
An MPLS based architecture for differentiated Web service

Radu Dragos & Martin Collier
Dublin City University, School of Electronic Engineering

Dublin , Ireland

e mail: {dragosr, collierm}@eeng.dcu.ie

Abstract: The WWW has been the preferred technology used
to provide information and e-services over the Internet. However,
one major limitation of Web servers is that they treat all requests
equivalently, without using priority schemes or different levels of
service. Various methods to introduce such differentiated service
are possible.

MultiProtocol Label Switching (MPLS) can be an useful tool
to extend the quality-of-service (QoS) capabilities and Traffic En-
gineering from the core of the network to the end-systems.

In the context of a QoS enabled network with MPLS capabil-
ities, we propose an MPLS based solution to provide different
levels of Web service. We have designed and simulated a Web
switching architecture for next-generation QoS enabled IP net-
works, based on a Linux implementation of MPLS.

1. I NTRODUCTION AND MOTIVATION

The number of services offered over the Internet has dra-
matically increased in the last few years. The WWW service
no longer consists in merely displaying the static content from
a web server to a web browser. New and more traffic- and
CPU-intensive services are widely used nowadays. Services
like search engines, file servers, multimedia streaming, appli-
cation servers, database servers and e-commerce servers, not
only require higher bandwidth, but also stretch to the limit the
computational performance of servers. Addressing this prob-
lem requires new architectures such as Web clusters, and new
technologies such as Web switching. The current available so-
lutions do not offer end-to-end quality-of-service (QoS) or are
cost prohibitive [1].

This section describes the motivation for providing different
levels of Web services. The paper continues in section 2 with a
short presentation of an MPLS based load balancing architec-
ture for Web switching. In section 3 we propose a framework
for guaranteed Web services and we present experimental re-
sults in section 4. The paper is concluded in section 5.

1.1 Web server availability

Popular Web sites receive ten times more requests than three
years ago, from 115 million page views per day in June 1998
to 1.5 billion page views per day in September 2001 (e.g., [2]).
The value is around 17361 hits per second and may increase
over the next few years. The rate of incoming requests is higher
than what a single server could handle in a timely manner.
Consequently, Web service providers face technical challenges

in meeting this burgeoning demand and must deploy new tech-
niques in order to satisfy the continuously increasing number
of requests.

The typical solution to the problem of over-congested Web
servers isclustering of Web servers (server farms). This
technology has to transparently divert the client’s request to the
optimal server. The technique consists in grouping the servers
in so called server clusters and adding a new and transparent
service to the network, which is responsible for distributing the
requests uniformly among the servers [3].

Successful administration of server clusters requires the
use of specialized mathematical and engineering theories like
queuing theory and load balancing techniques. The most im-
portant goal from the Web service provider’s point of view is
to uniformly balance the workload among the servers within
the cluster.

1.2 Differentiated Web services

The Internet is undergoing a transformation from a best-
effort network to an end-to-end QoS architecture. The research
effort is concentrated toward the core of the network. The
Internet Engineering Task Force(IETF) projects such as Inte-
grated Services [4] , Diffserv [5], Resource Reservation Proto-
col [6] or MPLS [7] are concerned more about improving the
performance of the network capabilities rather than the capa-
bilities of end-systems. Consequently, QoS aware servers can
dramatically improve the overall performance of the network.

With Diffserv or MPLS, packets are classified and marked
to receive a particular per-hop forwarding behavior on nodes
along their path. Traffic can be aggregated into traffic trunks.
Various policies can be applied in a different manner for dis-
junct classes of traffic. Classes of users or applications can be
maintained and their traffic can be shaped in a different man-
ner.

Our proposal is to extend the QoS capabilities of the core
network to the network boundaries. The quality of Web service
(QoWS) can be improved if Web servers are QoS aware. More-
over, different levels of Web service can be delivered from
HTTP servers.

The following sections present an architecture for providing
differentiated Web services in an MPLS aware network.

