
Design and implementation of an MPLS based load balancing
architecture for Web switching

Radu Dragos, Sanda Dragos & Martin Collier
School of Electronic Engineering - DCU

Switching and Systems Laboratory
Dublin City University

Glasnevin, Dublin 9, Ireland
e mail: {dragosr, dragoss, collierm}@eeng.dcu.ie
Phone: +353 1 700 5854. Fax +353 1 700 5508

Abstract

The WWW has been the preferred technology used to pro-
vide information and e-services over the Internet. How-
ever, one major limitation of Web servers is that beyond
a threshold, the server will not be able to process requests
in a timely manner or will reject requests.

Addressing this problem requires new architectures such
as Web clusters, and new technologies such as Web switch-
ing. The current available solutions do not offer end-to-end
quality-of-service (QoS) or are cost prohibitive.

MultiProtocol Label Switching (MPLS) is the industry-
standard approach to switching and forwarding for next-
generation routed networks. The MPLS technology com-
bines the simplified forwarding characteristics of link-layer
switching with the control and scalability of network-layer
routing.

In the context of a QoS enabled network with MPLS
capabilities we propose an MPLS based solution to Web
servers load balancing. We have designed and implemented
an open source and cost-effective Web switching architec-
ture for next-generation IP networks.

Moreover, our results prove the validity of the approach
and verifies the performance of the MPLS based Web
switch in stress conditions.

Keywords: Web switching, load-balancing, MPLS,
server cluster, Linux

1 Introduction

The number of services offered over the Internet has dra-
matically increased in the last few years. The WWW ser-
vice no longer consists in merely displaying the static con-
tent from a web server to a web browser. New and more
traffic- and CPU-intensive services are widely used nowa-
days. Services like search engines, file servers, multime-
dia streaming, application servers, database servers and e-
commerce servers, not only require higher bandwidth but
also stretch to the limit the computation performance of

servers.
Popular Web sites receive ten times more requests than

three years ago, from 115 million page views per day in
June 1998 to 1.5 billion page views per day in September
2001 (e.g., [1]). The value is around 17361 hits per second
and may increase over the next few years. The rate of in-
coming requests is more than a single server will be able
to answer in a timely manner. Consequently, Web service
providers face technical challenges in meeting this burgeon-
ing demand and must deploy new techniques in order to sat-
isfy the continuously increasing number of requests.

This paper addresses the issue of increasing Web server
availability and reliability. Sections 2 and 3 describe the
background and related commercial solutions. In section 4
we propose a an open source, cost effective architecture and
we prove the functionality by implementing the solution.

2 Background

This section describes issues related to solving the problem
of over-congested Web servers.

2.1 Web content caching

One of the early approaches was the caching of the web con-
tent at the client side, initially on the client local machine
(the cache maintained by the Web browsers) then at the cor-
poration level by using proxy servers [2, 3, 4]. Caching
mechanisms will deliver the local stored data, if data was
previously requested by another client or a previous con-
nection and if the content is up-to-date instead of the con-
tent requested from the remote server.

The caching solution was only a temporary attempt to re-
duce the number of requests by reducing the redundancies
in the data transferred over the Internet. This only works
with static web content. With the introduction of new ser-
vices, a new type of information was processed at a Web
site: dynamic data, which involves information construc-
tion at the server site before answering the request. This

kind of information can not be cached; therefore, the use of
caching will not reduce the server workload.

2.2 Mirroring

The second approach known as mirroring consists in main-
taining a number of servers with similar content, but with a
different geographic location and a different name and In-
ternet address (e.g. [5]). The client has to choose, among
the geographically distributed servers, the one that best suits
to his requests. This approach leaves to the client the deci-
sion of choosing the mirror and the responsibility of choos-
ing the right one or the wrong one. Many times the client
will initiate more than one request to different servers, in
order to determine the ”closest” mirror. On the other hand,
maintaining a perfect synchronization between the mirrored
servers may not be an easy job, especially for time criti-
cal applications. Moreover, the situation when the clients
are not geographically distributed but concentrated within a
single geographic area (or even the same WAN or LAN) can
not be solved by spreading the servers around the area. The
time spent by the client deciding the most suitable server
may be too long for mission-critical applications.

2.3 Cluster of servers (server farms)

The next approach tries to avoid the user involvement in
the process of choosing the best server. The technology has
to transparently deviate the client’s request to the optimal
server. The technique consists in grouping the servers in
so called server clusters and adding a new and transparent
service to the network, which is responsible for distributing
the requests uniformly among the servers [6].

Successful administration of server clusters or server
farms requires the use of specialized mathematical and
engineering theories like queuing theory and load balanc-
ing techniques. The most important goal from the Web
service provider’s point of view is to uniformly balance the
workload among the servers within the cluster.

