
Netlets: A New Active Network Architecture

Kalaiarul Dharmalingam and Martin Collier
Research Institute in Networks and Communications Engineering

School of Electronic Engineering,

Dublin City University, Republic of Ireland

E-mail: {arul, collierm}@eeng.dcu.ie

Abstract

New conceptual ideas for network programmability have
been proposed in the recent past. The Opensig initiative,
Active Networks and Mobile Agents are some of the ap-
proaches that have been proposed for adding programma-
bility into networks. Active Networks address the prob-
lem of mismatch between the rate of innovation in net-
work services and that of the end-user applications. In this
model, the switches and routers in the network perform
customised computations on the packets flowing through
them. With this approach the networks become more read-
ily extensible by allowing new network protocols to be de-
ployed dynamically.

In this paper we advocate a hybrid approach based on Ac-
tive Networks and Mobile Agents referred to as Netlets
for deploying new and modified versions of network pro-
tocols. We present the Netlets approach to the provision
of network programmability. Netlets are nomadic compo-
nents that carry service-provisioning code throughout the
network. The active nodes in this architecture support run-
time environments for processing the Netlet components.
We discuss the Netlets network architecture and describe
the Netlet Run-time environment. Finally we raise the
research issues and the future work that needs to be ad-
dressed for realising the Netlets network architecture.

1 Introduction

The explosive growth in networking and computing has
generated a need to introduce increasingly complex net-
work services at an accelerated rate. The next generation
network is expected to support diverse applications (www,
multimedia, telnet), environments (commercial heteroge-
neous wireline/wireless networks), and workloads (hetero-
geneous unicast and multicast streams with different qual-
ity of service requirements). Consequently, it is clear that
the network must play a more active role in supporting

the needs of the applications and end users. The data
and computer communication networks of today were de-
signed for a fixed service model, thus resulting in a non-
flexible network architecture. The rate of change in these
networks is restricted by standardisation and compatibil-
ity concerns. The result is that introduction of new ser-
vices occurs much slowly than the emergence of new appli-
cations and technologies that benefit from these services.
This requires reconciling the perspectives of the comput-
ing and telecommunication communities in new dynami-
cally programmable network architectures that support fast
service creation through a combination of network aware
applications and application aware networks.

Before working on methods to meet the challenge, we need
to understand the limitations of existing networks as plat-
forms for new applications. The networking infrastructure
currently deployed is a passive layout that carries traffic be-
tween end systems with little computation within the net-
work. These traditional networks were designed and cus-
tomised for a single network service model. This infras-
tructure is not flexible enough to meet the needs of today’s
heterogeneous traffic environment.

Network services are readily available functions and util-
ities that support the connectivity, communications, and
control required by applications operating across the net-
work. The level of integration of network services with
the network elements (e.g., switches, routers) will deter-
mine the network’s ability to provide advanced capabili-
ties such as policy management, intelligent object location,
and automated fault detection and isolation. By integrat-
ing network services into the network, users will benefit
from the reduced complexity of the overall network envi-
ronment. This reduction in complexity can lead to eas-
ier management and reduce the overall network cost. The
above change in climate has spurred the networking com-
munity to consider various approaches to add programma-
bility to the network so as to speed up the evolution of net-
work services.



There has been an increasing demand to add new services
to networks or to customise existing network services to
match new application needs. Customers are demanding
more from the core infrastructure to enable better produc-
tivity with flexibility, service differentiation, isolation, pri-
vacy, and manageability. This infrastructure is under in-
creased pressure to support complex transport services be-
yond “simple” packet delivery. The introduction of new
services into existing networks is usually a manual, time
consuming and costly process. A move from traditional
passive networks to dynamically programmable network
architectures will support fast service creation and resource
management in networks. The ability to program the net-
work would then simplify the deployment of new network
services, leading to networks that explicitly support the
process of service creation and deployment. This leads
to a scenario where control and management points are
moved closer to the point of operation. This type of net-
work is referred to as an Open Programmable Network.
The most significant of the approaches adapted for real-
ising network programmability are Active Networks [1],
Mobile Agents [2] and OpenSig’s Initiative [3].