1.3 Guaranteed Web services

We consider the problem of providing two classes of differ-
entiated Web service. The approach can be used when a Web
service provider (WSP) conceives a plan for serving more than
one class of users. The two classes comprise privileged users
and best-effort users. Here are few possible scenarios for dis-
tributing users among the classes:

• Paying customers versus non-paying customers;
• Intranet users versus Internet users;
• Professors versus students.
Various terms can be used to specify the two classes:
• Privileged and best-effort;
• High-priority and low-priority;
• Foreground and background;
• Premium and basic.
The rest of the paper will refer to the two classes as premium

services and basic services.
Our research takes into consideration services that are more

CPU-intensive than static Web content delivery is.(e.g. CGI
scripts or database queries). Those types of requests are char-
acterized by a smaller arrival rate but require a longer CPU
processing time at the server side. Hence, there is a higher
probability of multiple simultaneous requests contending for
CPU time slots. Experimental results for a Web server pre-
sented in section 4 show that the execution time increases lin-
early with the number of tasks being processed in parallel and
may overload the server.

The result is an execution time greater than what an user is
willing to wait for. Moreover, the client (human user or soft-
ware program), reaching a time-out threshold may retry the
request and by that the server will receive even more requests.
A continuously increasing number of incoming requests will
cause undesired congestion. Hence, the number of active con-
nections per server must be restricted below a predetermined
threshold.

The first two approaches to keep the server within it’s run-
ning parameters are:

• Dropping all the incoming requests that exceed a maxi-
mum limit.

• Queueing the requests and waiting for free server slots.
Neither one of the above solutions are acceptable for a client

expecting guaranteed service delivery. Consequently, when a
server is not capable of serving the clients in a timely manner,
more than one server is required.

Clustering Web servers is a common approach for improv-
ing the performance of Web content hosting [8], [9]. Using
a cluster of servers introduces a new problem: load balancing
across the servers.

Another issue in providing guaranteed Web services using
multiple servers are Web traffic bursts. Since Web requests do
not arrive with a constant arrival rate, the Web service provider
has to be prepared for the worst situation and that is the high-
est possible arrival rate. This may occur when all the clients

initiate requests in a short time interval at peak times (i.e. all
the clients arrive at work in an interval between 7.55 am and
8.05 am and access the database server to retrieve an certain
information required before beginning their work). Therefore,
a WSP has to reserve enough resources in order to satisfy the
maximum possible number of requests.

Web traffic is best characterized by heavy tailed probabilis-
tic distributions such as Pareto or Weibull [10]. With such an
arrival distribution, heavy traffic (greater than 90% of maxi-
mum number of requests) is more likely to occur in less than
10% of the time. For the rest of the time (i.e. the rest of the
day) the server will be underutilised and thus uneconomic.

Our approach proposes to fill the idle times with low prior-
ity Web requests from another class of users providing a sec-
ondary class of services (basic services)as in figure 1.

Fig. 1
TWO CLASSES OFWEB REQUESTS ON ANHTTP SERVER

2. MPLS BASED WEB SWITCHING

There are various alternatives to Web traffic load balanc-
ing [1]. We consider the MPLS approach.

The Internet is a connectionless network. Nevertheless, the
WWW architecture, uses the HTTP application layer protocol
to deliver information. Moreover, HTTP is based on TCP layer
4 protocol which is a connection-oriented protocol. Mean-
while, MPLS is a connection-oriented protocol. Therefore, a
natural approach to load balance the HTTP flows is to map
them into MPLS LSP’s. The idea is to use different labels to
specify the flows for each server across the cluster.

The first proposal for the use of MPLS for Web routing was
presented in a IBM research report [11]. Since MPLS provides
better mechanisms to support QoS routing than the legacy IP
[12], [13], [14],it can more elegantly support such functions
as:

• content-based routing
• client affinity
• different classes of service
• load balancing

The technique proposed in [11] requires that the dispatcher
will maintain a table of associations between labels and the
associated server weight. The dispatcher will then send a tu-
ple < {L1,W1}, {L2,W2}...{Ln,Wn} > to a proxy server
situated in front of MPLS ingress nodes using a dedicated sig-
naling protocol.

The approach proposed in [1], reduces the load of the dis-
patcher and the need for a dedicated signaling protocol. It also
reduces the complexity of the solution by eliminating the proxy
nodes used by [11] at the client side. Moreover, the function-
ality of an MPLS powered Web switching technique is pre-
served. The framework was implemented using cost-effective
PC based MPLS switches.

