
SUBMITTED TO JLT 2002 1

A Systematic Analysis of Equivalence in
Multi-Stage Networks

Martin Collier

Keywords— networks, multistage interconnection net-
works, optical interconnections.

Abstract— Many approaches to switching in opto-
electronic and optical networks decompose the switching
function across multiple stages or hops. This paper ad-
dresses the problem of determining whether two multi-stage
or multi-hop networks are functionally equivalent. Various
ad-hoc methods have been used in the past to establish such
equivalences. A systematic method for determining equiv-
alence is presented based on properties of the link permu-
tations used to interconnect stages of the network. This
method is of use in laying out multistage networks, in deter-
mining optimal channel assignments for multi-hop networks,
and in establishing the routing required in such networks. A
purely graphical variant of the method, requiring no math-
ematics or calculations, is also described.

I. Introduction

THE growth in demand for communications switch-
ing capability is set to exceed the capacity of all-

electronic switching systems. Switch designers have re-
sponded by incorporating opto-electronic and optical el-
ements in switches and routers (e.g., [1], [2]). The use of
optical elements offers potentially larger bandwidth and
reduced crosstalk compared to purely electronic systems.
The different capabilities of optical systems, such as bend
radius constraints in waveguides, space variance consid-
erations in free-space optics, and the absence of low-cost
optical memory, mean that novel switch architectures are
required to implement optical and opto-electronic packet
switching [3].
Many designs for optical and opto-electronic switch-

ing distribute the switching function across multiple small
switching elements, whose interconnection pattern dictates
the overall switch properties. Examples include Shufflenet
[4] and GEMNET [5]. These are implemented either as
multi-stage networks (where there is a one-to-one corre-
spondence between links in the logical switch architecture
and links in the physically realised network) or as multi-hop
networks (where links in the logical architecture correspond
to WDM channels in the implementation, and where phys-
ical interconnection is typically achieved using a passive
optical star).
Many such designs are based on architectures originally

proposed for electronic switching such as the omega net-
work [6] and the butterfly network. This paper addresses
the question of when two such networks can be said to
be functionally equivalent. Two networks are regarded as

M. Collier is with the Research Institute for Networks and Com-
munications Engineering (RINCE), Dublin City University, Dublin 9,
Ireland. E-mail: martin.collier@rince.ie. This paper is scheduled to
appear in September 2002

functionally equivalent in this paper if they cannot be dis-
tinguished on the basis of the response at the output ports
to any pattern of inputs. This topic is important for a
number of reasons.
• It is of theoretical importance, since if a class of networks
can be shown to be functionally equivalent, theoretical re-
sults obtained for one member of the class may be applied
to all members of the class.
• It is of practical importance in the construction of such
networks, since it is rarely possible to lay out such networks
exactly in accordance with their formal description.
• It provides insight into the properties of such networks.

This problem has been addressed many times in the past,
using a variety of ad-hoc methods (e.g., [7], [8], [9], [10],
[11]). However, the interconnections between stages in op-
tical multi-stage switches pose unique problems, such as
optical crosstalk in systems based on directional couplers
[12], and image rotation in systems featuring polymer fibre-
image guides [2]. These issues can lead switch designers to
seek alternative interconnection patterns, which result in
unchanged functionality of the switch, but which avoid the
problems associated with implementing classical intercon-
nection patterns optically.
Hence a demand exists for a systematic procedure for in-

vestigating functional equivalences in multi-stage networks.
Such a procedure is presented here, which may readily be
implemented as a computer program, and which applies to
a wide class of multi-stage networks. The extended proce-
dure to be applied in the case where a network does not
belong to this class will be presented in another paper.

II. Notation and Approach

A prerequisite for the comparison of two multi-stage net-
works is a common method of description. The approach
here uses the notation of Chapter Two of [13] with some
refinements required for the problem in hand. We consider
regular networks comprising n stages of k × k switch ele-
ments, and which thus have kn inputs and outputs. For
the remainder of the paper, it shall be assumed that k = 2.
This is in the interests of notational simplicity — the ex-
tension of the method described here to other values of k
is straightforward.
An obvious tool to use in investigating the properties of

multi-stage networks is graph theory, since the links and
nodes of the switch map readily into the edges and vertices
of the graph. However, whilst graph theory allows us to ex-
plore the connectivity of a network, it tells us little about
routing in the network (and thus blocking), unless the ver-
tices are labelled. A distinction may be made between three
levels of equivalence: topological equivalence, isomorphism

SUBMITTED TO JLT 2002 2

and functional equivalence ([13], section 2.1.1). Two net-
works are functionally equivalent if they support the same
permutations, i.e., if they have the same blocking proper-
ties. They are isomorphic if a re-ordering of the switch
elements, inputs and outputs of one network gives rise to
the second. They are topologically equivalent if they have
the same graph.
For example, consider the simple networks shown in Fig.