In this paper we advocate a hybrid approach based on Ac-
tive Networks and Mobile Agents referred as Netlets for
deploying new and modified versions of network proto-
cols. In section 3 we present the Netlets approach to the
provision of network programmability. Section 4 includes
a discussion on the advantages and expected benefits of the
Netlets architecture when compared to the other existing
Active Network models. In sections 5 and 6 we discuss the
Netlets network architecture and describe the Netlet Run-
time environment. Finally we raise the research issues and
the future work that needs to be addressed for realising the
Netlets network.

2 Background

2.1 Active Networks

The concept of Active Networks [1] is relatively new,
where a network is not just a passive carrier of bits but
a more general computational model. An Active Net-
work may be viewed as a set of active nodes that perform
customised operations on the data flowing through them.
These networks are active in the sense that nodes can per-
form computations on, and modify, the packet contents.
The Active Network community advocates the dynamic
deployment of new services at runtime mainly within the
confines of existing IP networks. The Active Network
nodes will coexist with the current IP network nodes with
no modification to the existing network infrastructure. This

Active 
Network Node

Legacy 
Network Node

Source Destination

Active 
Network Node

Active 
Network Node

application application

Figure 1:Active Nodes and Legacy Network Nodes

simplifies the migration from present passive networks to
Active Networks. Such an interoperable network architec-
ture is shown in Fig.1.

Two different approaches [4], the active packet and the ac-
tive node approaches have been introduced for realisation
of Active Networks. In the active packet approach, the
code for processing the packet is carried in the packet itself.
The nodes in such a network are also active in the sense
that they allow computation at the application layer to take
place. The code carried in a packet can be used to process
the data of the same packet or can be executed at a node
in order to change the state/behaviour of the node. Some
examples of the active packet approach are Active IP [5],
Smart Packets [6] and M0 [7]. On the other hand, the active
node approach allows new protocols to be dynamically de-
ployed at intermediate and end nodes by using mobile code
techniques. Some eminent examples of the active node
approach are ANTS [8], DAN [9] and CANES [10]. In
addition, a hybrid of these two approaches has also been
proposed [11].

The Active Packets approach is efficient only when the
code to be carried is small. This approach suffers from
performance-related problems because of the overhead in-
volved in meeting the safety and security requirements. On
the other hand, the active node approach has good perfor-
mance because security issues are much less than in the
previous approach. However, the flexibility of the relevant
architectures is limited to the services available at the Ac-
tive Nodes or to the services supported by the code distri-
bution servers in the network. Neither approach achieves
complete dynamic service innovation in the network. A
discussion of various approaches can be found in [12].

2



2.2 Mobile Agents

A mobile agent [2] is an active program that acts on behalf
of a user or another program but under its own control.
That is, the agent can choose when and where to migrate
in the network and can decide on how to continue its exe-
cution thereafter. The mobile agents inherit the advantages
of all mobile code systems [13], especially the possibility
to transport functionality automatically to nodes where it
has not been installed before. The difference between con-
ventional mobile code and a mobile agent lies in the inclu-
sion of states i.e. data state and execution state. This state
can be transported encapsulated within the mobile agent,
whereas conventional mobile code entities are not able to
transport state. This feature allows the mobile agent to
have the property of autonomous operation. The method-
ology of mobile agent technology supports encapsulation,
program interposition and execution, which make a mobile
agent a suitable building block for the construction of Ac-
tive Networks. In summary the benefits [14] of using the
mobile agent paradigm include protocol encapsulation, re-
ducing network traffic, asynchronous and autonomous ex-
ecution, dynamical adaptation, integrating heterogeneous
system, and achieving robustness and fault-tolerance.