The two major methods of building Web clusters are de-
scribed as follows.

2.3.1 Replicated content servers

The first method is to mirror the content of a Web server and
to create two or more servers having identical content. This
resembles the geographical distribution of mirrored servers,
but has the advantage that the servers are grouped within the
same building or room and under the same administration;
thus the task of synchronizing the Web content between
mirrors is much easier. Moreover, the choice of server is
no longer the responsibility of the client.

2.3.2 Distributed content

The second method is to distribute the Web content among
the servers within the farm. Therefore, the decision of

choosing the server is based on the client’s HTTP request
and involves filtering the packets up to the application level.
Thus, the problem is not anymore a problem of uniformly
distributing the requests but of a priori distributing the
content within the servers in a manner that will result in a
balanced workload among the servers.

A cluster of serversis the typical solution to the prob-
lem of increasing Web server availability. In section 3 we
describe some approaches to cluster implementation.

3 Related problems and solutions

This section describes the major approaches used to emulate
a Web server using a cluster of servers in response to the
problem mentioned above.

3.1 Problems

3.1.1 Overloading a Web server

Web server is considered overloaded when the number of
incoming requests exceeds the server’s capacity. The ca-
pacity of a Web server is marked by a soft or hard threshold.

A soft threshold is a limit in the number of simultaneous
accepted requests. Beyond this limit the server will not be
able to process the requests in a timely manner.

A hard threshold is the maximum number of simultane-
ous connections (e.g. 150 clients [7]. If this limit is ever
reached, subsequent clients will be rejected. In e-business,
an overloaded server is a critical problem for companies
providing Web based services since they can lose clients
and revenue. Therefore, the Web server has to be always
available and reliable.

An overloaded server can be avoided using a Web farm,
provided that the peak demand is known, thereby allowing
the minimum number of servers required to be estimated.

Let’s consider the situation when packets arrive at the
server with an arrival rate uniformly distributed over the
interval [0,20]; that is an average rate ofλ = 10 connec-
tions/second. We consider connections to have randomly
lengths, uniformly distributed over the interval [0,60] sec-
onds. This is an average ofl = 30 seconds. After a timet
approximately equal tol the number of active connections
will vary around the average valuec1 = λ ∗ l = 300 con-
nections as simulated in Figure 1.

Standardly configured Apache [8] Web server accepts a
maximum ofmax = 150 simultaneous connections. The
above situation exceeds the maximum server capacity and
consequently not all the requests will be processed. More
than one server is needed to deal with such a large number
of connections.

In an ideal situation the average number of connections
per server usingn load-balanced servers, iscn = λ ∗ l/n =
300/n and, two servers seem to be enough sincemax =
150 = 300/2 = c2 connections/server. But in the real

X Graph

server1

connections

secconds0.0000

100.0000

200.0000

300.0000

400.0000

0.0000 200.0000 400.0000

Figure 1: The number of active connection for 1 server

world, λ and l vary in time andcn will take values grater
than max (Figure 2).

X Graph

server1

server2

connections

secconds
0.0000

50.0000

100.0000

150.0000

200.0000

0.0000 200.0000 400.0000

Figure 2: The number of active connection for 2 servers

Using the same simulation, we can see that acceptable
results are obtained for 3 servers,n = 3 and we obtain an
average load per server ofc3 = λ ∗ l/n = 100 connec-
tions/server (Figure 3).

X Graph

server1

server2

server3

connections

secconds
0.0000

20.0000

40.0000

60.0000

80.0000

100.0000

120.0000

140.0000

0.0000 200.0000 400.0000

Figure 3: The number of active connection for 3 servers

In conclusion, more than one server is required for a
high number of simultaneous requests. The number of
servers can be estimated if the arrival rateλ and the average
connection lengthl can be predicted.

3.1.2 The TCP continuity problem

Another major issue with HTTP traffic is that it uses the
TCP protocol to establish and maintain the connection be-
tween the Web browser and Web server. Therefore, we deal
with a connection-oriented protocol. This causes a major
problem for load balancing techniques. Imagine the situa-
tion when the first request from a certain client is sent to
the optimal server from the cluster. The connection will
be established between the peers and then during the con-
nection, the load balancing algorithm will choose another
optimal server and send the remaining packets of the TCP
session to the second one. This will result in breaking the
connection and interrupting the flow.

The TCP continuityproblem must be avoided and con-
sequently the load balancing technology has to implement
a mechanism for maintaining the TCP connections alive.
Generally, this is done by applying the algorithm only for
the first packet of the connection (marked with the SYN
TCP flag). Then, all the subsequently packets of the ses-
sion, will be sent to the same initial server elected at the
arrival of the connection initiator packet.