1. The two networks shown have the same graph (shown in
Fig. 1(c))and so by definition are topologically equivalent,
but the routing algorithm in each is different.1

Labelling the vertices circumvents this difficulty, allow-
ing the two networks to be distinguished. The same result
will be achieved in this paper by introducing the concepts
of link addresses and link permutations. Note that 2n links
enter and leave each stage of the switch. The link address
is simply the number of the link on which a packet leaves
the stage, with address 000. . . 0 being the address of the
lowest link.

(a) (b)

(c)

Fig. 1. (a) A simple network. (b) Another network. (c) the corre-
sponding graph.

The link address can thus be represented by a binary
number of the form bn−1bn−2 . . . b0. When a packet exits
a stage of the switch, the interconnection pattern between
it and the downstream stage causes the packet to enter
the downstream stage with a (typically) new link address.
This change of address is regarded as the result of a link
permutation which may be defined as a transformation of
the form LP : x→ y where x, y ∈ {0, . . . , 2n−1} and where
LP (x1) = LP (x2)⇔ x1 = x2.
Consider the 2n × 2n network shown in Fig. 2. It is

completely defined by the set of n + 1 link permutations
{LPn, LPn−1, . . . , LP0}. In this paper, attention shall be
restricted to a class of link permutations called bit-shuffling

1The routing algorithm is the same in both cases if output ports
are defined in terms of the downstream switch elements to which they
are connected. However, high-speed routing requires that the routing
decision in a 2× 2 switch should reduce to “exit via the upper port”
or “exit via the lower port”, the outcome of which decision is different
for the switch element in the southwest corner of Fig. 1(a) and Fig.
1(b) respectively.

LPn LPn-1 LPn-2 LP1LPn-3 LP0

stage n-1 stage n-2 stage n-3 stage 0

Fig. 2. A generic multi-stage network using 2 × 2 switch elements.
The dashed boxes are replaced by link permutations to construct
a specific network. Stages are numbered from right to left - this
simplifies the description of the routing for some common multistage
networks. Ports are numbered from the bottom up so that the term
“upper port” is unambiguous.

permutations. A link permutation LP is a bit-shuffling per-
mutation if LP (bn−1bn−2 . . . b0) = bsn−1bsn−2 . . . bs0 where
sj ∈ {0, . . . , n − 1} and sj = sk ⇔ j = k (the value of
sj indicates the source of the bit in position j at the link
permutation output). The link permutations used in the
majority of multistage networks using 2 × 2 switching el-
ements belong to this family of link permutations. Some
examples are presented below.
The perfect shuffle [14] of scope 2k, denoted σk−1, is a

bit-shuffling permutation where:

sj =

k − 1 if j = 0;
j − 1 if 0 < j < k;
j if j ≥ k.

The inverse perfect shuffle of scope 2k, denoted σ̄k−1, is
a bit-shuffling permutation where:

sj =

j + 1 if 0 ≤ j < k − 1;
0 if j = k − 1;
j if j ≥ k.

The butterfly permutation of scope 2k, denoted βk−1, is
a bit-shuffling permutation where:

sj =

k − 1 if j = 0;
0 if j = k − 1;
j if 0 < j < k − 1, j ≥ k.

The bit-reversal permutation of scope 2k, denoted ρk−1, is
a bit-shuffling permutation where:

sj =
{

k − 1− j if 0 ≤ j < k;
j if j ≥ k.

The straight-through or identity permutation, denoted I
is a bit-shuffling permutation where:

sj = j ∀j.

SUBMITTED TO JLT 2002 3

One of the key benefits of the link permutation notation
above is that it can be used to investigate what happens if
one link permutation is immediately followed by another.
This can be described mathematically using a product no-
tation, essentially the same as that used for matrix mul-
tiplication. For example, suppose that a link permutation
LPa is immediately followed by a link permutation LPb.
A signal entering the first link permutation on link x will
emerge on link LPa(x), and enter the second link permu-
tation on that link, emerging at link LPb(LPa(x)). The
concatenation of these two link permutations is equivalent
to a single link permutation LPc defined by:

LPc(x) = LPb(LPa(x))

written in reverse order as

LPc(x) = xLPaLPb

so as to correspond to the order of link permutations in
diagrams.
Hence LPc may be described as the product

LPc = LPaLPb.