In this paper we are interested in using MPLS to provide
different classes of serviceto clients, based on service level
agreements or other administrative factors. The MPLS ap-
proach can provide different FECs for different classes of ser-
vice. Packets can be labeled corresponding to the type of the
class (gold, silver or bronze). If servers have different pro-
cessing performances, the gold-labeled packets can then be
switched to the best performing server. Label stacking also can
be used to define and identify hierarchical classes of service.

This approach presumes that the ISP providing the Web ser-
vice already uses an MPLS enabled network. All the ISP’s de-
vices are MPLS capable. The clients for the Web service do not
have to implement MPLS since the ingress of the ISP’s admin-
istrative domain will be the ingress of an autonomous MPLS
domain as well. The solution involves the use of a front-end
dispatcher and a Web server farm as in Figure 2.

LER

LER

LSR
LSR

IP pkt
DISPATCHER

IP pkt

IP pkt La

LbIP pkt

Servers

Clients

MPLS cloud

La LsynIP pkt

La LsynIP pkt

LbIP pkt Lsyn

Fig. 2
A FRAMEWORK FORMPLS WEB SWITCHING

The main advantage of this approach is that the edge routers
will associate the requests to servers in a distributed man-
ner. Consequently, the dispatcher will perform as an ordinary
MPLS switch with an added load-balancing function.

3. GUARANTEED WEB SERVICES FRAMEWORK

3.1 Alternatives

Most commonly used techniques to provide differentiated
Web service are done at the server site [8], [15]. Those tech-
nologies modify the server in order to treat differently the
packets belonging to different classes.

• User-level approach: implies modifying the Web server
program by adding a process scheduler that decides the
order in which requests be serviced [15].

• Kernel-level approach: The kernel of the operating sys-
tem is modified so that request priorities are mapped into
process priorities.

The above alternatives can be used to provide differentiated
levels of Web services but both of them require modifications
within the operating system and/or the Web server. Moreover,
neither can exploit the features of a QoS enabled network.

The network approach to differentiated Web services op-
timally exploits an traffic engineered network. Using a fast
switching protocol (MPLS), our proposal will provide guar-
anteed Web services by load balancing the classes of requests
among a cluster of web servers. The technique is described in
section 3.2.

3.2 Dynamic weighted load balancing

This section depicts a framework for QoWS using the MPLS
load balancing technique described in section 2.

We previously mentioned that for guaranteed web services
we need to reserve enough resources (i.e. Web servers) for the
maximum possible Web traffic. We may also want to use the
idle times for basic traffic. In this approach we use an MPLS
aware dispatcher in front of the Web cluster to switch the traffic
according to a load balancing algorithm. Here we present the
main issues of this approach.

1) Traffic classification: Since we use two classes of ser-
vices we have to be able to map the requests to the correct
class. Here we take advantage of an MPLS enabled network
by using labels to classify the traffic. At the edge of the MPLS
cloud, the requests are labelled according to their class of ser-
vice. The dispatcher can identify the classes of requests based
on the MPLS label value.

2) Traffic estimation and load distribution:To simplify the
analytic model, we assumed that the server could generate the
response in a timet1 (e.g. 10 seconds) for each request if a
single request is processed at one time. Empirical tests proved
that the execution time of a CGI script increases linearly with
the number of concurrent executions. Therefore, we can con-
sidertx = a ∗ x + b, wherex is the number of simultaneous
processes anda andb are parameters that depend on the CPU
speed and process complexity but can be previously estimated
for a certain system and a specific request.

The agreement between WSP and client can specify that the
requests must be served in a time less thantmax. This means

that no more thanxmax = tmax/a − b requests should ar-
rive simultaneously at one server. Then we can usex (number
of active connections) as a parameter to control the execution
time of a process.

Considering a number ofc clients, the maximum number
of simultaneous requests isc. In a Web cluster withn servers,
with an ideal load balancing algorithm, the requests are equally
distributed along servers. Therefore each server will encounter
maximum number ofc/n requests. We have then:

c

n
≤ xmax ⇒ n ≥ c

xmax
⇒ n ≥ c

tmax

a − b
(1)

The number of servers (n) can then be predicted using for-
mula 1.