The approaches that face this problem have to maintain
state information for the active TCP connection in order
to avoid the breakouts of the long HTTP transfers and in-
consistency of the e-commerce transactions. The available
solutions require the examination of the TCP or HTTP
headers. Information such as the socket port, TCP flags,
SSL session timeout or cookies can be used to identify the
packets belonging to the same session and maintain the
session uninterrupted [9].

3.2 Approaches

3.2.1 Round-robin Domain Name Service

The first method used to avoid the server congestion by dis-
tributing connection loads over a cluster was based on the
Domain Name Service (DNS) [10]. In a standard scenario,
a domain name is associated with an IP address. Since the
client uses the domain name to access a Web site, a DNS
has to translate the name into the correct IP of the destina-
tion server. Therefore, the DNS server is a part of the Web
browsing process. Moreover, the server can be modified to
answer with different IP addresses for different translation
queries. The DNS server will rotate through the list of the
IP addresses in a round robin fashion in such a way that
each server in the cluster will receive a part of the incoming
requests.

The main advantage of round-robin DNS is its simplicity.
No additional hardware or software is required and since
the client will initiate the DNS query only once per TCP
session, we will not encounter theTCP continuity problem.
On the other hand, there are also major drawbacks for this
approach. The caching feature of DNS at the client side,
prevents an accurate load balancing scheme since not ev-
ery incoming request will get its address directly from the

round-robin DNS server. Disabling caching may appear to
solve the problem. However, every DNS query must then
be resolved by our server; this is expensive and potentially
slower for users. Moreover, a client may use the IP address
of the Web server thereby bypassing the DNS server and all
its requests will be sent to the same server.

The other major disadvantage of this approach is that the
DNS server does not have any knowledge about the status
of each server in the cluster. The round-robin scheme will
continue to send traffic to all servers in turn, even if some
of them are overloaded or out of service.

3.2.2 Load balancing switches

Load balancing switches, such as Cisco’s LocalDirector
[11] and Alteon’s ACEdirector [12], are hardware solu-
tions that distribute TCP connections over multiple servers.
These Web switches act as a front-end dispatcher between
the Internet connection and the Web farm. All the client re-
quests will use the dispatcher IP as a destination address, to
make the requests. The switch then forwards the requests
to different Web servers based on various load-balancing
algorithms implemented in the switch. The decision can
be based on the content of the request. Using source IP ad-
dress alone to create affinities between client and server will
not work well since some companies use proxy servers that
change the source IP of the request. Therefore, all the re-
quests from behind the proxy will have the same IP thus the
whole network behind the proxy will be treated as a single
computer.

Load-balancing Web switches support up to millions
of connections simultaneously at high speeds. Moreover,
switches will frequently check the status of the servers
so they can be relatively intelligent about load balancing.
Using a Web switch is much better and more scalable than
using other approaches but they are quite expensive. In
addition, avoiding a single point of failure, may require
the use of multiple switches which makes the solution
uneconomic.

3.2.3 HTTP redirect

HTTP redirect can be used by the targeted server if it can
not accept more connections. [13]. This technique will
slow down the process since the request is sent back to the
client along with another IP to use for the connection. The
client will have to initiate another connection to the new IP
and use the server to which was redirected.

The above mentioned solutions still have major draw-
backs, nevertheless they are in use in today’s best effort
Internet. However, the Internet is evolving into a next gen-
eration QoS enabled global network and new standards and
protocols are now available (e.g MPLS). Therefore, we pro-
pose an alternative, for the next generation MPLS capable
networks.

4 An MPLS Approach

4.1 MPLS & TE

According to the Internet Engineering Task Force(IETF),
traffic engineering is defined as that aspect of Internet net-
work engineering dealing with the issue of performance
evaluation and performance optimization of operational IP
networks [14].
The objectives of traffic engineering in the MPLS environ-
ment are related to two performance functions [15]:

• traffic oriented performance which includes QoS op-
erations.

• resource orientedperformance objectives which deal
with networking resources to contribute to the realiza-
tion of traffic oriented objectives.

The both objectives of traffic engineering are related to
load-balancing for Web servers. As a resource oriented
problem, server over-utilization (congestion) occur if a web
server is overloaded by a high number of requests. If
a cluster is used to compensate the congestion, using an
incorrect load-balancing algorithm will result in servers
under-utilization or unbalanced utilization across the clus-
ter. Then, for a working Web switching architecture, the
traffic oriented issue of supporting QoS operation, has to be
addressed.

MPLS plays an important role in engineering the network
to provide efficient services to its customers.

MPLS is a ”multiprotocol” which uses label switching
technology. Label switching paradigm consists in using
a short, fixed-length label to perform switching decisions.
Unlike longest prefix matchlookup algorithms used by stan-
dard IP routing protocols, label switching is based on an
exact match and therefore is much faster.