3 The Netlets Network

The Netlets network architecture follows the mobile agent
paradigm for implementing an Active Network infras-
tructure. The goal of the Netlets architecture is to
build an open, intelligent, customisable, secured net-
work architecture with autonomous, persistent mobile
software components- the Netlets. These Netlets are
autonomous nomadic components, which encapsulate
service-provisioning code that persist and roam in the net-
work independently, providing network services. Netlet
components are exchanged on demand by the Netlet nodes
to implement customised versions of protocols.

Netlet nodes are can be implemented either as an integrated
node or as a distributed node [15]. The integrated Netlet
node features a single smart network device (eg. router)
with a in-built Netlet runtime environment for service pro-
visioning. The distributed Netlet node consists of a net-
work node with a remote host system, typically a com-
puter supporting the runtime environment for Netlets. In
the prototype implementation of the Netlet node we use
the distributed node approach.

Another issue that needs to be addressed is the Netlet de-
ployment scheme in the network for service provision-
ing. There have been many approaches advocated by dif-
ferent research groups including the code-follow-capsule

approach in ANTS [8], the code-on-demand approach in
DAN [9] and active packets carrying programs in Ac-
tiveIP [5]. The use of autonomous nomadic components
or Netlets, is advocated for this architecture. In this ap-
proach, the code is portable, mobile and autonomous. The
expected benefits of this approach are:

Decentralisation and Autonomy: In this architecture the
server function for hosting the Netlets is spread across all
the nodes of the network. This removes the central point of
failures faced with centralised server Active Network ap-
proaches [9]. The service code is autonomous and avoids
end-user intervention for service deployment within the
network [8].

Collective Intelligence: The Netlets approach exhibits
collective intelligence of nomadic components for service
deployment. In this architecture each Netlet component is
an entity by itself and also provides interfaces that allow
the Netlet to act as a module in a software architecture for
dynamically constructing customised versions of network
protocols. This allows building network services in an in-
cremental fashion at Netlet nodes.

Demand-Driven Population of Services: The life of a
particular type of Netlet will purely be based on the user
demand for that species. On increase of demand for a
particular type of Netlets, the required set of species are
cloned and dispersed into the network for service deploy-
ment. The least used Netlet components would be purged
by agent bodies [15] as the demand falls. This leads to a
demand-driven population of services in the network.

4 Related Work

The Netlets architecture has common themes with many
Active Network approaches exploiting mobile code. The
most notable approaches featuring mobile code are ANTS
[8] and the DAN [9] approaches, from which many other
prototype extensions have been built [17, 18, 19]. The
ANTS model takes on the code-follows-capsule approach.
This scheme may fail in the case when the source node is
attached via a wireless link, because wireless links, unlike
most links in common wireline networks, are not neces-
sarily bi-directional. This approach is more tightly cou-
pled with the end user thus making new network services
slower to evolve. This is mainly because the end-user is
to cache the required code for service provisioning of their
packets over the ANTS network. In contrast, the Netlets
architecture does not exhibit such shortcomings, because
user nodes are not involved in component caching. The
DAN approach follows the code-on-demand paradigm and
hosts the services in a centralised server, referred as the

3



code server. These servers become bottlenecks when oper-
ating over wide area networks and become points of fail-
ures thus resulting in degrading the overall performance.
The Netlets architecture disperses this problem by spread-
ing the network services across all nodes in the network.

5 Netlet Node Architecture

The core of a Netlet Node is the Netlet Run-time envi-
ronment (NRE). The NRE to a Netlet node is like a ker-
nel to an operating system. A Netlet node could be logi-
cally divided into two distinct layers, the lower layer rep-
resents the physical network node and the top one repre-
sents the NRE. A virtual machine representation is used
as a shim between these two layers. In our prototype im-
plementation we use the JVM [16] for this purpose. We
have chosen Java as the programming language for imple-
menting the Netlets network architecture because it offers
a platform-neutral byte-code representation of service code
and because of the likely emergence of higher performance
compilers and runtime systems for use in real-time sys-
tems. Also, the powerful expressiveness of the language,
for example object-orientation, libraries for communica-
tion, multithreading, and dynamic code linking/loading al-
lows us to easily construct programs from modular com-
ponents for handling application-specific protocols. The
architecture of the Netlet node with the NRE and its com-
ponents is shown in Fig.2. It has the following features:

Fine-grain code mobility: This allows us to build incre-
mental network services at the network nodes from modu-
lar mobile components.

