algorithm
extends the functionality of link state advertisements. The
information carried by them represents not only the cur-
rent link state but also the long term tendency. In the pres-
ence of an inaccurate environment this is beneficial and
enables the algorithm to tolerate stale state information.
We prove the robustness of ALCFRA using simulation
results.

1 Introduction

Retrofitting the Internet with QoS capabilities is a chal-
lenging task. A major concern is that in the current Inter-
net data packets belonging to the same flow may follow
different paths to the destination. Standard best-effort ser-
vice does not provide any guarantees for the traffic flows
and is not suitable for the use by multimedia or real-time
e-commerce applications. To provide QoS guarantees
new service models [1, 2] and mechanisms [3] need to
be implemented.

Protocols such as MPLS [4] supporting explicit rout-
ing allow traffic flows to follow a path providing the re-
quested QoS level - as chosen by a QoS routing algo-
rithm. In this paper we consider mechanisms used to find
a path with specific bandwidth requirements. Following

Kodialam and Lakshman [5] we assume that other con-
straints such as delay and jitter can be mapped into an ef-
fective bandwidth requirement. We assume that the link-
state routing algorithm used at each router performs route
calculations on an identical network topology. Flooding
of link state information is used to ensure that all routers
process the same topological and state information.

In this paper we denote each incoming request by its
source node s, destination node d and required bandwidth
r. Upon receiving a request, a QoS routing algorithm
chooses a feasible path. If the entire request sequence and
duration of each connection were known, it would be pos-
sible to use a multicommodity flow algorithm (MFC) [6],
which results in an optimal solution. Typically such infor-
mation is not provided and this makes MFC algorithms
useable only in the phase of off-line optimisation. Most
MFC algorithms operate on a graph, with link cost spec-
ified as an exponential function of utilisation [6]. Many
on-line algorithms, which have to work with connections
of unknown duration and without knowledge about future
requests, have also followed the idea of using an expo-
nential link cost function [7, 8, 9] or used a cost function
with similar shape [10]. The benefit of using of exponen-
tial link cost is also intuitively clear: it favours paths on
lightly loaded links over those on busy links; so the load
is balanced over all links.

In this paper we present the Adaptive Link Cost Func-
tion Routing Algorithm (ALCFRA) which works on-
line and uses a modified exponential link cost function,
adapted to achieve better performance when working with
imprecise network state information.

The rest of this paper is structured as follows. In Sec-
tion 2 various mechanisms for controlling the amount
of information flooded by link state advertisements are
described. In Section 3 the ALCFRA algorithm is pre-
sented. Section 4 presents simulation results showing the
benefits of using ALCFRA. Section 5 concludes the arti-
cle.

2 Link state update mechanisms

The performance of QoS routing methods under various
link state update policies has been recently evaluated by



a number of researchers [11,12,13]. Usually these strate-
gies advertise a state of the link by advertising its utilisa-
tion. In this section we propose to represent the state of
the link by its cost. The motivation for this approach is the
fact that QoS routing algorithms compute routes based on
the link cost rather than the link utilisation.

As observed in [11] processing of link state updates is
the major source of overhead in QoS routing. Hence, the
choice of methods and parameters of mechanisms con-
trolling frequency of link state advertisements should be
carefully performed. There are several link state update
policies [11, 12, 13], and we have classified them as fol-
lows:

timer based policy - uses a timer to control the fre-
quency of link state advertisements. Such an ap-
proach allows very precise control of the frequency
of updates, but long update intervals are likely to
produce fluctuations in link utilisation [13]. This is
sometimes called a “magnet phenomenon”, because
the link advertised as having a low utilisation will
probably be favoured by many incoming requests (it
will attract new connections) and in the next update
interval this will result in a high link load. After ad-
vertising a high utilisation few connections will be
routed via the link and the whole cycle will repeat.

utilisation change based policy - is used to send link
state updates only if the link utilisation changes.
Nevertheless the link load can change very fre-
quently. To limit the flooding frequency hold-down
timers are used to insert a minimal time interval
between concurrent updates (from now on we will
denote this interval as hd). Such update policies can
be further divided into:

equal density utilisation change policy - ad-
vertises change in the link utilisation with an equal
density for high and low loaded links:

• class based policy - this partitions the link
bandwidth into classes of equal size and every
time a boundary between classes is crossed a
new link state advertisement is generated.

increasing density utilisation change policy - adver-
tises change in the link utilisation with a density in-
creasing with link utilisation. Such an approach re-
sults in less frequent updates for lightly loaded links.
This is based on the assumption that a slight increase
(decrease) in the link load for a highly utilised link
can block (allow acceptance of) the new request. For
lightly utilised links this situation happens rarely.