The routers supporting MPLS are referred to as Label
Switching Routers (LSRs) (Figure 4). Any other router
or switch connected to a LSR (ATM switch, IP router)
is referred to as non-LSR. An edge router is an LSR
connected to a non-LSR. The router by which a packet
enters the MPLS cloud is called the ingress LSR, and the
one by which it leaves the MPLS cloud is called the egress
LSR. Label Switching Path (LSP) is the route within the
cloud, followed by a packet based on his label.

Labels are small, fixed identifiers inserted by the ingress
LER, removed by the Egress LER and used in forwarding
decisions at each LSR the packet traverses. Packets marked
with the same label belong to the same Forwarding Equiva-
lence Class (FEC) and are routed and treated the same way
in the network.

RFC 2702 specifies the requirements of traffic engineer-
ing over MPLS and describes the basic concepts of MPLS
traffic engineering like traffic trunks, traffic flows and LSPs
[16]. The advantages of MPLS for traffic engineering in-
clude:

MPLS cloud

LER

LER

LSR

LSR

LSP
LER

LER

LER

LER

LSR

MPLS edge node =

MPLS node =

Ingress node

Egress node

LSR - Label Switch Router
LER - Label Edge Router
LSP - Label Switching Path

Label Switching Hop

Figure 4: Elements of an MPLS cloud

• label switches are not limited to conventional IP for-
warding by conventional IP-based routing protocols;

• traffic trunks can be mapped onto label switched paths;

• attributes can be associated with traffic trunks;

• MPLS permits address aggregation and disaggregation
(IP forwarding permits only aggregation);

• constraint-based routing is easy to implement;

• MPLS hardware is less expensive than ATM hardware.

In sections 4.2 and 5, we propose an MPLS based archi-
tecture for Web servers load balancing and we describe our
implementation.

4.2 Designing an MPLS load balancing ar-
chitecture for server clusters.

The Internet is a connectionless network. Nevertheless, the
WWW architecture, uses the HTTP application layer pro-
tocol to deliver information. Moreover, HTTP is based on
TCP layer 4 protocol which is a connection-oriented pro-
tocol. Meanwhile, MPLS is a connection-oriented proto-
col. Therefore, a natural approach to load balance the HTTP
flows is to map them into MPLS LSP’s. The idea is to use
different labels to specify the flows for each server across
the cluster. This subsection depicts the framework for an
MPLS based approach to Web switching.

The first proposal for the use of MPLS for Web routing
was presented in a IBM research report [9]. Since MPLS
provides better mechanisms to support QoS routing than the
legacy IP [16, 17],it can more elegantly support such func-
tions as:

• content-based routing

• client affinity

• different classes of service

• load balancing

The technique proposed in [9] requires that the dis-
patcher will maintain a table of associations between labels
and the associated server weight. The dispatcher will then
send a tuple< {L1,W1}, {L2,W2}...{Ln,Wn} > to a
proxy server situated in front of MPLS ingress nodes using
a dedicated signaling protocol.

In our approach, we want to reduce the load of the dis-
patcher and the need for a dedicated signaling protocol. We
also reduce the complexity of the solution by eliminating
the proxy nodes used by [9] at the client side. Moreover,
we want to preserve the functionality of an MPLS powered
Web switching technique. We also implemented the frame-
work using cost-effective PC based MPLS switches and run
performance tests as we emphasize in section 5

Content-based-routing is a technique used when the
content of the Web site is partitioned across the server clus-
ter. In this case an MPLS Forwarding Equivalence Class
(FEC) is constituted by all the requests for the same server.
Having a FEC for each server along the farm, at the ingress
nodes, packets can then be easily bound to the correspond-
ing FEC. This solution has two major advantages. It will re-
duce the load at the dispatcher since the decisions are taken
at ingress nodes. Moreover, we may eliminate the single
point of failure at the dispatcher since LSP’s can follow dif-
ferent routes toward their destinations within the cloud.

Client affinity may be used in the situation when clients
have preferences for a certain server. The solution also re-
quires establishing virtual connections between clients and
server in a multiple to one fashion (m:1). This is yet another
strong advantage of using a label switching technology and
building FECs based on client’s source IP. The packets can
then be switched to their final destination using MPLS fast
switching hardware.

The ISP may wish to providedifferent classes of service
to clients, based on service level agreements or other admin-
istrative factors. The MPLS approach can provide different
FECs for different classes of service. Packets can be la-
beled corresponding to the type of the class (gold, silver or
bronze). If servers have different processing performances,
the gold-labeled packets can then be switched to the best
performing server. Label stacking also can be used to de-
fine and identify hierarchical classes of service.