Let S = {s1, s2, ...sn} be the set ofn Web servers. Our
proposal uses 2 disjunct subsets ofS for the two classes of
requests:Sh = {s1, s2, ...si} for high-priority requests and
Sl = {si + 1, si + 2, ..., sn} for low-priority requests, where
0 < i ≤ n, Sh ∩ Sl = ∅ andSh ∪ Sl = S. The role of the
dispatcher is to balance the load among the subsets and map
premium traffic and basic traffic toSh andSl respectively.

Two major conditions should be satisfied by the system. The
number of premium requests per server must be less than the
number of basic requests per server in order to always provide
better services to the premium clients (xpremium < xbasic).
The other condition is to keep the number of basic connections
under a threshold for the situation in which in a short time
interval, the set of serversSl should accommodate incoming
premium requests:

xthreshhold > xbasic > xpremium (2)

Variations of request arrival rates from both sources (pre-
mium and basic) will trigger modifications in bothSh andSl.
Consequently, we can define two events as follows:

E1 The first event is characterized by increasing the
number of servers inSh and respectively decreas-
ing the number of servers inSl. This is due to
| S |=| Sh | + | Sl |. E1 is triggered at the ar-
rival of an premium request when by accepting the
incoming request the system may not accomplish the
fundamental conditions mentioned in equation 2.

E2 The second event is characterized by decreasing the
cardinality | Sh | and increasing| Sl |. E2 is trig-
gered at the arrival of an basic request by the follow-
ing occurrence:

xthreshhold � xbasic � xpremium (3)

This is when the premium traffic is light and the sys-
tem is underutilised. Hence, we can restrict the pre-
mium requests to a smaller subset of servers and by
that, allowing a greater number of basic requests to
be served.

When the premium traffic is heavy the dispatcher can refuse
new incoming basic requests and if necessary even broke run-
ning basic connections to free resources for the burst of pre-
mium requests.

The proposed solution was simulated and the results are an-
alyzed in section 4.2

4. SIMULATION RESULTS

4.1 Relation between execution times and the number of
concurrent requests

Our first analysis was concerned with the behavior of an
overloaded Web server. For this experiment we used a system
with an AMD K-6 cpu (233MHz) and 64MB RAM running
the Linux operating system and Apache[16] Web server. We
created a CPU intensive CGI script that executes at the server
side in approximatelyt1 = 10 seconds. We incremented the
number of concurrent requests and we analyzed the request
execution times. The results in figure 3 shows that the time
increases by a linear equation:t = a ∗ x + b. x represents
the number of simultaneous requests whilea andb depend on
the system characteristics and the CGI script’s computational
complexity. We also found a limit for the number of simulta-
neous connections. Over this limit the server is overloaded and
the incoming connections will be dropped.

X Graph

execution_time

connections_dropped

seconds

no.connections
0.0000

50.0000

100.0000

150.0000

200.0000

250.0000

300.0000

0.0000 20.0000 40.0000 60.0000

Fig. 3
EXECUTION TIMES FOR CONCURRENT CONNECTIONS

4.2 Adaptive load balancing distribution

For the second experiment we simulated the model for pro-
viding guaranteed Web services. We considered two sources of
traffic: premium traffic and basic traffic. The requests arrival is
modelled by a heavy tailed probabilistic distribution of inter-
arrival times (Pareto). Execution times are given by the results
from the previous experiment:t = ax + b(a = 5, b = 5).
Premium traffic requests arrive with inter-arrival times given
by Pareto distribution with an mean arrival rateλ = 1 connec-
tions/second and basic requests with a mean ofλ = 2 connec-
tions/second. The load is dynamically distributed among the 8

servers within the cluster. The subsets of servers dedicated for
the two classes of request had initially the cardinality| Sh |= 1
and| Sl |= 7.

The adaptive algorithm used theE1 andE2 events to main-
tain the premium services response times below a value of 50
seconds and the basic services response time above the times
for the premium requests. Part of the basic requests were
dropped at peak times but more basic connections were ac-
cepted when the servers were lightly loaded as shown in fig-
ure 4.