• threshold based policy - advertises a new link
state whenever the magnitude of the link state
change exceeds some predefined threshold.
The magnitude of the link state change de-
creases with the link utilisation. The follow-

ing notation is used: ul and bl are the utilisa-
tion and available bandwidth of the link at the
time of the last update; uc and bc are the current
link utilisation and the current available band-
width; tr is the threshold in percentage (this is
the smallest magnitude of change which will
be advertised). A link state update will be gen-
erated only when:

| ul −uc |
1−ul

∗100 ≥ tr,

or equivalently when:

| bl −bc |
bl

∗100 ≥ tr

• class based policy - this partitions the link
bandwidth into classes with size decreasing
with increasing link utilisation and every time
a boundary between classes is crossed a new
link state advertisement is generated.

Algorithms using an exponential link cost function
have the property that: a small change in load for low
utilised links produces only a small change in link cost,
and a small change in load for a highly utilised links can
produce a huge link cost change. That makes the use of
increasing density utilisation change mechanisms appro-
priate for an algorithms using an exponential link cost
function.

Because QoS routing algorithms compute routes based
on the link cost rather than the link utilisation we propose
to advertise the change in the link cost. This method is
simpler and does not generate unnecessary link utilisation
updates which do not influence the routing decisions.

It is shown in Figure 1 that class based equal den-
sity cost change mechanism belongs to the class of in-
creasing density change mechanisms for the link utilisa-
tion. The approach of advertising link cost instead of link
utilisation has the advantage that each node can main-
tain a different cost function (that feature is exploited in
ALCFRA). The main drawback of advertising link cost
is that we can not check which links are able to accom-
modate the new request, and link pruning cannot be em-
ployed. However, when dealing with an imprecise state
information the process of pruning links that cannot sup-
port the new connection is not recommended [13].

3 Adaptive Link Cost Function
Routing Algorithm (ALCFRA)

The “magnet phenomenon” described in Section 2 occurs
for both timer based update policies with a long update
interval and for utilisation change based policies with a
long hold-down period; our algorithm aims to decrease
the negative influence of the phenomenon.
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Figure 1: Equal density cost class based update mecha-
nism for exponential link cost function

ALCFRA operates on a weighted graph model
G=(V,E) (each node n ∈ V and each link e ∈ E). Let’s
assume that each link e has assigned capacity c(e). Each
connection request βi = (si,di,ri) specifies the source
node si, the destination node di and the required band-
width ri. ALCFRA upon receiving the request βi com-
putes a least cost path Pi and – if a reservation requiring
bandwidth ri can be made along that path – the request is
accepted and the path is marked as PA

i for the duration of
ith connection, otherwise the request is rejected.

The utilisation of the link e can be defined as:

uc(e) = ∑
i,e∈PA

i

ri

c(e)

ALCFRA as a base cost function of link e uses a nor-
malised exponential function with base A ( [14] presents
a method for calculating A):

cost(e) =
Auc(e) −1

A−1

But ALCFRA modifies that shape of the link cost func-
tion to reflect the long term link state utilisation. In the
presence of an inaccurate environment this is beneficial
and enables the algorithm to tolerate stale state informa-
tion. The adaptation of the link cost function aims to
prevent situations when a small change in the load for
a link which is usually highly utilised would result in a
huge change in the link cost. Such adaptation is done
using a parameter ae maintained for each link e. Let’s as-
sume that the maximal value of ae is A and that ae can
be incremented or decremented by some constant value
∆. The value of parameter ae fluctuates, tracing the long
term link utilisation; it is positive when the long term link
utilisation is under the predefined value: utr – we call this

value the threshold utilisation (the meaning of it will be
described later), and becomes negative when the link load
crosses that value. The parameter ae changes in the fol-
lowing way:

ae =
{

ae +∆, when: ae ≤ A [utr −uc(e)]/utr

ae −∆, otherwise

The value of ae is modified as above after every unit of
time (in our simulation the unit of time is equal to 1 sec-
ond). The parameter ae reflects a longer term tendency in
the link utilisation. Finally the link cost function used in
ALCFRA is defined as:

cost(e) =




auc(e)
e −1
ae−1 , if ae > 1

uc(e), if −1 ≤ ae ≤ 1
log|ae|((| ae | −1)uc(e)+1), if ae < −1

So parameter ae modulates the link cost function making
it more convex when the link load is low (this encourages
to balance the load) and making it concave when the link
load is heavy.