The load balancing function performed using MPLS is
the key element of this paper and will be described in more
detail in section 5.

This approach presumes that the ISP providing the Web
service already uses an MPLS enabled network. All the
ISP’s devices are MPLS capable. The clients for the Web
service do not have to implement MPLS since the ingress
of the ISP’s administrative domain will be the ingress of an
autonomous MPLS domain as well. The solution involves
the use of a front-end dispatcher and a Web server farm as
in Figure 5.

The main problem of using MPLS is that we are not able
to access layer 4 or layer 7 (TCP, HTTP) headers at the

LER

LER

LSR
LSR

IP pkt
DISPATCHER

IP pkt

IP pkt La

LbIP pkt

Servers

Clients

MPLS cloud

La LsynIP pkt

La LsynIP pkt

LbIP pkt Lsyn

Figure 5: A framework for MPLS Web switching

dispatcher. This is because MPLS is a fast switching tech-
nology used at a lower level (between layer 2 and layer 3)
and accessing higher level headers can dramatically slow it
down. The access to the TCP or HTTP headers has to be
done at the ingress nodes.

As we previously mentioned, we want to reduce the load
of the dispatcher and the need for a dedicated signaling pro-
tocol. In order to accomplish this, we use dedicated labels
to mark the beginning of a TCP connection. A layer 4 fil-
ter, placed at the ingress nodes, will classify the SYN pack-
ets (used to initiate the TCP session) and label the packets
with a dedicated label (LSY N) marking the beginning of a
new session. The dispatcher will only be responsible for de-
ciding which is the most lightly loaded server, then switch
the incomingLSY N label with the label associated for that
server and forward the packet to the server. The optimal
server can be decided based on the processor load, the num-
ber of active connections, or the traffic generated through its
network interface or even a in round-robin fashion.

Once the packet reaches its destination, the MPLS label
will be removed and the packet will be treated as a standard
HTTP request. The server will generate the usual reply,
label the packet with its personal label (LS1) and send it
back to the dispatcher.

The packets originated from the server will be relabeled
at the dispatcher using an MPLS label stack. Another label
will be pushed on top of the stack and used to switch the
packet along the MPLS cloud, back to the ingress node. The
label added initially by the server (LS1) will remain in the
stack and it will be used later to identify the server.

At the edge router, the top label is removed and the sec-
ond label (LS1) is used to maintain a table of active sessions
for that server. The table is mandatory in order to keep the
TCP sessions alive by forwarding all the subsequent packets
of the session to the same server.

As we already anticipated, for the remaining packets of
the connection we will use the table at the edge routers to
preserve the destination server. In order to do that, the edge
router will use again a two layer stack to label the packets.
First, the label associated with the current connection and

its corresponding server is pushed accordingly to the asso-
ciations in the table. Another label is then pushed on top of
the stack and used by the next hop to forward the packet to
the dispatcher.

Here, the top label is removed, and the second label is
used to switch the packet to its server. The server receives
the packet, removes the label, and then processes the re-
quest. The cycle is completed and the HTTP connections
remains uninterrupted during the TCP session.

The main advantage of this approach is that the edge
routers will associate the requests to servers in a distributed
manner. Consequently, the dispatcher will perform as an
ordinary MPLS switch with an added load-balancing func-
tion. However, all it has to do is to apply the function for
the first packet of each connection. The rest of the packets
will arrive already classified and will be switched to their
destination. Nevertheless, the connection tracking process
is now distributed along the edge routers and not centralized
in a single box.

5 Implementing the technology

5.1 Implementation

We chose Linux as a platform for implementing the MPLS
based Web switching architecture. Linux is a free, open-
source, POSIX compliant, UNIX clone operating system.
Its true preemptive multitasking, multi-user support, mem-
ory protection and symmetric multiprocessing support char-
acteristics together with its networking, graphical user in-
terface, speed and stability make Linux a preferred tool for
research and development. However, even if the platform is
open source, we did not modify the operating system inter-
nals. This is because we want to prove that the architecture
is operable using standard networking tools. Figure 6 de-
picts the software used to implement our technology.

The architecture described in section 4.2 has been
implemented and evaluated on a soft router. Details of the
implementation are presented below.

Operating System (OS)
As we already mentioned, we leveraged the use of UNIX-

like operating systems at the edge of the Internet performing
as routers, soft switches, firewalls or Web servers. We used
the free Linux distribution from RedHat[redhat] as a plat-
form for all our devices. The only add-ons to the standard
distribution were:

• adding MPLS support to the Linux kernel

• adding MPLS support to the Linux standard firewall

Web server
Apache is the standard Web server shipped along with

the OS. We kept the standard configuration of the HTTP
server. The OS running Apache constituted the target for

MPLS cloud

Linux Box

WebServer 1

WebServer 2

DISPATCHER

LER

LER

LER

WebServer n

- IP Client (not MPLS capable)

LER - Edge MPLS capable Linux router

DISPATCHER

WebServer

- Host UML MLPS capable Linux router

- UML Edge MPLS capable Linux server- Linux Firewall

Figure 6: Elements of the MPLS based Web switching im-
plementation

our load balancing scheme.