Flexible, modular and extensible architecture:The pro-
posed design of the NRE is shown in Fig.2. The NRE layer
is a lightweight software layer running on a virtual machine
providing only the basic function of network communica-
tion and code mobility. We propose to build the other re-
quired features (policy, security, accounting etc.,) as add-
on modules to the NRE layer. This modular based design
makes the system extensible and adaptable. For example if
the security-implementing algorithm is found deficient, a
new algorithm can be readily installed. This facilitates and
enables the system to evolve continuously based on chang-
ing requirements.

Real-time operation characteristics: The nomadic mo-
bile code, Netlets, will operate on resource constrained
network devices. These devices must be hard real-time
systems. Thus it is desirable to have a small code base,
and to use as few threads for operation. By decoupling
the core mobility-implementing layer from other features
like policy, security, accounting etc., the environment will

����� � �����
	��� � � ����������� �������������

��� ��� 	����������� �� ���

!" �#�$ � ����������%��

& ������	���� ����� � ���
�'������(����

�)��� � ���*�+,������� ���"�+�-������

�)��� � ���
����%��.�'������(����

+,����	���� � # !"��� � ��# /�������	���� � ��(

Figure 2:Netlet Node Architecture and Run-time Environ-
ment

be customisable to support only required features at a net-
work node. Thus for a Netlet node operating in a network
domain for mere packet routing the add-on features like
policy and security implementation could be removed or
customised according to the need at the particular node.

6 Components in a Netlet Run-time
Environment

We follow a modular based design for building the NRE.
This allows customisation of the run-time environment as
the design evolves. The major components that form the
core of the NRE are: a Netlet Node Manager, Netlet-
Service-Space and a Netlet Communication Manager.

The Netlet Node Manageris the central module that co-
ordinates the working of the NRE. It records all the Netlets
components residing at the Netlet node with their handler
specifications. Handlers specify the methods for packing
and unpacking Netlets in an NRE. This manager module
also provides interfaces to all the add-on modules for im-
plementing their services at the Netlet node. This compo-
nent also manages the node resources (memory, CPU cy-
cles), access levels (routing table entries, communication
to other resident Netlets) allocated to Netlet groups imple-
menting application specific protocols.

Netlet-Service-Spacesallocates physical space and re-
sources for Netlets execution. This environment provided
for execution of the Netlets is a sandbox type environment
to prevent malicious Netlets from accessing and modifying
state of the Netlet node. The Netlet-service-space compo-
nent accounts for resource usage by the Netlets and reports

4



them to the Netlet manager. This component also stores
Netlet specific handler codes and soft-states of Netlet com-
ponents during service provisioning. We plan to use this
component to provide standard interfaces for communi-
cation between Netlets of different sessions. This would
prevent malicious Netlet codes attempting to access and
change state of properly functioning Netlets.

The NRE Communication Manager provides socket
based communication support for the NRE environment
for exchanging Netlets on demand among the Netlets
nodes in the network. This manager creates communica-
tion session for each network service running in the Netlet
node.

In addition to supporting the Netlet Run-time Environment
(NRE) for portable code, the Netlet node will support the
following features for continuous service provisioning:

- Support mobile code communication;

- Identify user requests for protocol features;

- Initiate Netlet discovery ;

- Security validations on Netlets;

- Support dynamic code loading/linking;

- Resource management among Netlet sessions; and

- Provide persistent storage and Account for the re-
source usage by the Netlets.