A link permutation LPa is said to be the inverse trans-
formation of a link permutation LPb if, and only if:

LPaLPb = I.

Then LPa may be written as:

LPa = (LPb).−1

Some properties of concatenated link permutations used
later in the paper are given in the Appendix. The frame-
work of notation above can now be used to compactly de-
fine many well-known multi-stage networks.
The baseline network [7] is defined by:

LPk =
{

I if k = 0, k = n;
σ̄k if 0 < k < n. (1)

A 16× 16 baseline network is shown in Fig. 3 (the signifi-
cance of the paths through the switch indicated by dashed
lines will be explained later).
The omega network [6] is defined by:

LPk =
{

I if k = 0;
σn−1 if 0 < k ≤ n. (2)

A 16× 16 omega network is shown in Fig. 4.
The butterfly network2 or n-cube network [15] is defined

by:

LPk =

I if k = 0;
βk if 0 < k < n;
σn−1 if k = n.

(3)

A 16× 16 butterfly network is shown in Fig. 5.

2Many authors define the butterfly as the corresponding reverse
network

Fig. 3. A 16× 16 baseline network.

Fig. 4. A 16× 16 omega network.

The reverse network (network B) of network A may
be obtained by setting LPB

k = (LPA
n−k)

−1for 0 ≤ k ≤ n.
Hence the reverse butterfly network is defined by:

LPk =

σ̄n−1 if k = 0;
βn−k if 0 < k < n;
I if k = n.

(4)

The reverse baseline network is defined by:

LPk =
{

I if k = 0, k = n;
σn−k if 0 < k < n; (5)

The segmented two-shuffle network is a rather more com-
plex network, proposed by Cloonan et al. [11] for use with

SUBMITTED TO JLT 2002 4

Fig. 5. A 16× 16 butterfly network.

Fig. 6. A segmented two-shuffle network with 16 inputs and two
columns.

free-space optical interconnects. This is an example of a
3-D network, where each switch element is defined by its
position in a row and column within each stage. Hence the
link address is defined by a triple (R,C, b0) identifying the
row and column occupied by the switch element, and to
which of its input or output ports the link is connected.
The number of columns (called the segment size in [11]) is
H = 2h. Hence the number of rows is 2n−1−h for a 2n×2n

switch. The switch illustrated in Figs. 5(b) and 7(c) of [11]
features the parameters n = 5 and h = 2. Fig. 6 shows
such a switch with parameters n = 4 and h = 1.

The switch uses the perfect shuffle as a link permutation
in every stage. However, for h stages of the switch, the
perfect shuffle is performed horizontally (across columns)
and in the other stages it is performed vertically (across
rows). Formally the switch (network A) may be defined by

the following link permutations:

LPA
k =

I if k = 0, k = n;
σn−h−1 applied to (R, b0) if 0 < k < n− h;
σh applied to (C, b0) if n− h ≤ k < n.

Writing the link address (R,C, b0) as a uni-dimensional
n-bit address R.2h+1 +C.2 + b0, this may be rewritten as:

LPA
k =

I if k = 0, k = n;
σn−1σ̄h+1βh+1 if 0 < k < n− h;
σh if n− h ≤ k < n.

(6)

III. Functional Equivalence

A. The Tramline Transformation

The approach taken to establishing functional equiva-
lence of two networks A and B takes as a starting point
that used by Wu and Feng in their classic papers [7],[8] on
this topic. They used the concept of a logical numbering
of switch elements in a stage to establish this equivalence
— if the logical numbers describing a switch element and
the two downstream elements to which it is connected in
network A correspond to the physical numbers of switch
elements in network B, then the two networks are isomor-
phic.
Here, the switch elements in network A are physically

moved to effect the reordering. If, after this operation, the
link permutations between stages are identical to those in
network B, isomorphism has been established.
When a switch element is moved to a new position with

respect to its neighbours in a switching stage, the change
in the switch layout which results may be described using
the concept of the tramline transformation.
A tramline transformation of 2n links is a link permuta-

tion TT : x→ y where y is even for x even and:

TT (2x) = 2y ⇔
TT (2x + 1) = TT (2y + 1), for 0 ≤ x < 2n−1.

If a switching stage is preceded by a tramline transfor-
mation and followed by the inverse of that transforma-
tion, then the ordering of switch elements in that stage is
changed, but the connectivity to the rest of the network is
unaffected. This is illustrated in Fig. 7.