An example of such an adaptation is shown in Figure 2
for a scenario where A = 100 and utr = 0.5. It presents
three possible shapes of link cost function: one where
ae = 60 and the long term link utilisation is around 0.2
(which is less than utr); secondly where ae = 0 and the
long term link utilisation is around utr; and thirdly when
ae = −60 and the long term link utilisation is around 0.8
(which is more than utr).

The shape of the link cost function for links with high
utilisation (the uppermost curve in Figure 2) is close to the
shape of the link cost used in shortest path computation (it
uses constant value of 1). So, if the value of ae is positive
and close to A it means that link utilisation is low and load
balancing is preferred (by the use of exponential link cost
function), but if the value of ae is negative and close to
−A the use of shortest-path is recommended (by the use
of concave link cost function). This is consistent with the
conclusion in [15], that algorithms limiting the hop count
result in a better performance for heavy loaded networks,
while algorithms balancing the load are beneficial when
the load is light.

The threshold utilisation utr sets the border between
the use of concave and convex link cost functions, and
its value should be chosen as compromise between good
load balancing and limiting the hop count.

The use of such an adaptation together with equal den-
sity cost change update policy ensures that transient slight
changes in the link utilisation will not significantly affect
the link cost. This occurs due to the fact that link cost
function around the operating point, located at the mean
long term link utilisation, is almost flat. So when the link
utilisation moves slightly from the operating point (long
term link utilisation) link cost remains unchanged. How-
ever a significant change in link utilisation will affect the
link cost.

Summarising, for each link the cost is calculated as de-
scribed above and the link state advertisements are gen-
erated using an equal density cost change mechanism.
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Figure 2: Example of adaptation of link cost function

Upon receiving a route request the least cost path is com-
puted based on the collected link cost information. If the
reservation along a chosen path can be realised the re-
quest is accepted, otherwise it is rejected.

4 Performance evaluation

4.1 Network Model

The ALCFRA performance was evaluated on the net-
work with the so-called ISP topology [11, 12] shown in
Figure 3. In general, the network topology is assumed

Figure 3: The ISP topology

to consist of N nodes connected using L bidirectional
links each with capacity C (for the ISP topology we have
used N = 18, L = 30, C = 20). The requests arrive at
each node independently according to a Poisson distribu-
tion with rate λ and have exponentially distributed hold-

ing times with mean value 1/µ. The requested amount
of bandwidth is uniformly distributed over the interval:
[64kb/s, 6Mb/s], with the mean value B = 3.32Mb/s. If
Na nodes in the network generate the traffic, it produces
the network offered load [12]: ρ = λNaBh′/µLC, where
h′ is the average shortest path distance between nodes,
calculated over all source-destination pairs (for the ISP
topology: h′ = 2.36 if Na = 18).

4.2 Performance metrics

To investigate the performance of ALCFRA we have used
the following metrics: call blocking rate - defined as:

call blocking rate =
number of rejected requests

number of arrived requests

used to calculate probability of rejecting the new request;
bandwidth blocking rate - defined as:

bandwidth blocking rate = ∑bandwidth of rejected requests

∑bandwidth of arrived requests

which is well suited for calculating blocking probabil-
ity of requests requiring a different amount of band-
width [15]; and update overhead - defined as:

update overhead =
number of generated link state updates

time [seconds]

used to calculate the overhead generated by the link state
advertisements.

4.3 Results

Routing strategies using a convex link cost function in-
creasing with network load such as: shortest-distance
path [15] - using as cost the inverse available bandwidth,
or algorithms using an exponential link cost function [8],
or piecewise linear increasing convex function [10], bal-
ance the load well over all links. Although these strate-
gies may result in slightly different performance for dif-
ferent network topologies and traffic models, all of them
suffer from the effect of the “magnet phenomenon”. Be-
cause ALCFRA aims to improve the performance of al-
gorithms using concave function to balance the load, we
have decided to compare ALCFRA with the performance
of an algorithm using a normalised exponential link cost
function (we call it EXP). In all experiments described be-
low we have used a class based equal density cost change
update policy with the number of classes equal to 10, and
the ALCFRA parameters specified as: A = 100, ∆ = 0.1,
utr = 0.5. The mean connection holding time is 60sec and
λ is set to produce required network offered load. We also
assumed that each node uses only one hold-down timer
with a value hd for all links outgoing from the node.