7 Conclusion and Future Work

The need for open programmable dynamic network archi-
tectures that allow fast protocol evolution in the network
has been described. We also discussed various architec-
tures and their shortcomings in realising such networks.
We then showed the mobile agent paradigm as a promising
candidate for implementing Active Networks. We intro-
duced the Netlet network architecture and stated the major
differences and expected benefits over the other existing
Active Network models. The modular based architecture
of the Netlet node was described with emphasis on the
overall design features. The current work is involved in
implementing the Netlet node. The second phase of work
will involve designing network services for evaluating the
prototype implementation. We will also investigate mo-
bile code discovery schemes and the caching strategies that
could be adopted in such networks for efficient function-
ing. Based on these schemes we will then evaluate and test
the prototype model for functioning with real-time traffic.
This should result in a robust and stable platform for the

rapid deployment of new services and applications in to-
morrow’s Internet.

References

[1] DARPA Active Network Program,
http://www.darpa.mil/ito/research/anets/projects.html,
1996.

[2] Nwana H.S, Software agents : An Overview, Knowlegde
Engineering Review, vol 11, no. 3, pp.205-244, Oct/Nov
1996.

[3] OPENSIG Working Group,
http://comet.columbia.edu/opensig/

[4] D. L. Tennenhouse, J. M. Smith, W. David Sincoskie,
David J. Wetherall, and Gary J. Minden, A Survey of Ac-
tive Network Research IEEE Communications, Magazine,
Vol. 35, No. 1, pp80-86. January 1997.

[5] David J. Wetherall and David L. Tennenhouse, The AC-
TIVE IP OPTION,In the 7th ACM SIGOPS European
Workshop.

[6] Beverly Schwartz, Wenyi Zhou, and Alden W. Jackson,
Smart Packets for Active Networks, BBN Technologies,
Jan. 1998.

[7] Albert Banchs et al., M0 Architecture: Multicasting Multi-
media Streams with ActiveNetworks, ICSI technical report
97-050.

[8] D. J.Wetherall, J. V. Guttag, and D. L.Tennenhouse, ANTS:
Architecture for Building and Dynamically Deploying Net-
work Protocols, Proc. IEEE OPENARCH 98, April 1998

[9] Dan Decasper and Bernhard Plattner, DAN: Distributed
Code Cashingfor Active Networks, Proc. IEEE INFOCOM
98, San Francisco, CA, 29 March2 April 1998.

[10] Composable Active Network Elements: Lessons Learned.
E. Zegura and K. Calvert, Presented at DARPA AN PI
Meeting, Portland, OR, June 2000

[11] Y. Yemini and Sushil da Silva, Netscript:Towards Pro-
grammable Networks, Proc. IFIP/IEEE International Work-
shop on Distributed Systems, Operations, and Man-
agement, LAquila, Italy, 1996.

[12] Konstantinos Psounis, Active Networks: Applications, Se-
curity, Safety, and Architectures, in IEEE communications
survey, First Quarter 1999.

[13] Gian Pietro Picco, Understanding Code Mobility, Politec-
nico di Torino, Italy, Tutorial at ECOOP98, 22 July 1998

[14] Danny B.Lange, Mitsuru Oshima, Seven Good Reasons for
Mobile Agents, Communications of the ACM, Vol. 42, No.
3,1999.

5



[15] M. Collier, Netlets: the future of networking?, First IEEE
Conference on Open Architectures and Network Program-
ming, San Francisco, CA, USA, April 3-4, 1998.

[16] The Java Virtual Machine Specification,
http://java.sun.com/docs/books/vmspec

[17] Erik L. Nygren, Stephen J. Garland, and M. Frans
Kaashoek, PAN: A High-Performance Active Network
Node Supporting Multiple Mobile Code Systems IN PRO-
CEEDINGS IEEE OPENARCH99, MARCH 1999

[18] Gsli Hjlmtsson , The Pronto Platform - A Flexible Toolkit
for Programming Networks using a Commodity Operating
System, OPENARCH 2000.

[19] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner,
Router plugins: A software architecture for next-generation
routers, IEEE/ACM Transactions on Networking, Vol. 8,
No. 1, Feb. 2000, pp. 2-15.

6