Mirroring the Web content
User Mode Linux (UML) is a simple and secure way

to run and test multiple Linux kernels on a single PC. We
use it to run multiple identical Linux Web servers using a
single PC-based computer.

MPLS
MPLS for Linux is a open source effort to create a set

of MPLS signaling protocols and an MPLS forwarding
plane for the Linux OS[mpls-linux]. The current version
(mpls-linux 1.128) is not yet a stable version and does
not offer the high performance of hardware based MPLS
switches but allowed us to test and develop MPLS in an
open source environment.

Connection Tracking
Netfilter is a firewall, Network Address Translator (NAT)

and packet mangling tool for Linux, [18] and is a standard
application for RedHat Linux. The only modification to the
standard distribution was the support for MPLS filtering.

The dispatcher
We used the host for the UML Web servers as a dis-

patcher also running MPLS. A script or C program was
used to decide the optimal server based on a round-robin
algorithm or a load balancing function.

The main issues of the implementation where the load-
balancing function at the dispatcher and maintaining the ac-

tive sessions table at the edge routers.

• Load-balancing functionwas implemented at the dis-
patcher side usingC code and/orbashscripts. For a
round-robin algorithm, a script was used to associate
the FEC of the incoming requests to the LSP for the
optimal server. For more complex algorithms,C pro-
grams are used to retrieve information about the load
of each server in the cluster. Using Simple Network
Management Protocol (SNMP) we can gather infor-
mations like CPU usage, bandwidth usage or the num-
ber of active connections and use these parameters to
decide the best server for the incoming requests. If the
traffic is predictable, we can use static algorithms (e.g.
every 10 seconds) to elect the less loaded server. If
fluctuations in the number and type of requests make
the traffic unpredictable, we can use adaptive algo-
rithms to dynamically deviate the traffic to the optimal
server.

• Active sessions tableis maintained at the edge routers
and used to solve theTCP continuity problem. In our
implementation we used the queuing to user-space ca-
pabilities of the Linux firewall [18]. We useC pro-
grams to filter theSY N, ACK responses from the
web server. We then used the label a the bottom of
the MPLS stack to identify the server and maintain the
table of the active TCP sessions.

In our implementation, we benefited from another ad-
vantage of working with a label switching protocol. Using
MPLS we can send different packets destined to a single IP
to different Web servers since the IP is tunneled within the
MPLS. The cluster is seen as a single IP (say IPcluster)
from the client side but the packets can be transparently
distributed across the servers. Another problem occurs at
the server side since the HTTP server has to accept an IP
packet destined to another IP (IPcluster). Moreover, it
will have to reply with the IPcluster instead of its own IP.
The problem has an easy solution under Linux by using the
netfilter’s NAT module to change the destination address
for incoming packets and source address for outgoing
packets.

5.2 Performance Evaluation

The performance was evaluated empirically in a live test.
We use an MPLS unaware machine to generate HTTP re-
quests for the cluster. We use a primitive round-robin load
balancing scheme to verify the protocol used to redirect
HTTP Traffic. A two server Web farm was sufficient to test
our implementation. The client requests a large file (with
a download time greater than 3 seconds) every 3 seconds.
The dispatcher rotates through the server list every 2 sec-
onds. The files were downloaded from the server according
to the scheme depicted in Figure 7:

Figure 7 shows in primitive form the behavior of the re-
quests at the cluster side. For a more complex scheme, we

request
s

time (s)
0

1

1

5

2

2 3

3

4

4

6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

from server 1

from server 2

Figure 7: Distributed requests

considered 3 servers and we generated more concurrent re-
quests.

The main concern was for multimedia and/or file servers
where we deal with long connections and big files being
requested simultaneously. Therefore, for the first perfor-
mance test we considered relatively large files (4.2MB). We
also presumed an average arrival rateλ = 0.4 connec-
tions/second; that is almost 35000 requests per day. We
than ran 3 tests generating respectively 20, 30 and 50 con-
nections. We used a round-robin algorithm to distribute the
requests along the cluster. Table 1 presents server loads
measured in the number of connection processed and the
percentage of the total number of connections. The results
show that servers share the workload in a balanced fashion
varying around the value of 33.33%. The load percentage
never increased over the value of 40% per server.