The performance of ALCFRA and EXP under an in-
creasing network load for three different hd (hold-down
periods): 1sec, 40sec is shown in Figures 4 and 5. When
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Figure 4: Call blocking probability of ALCFRA and EXP
under increasing load

0

1

2

3

4

5

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

U
pd

at
e 

ov
er

he
ad

Network offered load

ALCFRA hd=1s
ALCFRA hd=40s

EXP hd=1s
EXP hd=40s

Figure 5: Update overhead of ALCFRA and EXP under
increasing load

network load is high and hold-down period is long then
the use of ALCFRA seems to be beneficial. Its call block-
ing probability for small values of hd can be compared
with EXP, but in a more imprecise environment it gives
much better results (see Figure 4). For a small value of
hold-down period we can also observe (see Figure 5) that
ALCFRA, by preventing traffic fluctuations for usually
highly loaded links (load over 0.7 in Figure 5), gener-
ates lower update overhead. However ALCFRA adapts
slowly to the link utilisation and sometimes the EXP al-
gorithm may need only one link state update to indicate
the change in the link load, where ALCFRA in such a sit-

uation may generate a few more link state advertisements
because of slow modification of the link cost function. If
longer hold-down periods are used then both ALCFRA
and EXP generate almost the same update overhead.
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Similar results can be observed when the value of hold-
down period increases even further, as in Figures 6 and 7.
This experiment was realised under offered load ρ = 0.9.
As is shown in Figure 6, when working with impre-
cise network information ALCFRA achieves much lower



bandwidth blocking probability than EXP. The ALCFRA
update overhead controlled by hold-down timers appears
to be smaller than or the same as for the EXP algorithm
(Figure 7).
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Figure 8: Call blocking rate of ALCFRA for increasing ∆

In Figure 8 we address the issue of the ALCFRA time
scale (the experiment was realised under the offered load
ρ = 0.9). The length of the long-term link utilisation ob-
served by ALCFRA is inversely proportional to the pa-
rameter ∆. As shown in Figure 8, longer periods of ob-
servation of link utilisation (smaller values of ∆) result
in the smallest call blocking rate (hence we have used in
other simulations the ∆ = 0.1). Results are presented only
for a mean connection holding time of 60sec, but if the
mean connection holding time increases, we found that
long-term link utilisation is more stable and ALCFRA
performance improves further. However, blocking prob-
ability increases if the mean connection holding time is
small (a few seconds). To overcome this we can deal
with short connections separately as proposed in [16].
Another solution is to discourage users from requesting
bandwidth guarantees for short connections using an ap-
propriate charging scheme.

In Figure 9 we explain why during all simulations we
have used utr = 0.5 (the experiment was also realised
under the offered load ρ = 0.9). When increasing the
threshold probability utr (see Figure 9) the call blocking
rate decreases for short hold-down periods, but for longer
hold-down periods it grows very fast when utr > 0.5.
This fact suggests that when working with actual network
state information we can benefit from load balancing ap-
proaches (approaches using an exponential link cost func-
tion); however if we deal with inaccurate state informa-
tion, load balancing is appropriate only for lightly utilised
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links and otherwise the algorithms limiting hop count
should be used.

5 Conclusions

The cost of introducing QoS routing mechanisms into the
Internet greatly depends on the amount of update traf-
fic [11]. Policies controlling the frequency of link state
advertisements introduce inaccuracies and QoS routing
algorithms should be able to tolerate such an imprecise
environment. Our proposal is to advertise the change in
the link cost rather than the change in link utilisation,
since QoS routing algorithms compute routes basing on
the link cost. In this paper we have presented the Adap-
tive Link Cost Function Routing Algorithm (ALCFRA)
that operates on the advertised link costs. The link cost
function used in ALCFRA provides not only informa-
tion about the current link state - but also gives some in-
sight into the long term link utilisation. This approach is
beneficial when the network state is imprecise. Overall,
ALCFRA works well even if traffic updates are generated
infrequently, and so allows the introduction of QoS rout-
ing into the Internet at a reasonable cost.
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