A higher arrival rate for basic requests will not affect the pre-
mium services while the conditions 2 are satisfied. The simu-
lation proves that two classes of services can be delivered us-
ing a load balancing architecture with different weights for the
two classes. Moreover, the premium service can be guaranteed
since the cluster was prepared to serve the maximum possible
number of requests and basic requests will always make way
for premium requests.

X Graph

time_premium

time_plain

seconds x 103

6time_scale x 10
10.0000

15.0000

20.0000

25.0000

30.0000

35.0000

40.0000

45.0000

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

Fig. 4
EXECUTION TIMES FOR PREMIUM AND BASIC REQUESTS

5. CONCLUSIONS

In this paper we described a challenge faced by today’s Web
service providers. The traffic through the Web sites increases
along with the number of clients and the number of services
offered. In this context, separating the clients in classes of pri-
ority can improve the performance of a Web content hosting
site. Economical parameters may also impose a differentia-
tion between potential classes of clients. By providing a so-
lution which uses MPLS, we assume efficient interaction with
the favored protocol for high-speed QoS aware networking in
today’s Internet.

REFERENCES

[1] Radu Dragos, Sanda Dragos, and Martin Collier. Design and implemen-
tation of an MPLS based load balancing architecture for Web switching.
To apear in the Proceedings of 15th ITC Specialist Seminar, Würzburg,
Germany, July 2002.

[2] Yahoo. Investor Relations.
URL: http://www.yahoo.com/info/investor.

[3] Eric Dean Katz, Michelle Butler, and Robert McGrath. A scalable HTTP
server: The NCSA prototype.Computer Networks and ISDN Systems,
27(2):155–164, 1994.

[4] J. Wroclawski. The Use of RSVP with IETF Integrated Services. Tech-
nical Report RFC2210, IETF, September 1997.

[5] S. Blake, D. Black, and M. Carlson. An Architecture for Differentiated
Services. Technical Report RFC2475, IETF, December 1998.

[6] A. Mankin, F. Baker, and B. Braden. Resource ReSerVation Protocol
(RSVP) Version 1 Applicability Statement Some Guidelines on Deploy-
ment. Technical Report RFC2208, IETF, September 1997.

[7] E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol Label Switch-
ing Architecture. Technical Report RFC3031, IETF, January 2001.

[8] Valeria Cardelini, Emiliano Casalicchio, and Michele Colajanni. A Per-
formance Study of Distributed Architectures For The Quality of Web
Services.Proceedings of the Hawai’i International Conference On Sys-
tem Sciences, January 2001.

[9] Huican Zhu, Ben Smith, and Tao Yang. Scheduling Optimization for
Resource-Intensive Web Requests on Server Clusters. InACM Sympo-
sium on Parallel Algorithms and Architectures, pages 13–22, 1999.

[10] Paul Barford and Mark Crovella. Generating Representative Web Work-
loads for Network and Server Performance Evaluation. InMeasurement
and Modeling of Computer Systems, pages 151–160, 1998.

[11] A. Acharya, A. Shaikh, R. Tewari, and D. Verma. Scalable Web Re-
quest Routing with MPLS. Technical Report RC 22275, IBM Research
Report, December 2001.

[12] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus.
Requirements for Traffic Engineering Over MPLS. Technical Report
RFC2702, IETF, September 1999.

[13] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. A Framework
for QoS-based Routing in Internet. Technical Report RFC2386, IETF,
August 1998.

[14] Sanda Dragos, Radu Dragos, and Martin Collier. Bandwidth Manage-
ment in MPLS Networks.
URL: http://telecoms.eeng.dcu.ie/symposium/papers/B1.pdf.

[15] Lars Eggert and John S. Heidemann. Application-Level Differentiated
Services for Web Servers.World Wide Web, 2(3):133–142, 1999.

[16] Apache Web Server. Apache Web Site.
URL: http://www.apache.com.

	Introduction and motivation
	Web server availability
	Differentiated Web services
	Guaranteed Web services

	MPLS based Web switching
	Guaranteed Web services Framework
	Alternatives
	Dynamic weighted load balancing
	Traffic classification
	Traffic estimation and load distribution

	Simulation results
	Relation between execution times and the number of concurrent requests
	Adaptive load balancing distribution

	Conclusions
	References