Server 1 Server 2 Server3
no. % no. % no. %

20 con 7 35% 5 25% 8 40%
30 con 11 36.66% 12 40% 7 23.33%
50 con 16 32% 16 32% 18 36%

Table 1: Round-robin load balancing for large files

The second test suite was intended to study the behaviour
of the load-balanced cluster for a higher number of requests
but for smaller files. We used files with sizes uniformly dis-
tributed over the interval [100KB,1024KB] and we varied
the arrival rateλ from λ = 3 to λ = 12 connections/second,
which means over 1 million hits per day. We initiated re-
spectively 300 requests atλ = 3, 900 connections atλ = 9
and 300 connectionsλ = 12 connections/second. The re-
sults are shown in Table 2 and reveals even better percent-
ages for shorter connection at a high arrival rate than for the
previous test with longer connections..

Both tables proves that our architecture provide good re-
sults even if we used a statical load-balancing algorithm
such as round-robin. This anticipated that superior perfor-
mance will result from the use of adaptive load-balancing
algorithms, and this will be a topic for future study.

request
s

time (s)
0

1

1

5

2

2 3

3

4

4

6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

from server 1

from server 2

Figure 7: Distributed requests

we considered 3 servers and we generated more concurrent
requests.

The main concern was for multimedia and/or file servers
where we deal with long connections and big files been
requested simultaneously. Therefore, for the first perfor-
mance test we considered relative large files (4.2MB). We
also presumed an average arrival rateλ = 0.4 connec-
tions/second; that is almost 35000 requests per day. We
than ran 3 tests generating respectively 20, 30 and 50 con-
nections. We used an round-robin algorithm to distribute
the requests along the cluster. Table 1 presents server loads
measured in the number of connection processed and the
percentage of the total number of connections. The results
show that servers share the workload in a balanced fashion
varying around the value of 33.33The load percentage never
increased over the value of 40

Server 1 Server 2 Server3
no. % no. % no. %

20 con 7 35% 5 25% 8 40%
30 con 11 36.66% 12 40% 7 23.33%
50 con 16 32% 16 32% 18 36%

Table 1: Round-robin load balancing for large files

The second test suite was intended to study the comport-
ment of the load-balanced cluster for a higher number of
requests but for smaller files. We used files with sizes uni-
formly distributed over the interval [100KB,1024KB] and
we varied the arrival rateλ from λ = 3 to λ = 12 con-
nections/second, which means over 1 million hits per day.
We initiated respectively 300 requests atλ = 3, 900 con-
nections atλ = 9 and 300 connectionsλ = 12 connec-
tions/second. The results are shown in Table 2 and reveals
even better percentages for shorter connection at a high ar-
rival rate than for the previous test with longer connections..

Both tables proves that our architecture provide good re-
sults even if we used a statical load-balancing algorithm
such as round-robin. Performance analysis for alternative
and more adaptive algorithms are beyond the scope of this
paper an may constitute the main issue for the future work.

Server 1 Server 2 Server3
no. % no. % no. %

300 con 102 34% 99 33% 99 33%
λ = 3

900 con 295 32.77% 303 33.66% 302 33.55%
λ = 9

300 con 94 31.33% 96 32% 110 36.66%
λ = 12

Table 2: Round-robin load balancing for small files

6 Conclusions and future work

In this paper we described one of the problems faced by to-
day’s Web service providers. The traffic through the Web
sites increases along with the number of clients and the
number of services offered. Then we presented alterna-
tive solutions, already on the market, that use Web clusters
to distribute the traffic across multiple servers, so keeping
the e-business running and profitable.We also proposed and
implemented a novel technique for Web switching, using a
next generation switching protocol, MPLS.

Our proposal is a working, cost-effective architecture, for
small institutions or corporations, in an open source en-
vironment. The performance tests showed that the MPLS
based solution performs well even for highly solicited web
sites (12 connections per seconds means over 1 million hits
per day). Moreover, porting the technique to a hardware im-
plementation may improve the performance and reliability
of the proposed next generation Web switching technique.

The implemented architecture constitutes a framework
for performance analysis and performance improvements
and are considered main issues in the current and future
work.

References

[1] Yahoo. Investor relations.
URL: http://www.yahoo.com/info/investor.

[2] Caching Proxies: Limitations and Potentials, 1995. In
Proceedings of 1995 World Wide Web Conference.

[3] Jean-Chrysostome Bolot and Philipp Hoschka. Perfor-
mance engineering of the World Wide Web: Applica-
tion to dimensioning and cache design.Computer Net-
works and ISDN Systems, 28(7–11):1397–1405, 1996.

[4] G. Abdulla. Www proxy traffic characterization with
application to caching, 1998.

[5] Mirrors of www.gnu.org. URL:
http://www.gnu.org/server/list-mirrors.html.

[6] Eric Dean Katz, Michelle Butler, and Robert Mc-
Grath. A scalable HTTP server: The NCSA prototype.
Computer Networks and ISDN Systems, 27(2):155–
164, 1994.

Table 2: Round-robin load balancing for small files

6 Conclusions and future work

In this paper we described one of the problems faced by to-
day’s Web service providers. The traffic through the Web
sites increases along with the number of clients and the
number of services offered. Existing solutions, that use
Web clusters to distribute the traffic across multiple servers,
do not, in general, exploit the QoS capabilities of the un-
derlaying network. We proposed and implemented a novel
technique for Web switching, tailored to a next generation
switching protocol, MPLS.

Our proposal is a working, cost-effective architecture, for
small institutions or corporations, in an open source (Linux)
environment. The performance tests showed that the MPLS
based solution performs well even for highly loaded web
sites (12 connections per seconds means over 1 million hits
per day). Moreover, porting the technique to a hardware im-
plementation may improve the performance and reliability
of the proposed next generation Web switching technique.

The performance results where obtained empirically on
a network using a simple round-robin load-balancing algo-
rithm. Future work will explore adaptive load-balance al-
gorithms, and the development of a queuing model of such
a web server system. This will allow the most economic
hardware to be deployed to meet the growing demand for
diverse web services.

References

[1] Yahoo. Investor relations.
URL: http://www.yahoo.com/info/investor.

[2] Caching Proxies: Limitations and Potentials, 1995. In
Proceedings of 1995 World Wide Web Conference.

[3] Jean-Chrysostome Bolot and Philipp Hoschka. Perfor-
mance engineering of the World Wide Web: Applica-
tion to dimensioning and cache design.Computer Net-
works and ISDN Systems, 28(7–11):1397–1405, 1996.

[4] G. Abdulla. Www proxy traffic characterization with
application to caching, 1998.

[5] Mirrors of www.gnu.org. URL:
http://www.gnu.org/server/list-mirrors.html.

[6] Eric Dean Katz, Michelle Butler, and Robert Mc-
Grath. A scalable HTTP server: The NCSA prototype.
Computer Networks and ISDN Systems, 27(2):155–
164, 1994.

[7] httpd.conf: Standard apache configuration file for
linux http server.
URL: http://www.apache.com.

[8] Apache Web Server. Apache web site.
URL: http://www.apache.com.

[9] A. Acharya, A. Shaikh, R. Tewari, and D. Verma.
Scalable web request routing with mpls. Technical
Report RC 22275, IBM Research Report, December
2001.

[10] Thomas T. Kwan, Robert McCrath, and Daniel A.
Reed. NCSA’s world wide web server: Design and
performance.IEEE Computer, 28(11):68–74, 1995.

[11] CISCO. Load balancing. a multifaceted solution for
improving server availability.
URL: http://www.cisco.com/warp/public/cc/pd/cxsr/
400/tech/lobalwp.htm.

[12] Nortel Networks. Alteon web switching portfolio.
URL: http://www.nortelnetworks.com/products/01/
alteon/acedir/index.html.

[13] Daniel Andresen, Tao Yang, Vegard Holmedahl, and
Oscar H. Ibarra. SWEB: Towards a scalable world
wide web server on multicomputers. Technical Report
TRCS95-17, 2, 1995.

[14] Daniel O. Awduche, Angela Chiu, Anwar Elwalid, In-
dra Widjaja, and XiPeng Xiao. Overview and princi-
ples of internet traffic engineering. work in progress.

[15] Uyless Black.MPLS and Label Switching Networks.
Prentice Hall, 2001.

[16] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and
J. McManus. Requirements for traffic engineering
over mpls. Technical Report RFC2702, IETF, Septem-
ber 1999.

[17] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick.
A framework for qos-based routing in internet. Tech-
nical Report RFC2386, IETF, August 1998.

[18] Netfilter: firewalling, nat and packet mangling for lu-
nix 4.2. URL: http://netfilter.samba.org/.

[19] Azer Bestavros, Mark Crovella, Jun Liu, and David
Martin. Distributed packet rewriting and its applica-
tion to scalable server architectures. Technical Report
1998-003, 1, 1998.

	Introduction
	Background
	Web content caching
	Mirroring
	Cluster of servers (server farms)
	Replicated content servers
	Distributed content

	Related problems and solutions
	Problems
	Overloading a Web server
	The TCP continuity problem

	Approaches
	Round-robin Domain Name Service
	Load balancing switches
	HTTP redirect

	An MPLS Approach
	MPLS & TE
	Designing an MPLS load balancing architecture for server clusters.

	Implementing the technology
	Implementation
	Performance Evaluation

	Conclusions and future work