B. Verifying equivalence

This suggests a scheme for verifying the equivalence of
two networks A and B. Each stage k of network A is
preceded by a link permutation TAB

k and followed by the
inverse permutation (TAB

k)−1. Hence, signals exiting from
stage k of the modified network A traverse (TAB

k)−1, then
LPk and finally TAB

k−1 before entering stage k − 1. This
is illustrated in Fig. 8. If a set {TAB

k } can be found for
which each link permutation in the set (for 0 ≤ k < n) is a
tramline transformation, and for which

LPB
k = (TAB

k)
−1

LPA
k TAB

k−1 for 0 < k < n. (7)

then networks A and B are isomorphic.

SUBMITTED TO JLT 2002 5

TT TT -1

Fig. 7. An example of a tramline transformation.

Tn-1
AB

LPA
n-1 LPA

0

stage n-1 stage n-2 stage 0

LPA
n

(Tn-1
AB)-1 Tn-2

AB T0
AB(Tn-2

AB)-1 (T0
AB)-1

Fig. 8. A network (A) with the switch elements repositioned us-
ing tramline transformations so as to replicate the layout of another
network (B).

It can easily be shown, by manipulating the above iden-
tity using the rules of matrix multiplication, that these
transformations satisfy the recurrence relation:

TAB
k = LPA

k TAB
k−1 (LPB

k)−1 for 0 < k < n. (8)

It may be shown by induction that:

TAB
k = DPA

k TAB
0 (DPB

k)−1 for 0 < k < n, (9)

where DPk is called the downstream permutation3 for stage
k and is defined as:

DPk = LPkLPk−1 . . . LP1 for 0 < k < n. (10)

DPA
k and DPB

k may be determined from a knowledge of
the link permutations in networks A and B, and since, by
assumption, these are all bit-shuffling permutations, so too
are the respective downstream permutations.
Defining lsbA(k) as the bit position to which bit zero

is shuffled by DPA
k (with a corresponding definition for

3so-called because it is the permutation which results between stage
k and the switch outputs if all switch elements downstream of stage
k are configured in the “straight-through” position.

network B), it follows that TAB
k performs the following

operation on bit zero of its input if it is a tramline trans-
formation:

b0
DP A

k−→ blsbA(k)
T AB

0−→ blsbB(k)

(DP B
k)−1

−→ b0, for 0 < k < n

Hence, and observing that TAB
0 must also be a tramline

transformation, it must satisfy the following properties:

TAB
0 (bn−1bn−2 . . . b0) = bsn−1bsn−2 . . . bs0 ,

where:

s0 = 0;
slsbB(k) = lsbA(k) for 0 < k < n.

(11)

This transformation must be bijective if TAB
0 is to be a

link permutation. If this property is satisfied, it may be
concluded that the two networks are isomorphic. It will
be shown presently that, for a network of the form of
Fig. 2, where all the link permutations are bit-shuffling
permutations, a necessary and sufficient condition for all
network outputs to be reachable from the inputs is that
the set {lsb(k)}, 0 < k < n, be a permutation of the set
{1, 2, . . . , n− 1}.

C. The downstream permutation

A physical interpretation of the downstream permuta-
tion and the function lsb(k) may now be given. It indi-
cates the link address at the output of stage 0 at which
packets will appear, denoted d′n−1d

′
n−2 . . . d′0 . To see this,

consider a packet entering the network with a routing tag
rn−1rn−2 . . . r0. It first enters stage n − 1, where it is
switched on the basis of bit rn−1, is routed in stage n − 2
on the basis of bit rn−2, and so forth. How is its destina-
tion determined by the routing tag? Consider the possible
destinations of the packet after leaving a switch element in
stage n− 1 (the input stage). Suppose that the switch ele-
ments downstream from stage n−1 are all configured in the
straight-through position, so that the switch may be con-
sidered to perform the DPk permutation on the packet’s
link address between the output side of stage n − 1 and
the output side of stage 0. The least significant bit of the
link address at the output side of stage n − 1 is dictated
by rn−1, the switching decision at stage n − 1. The least
significant bit of the link address becomes bit lsb(n− 1) of
the link address d′n−1d

′
n−2 . . . d′0 at the output of stage 0,

by definition of the lsb() function. In summary,

d′lsb(n−1) = rn−1 (12)

for certain settings of the downstream switch elements.
A similar argument may be used to show that after the

packet passes through the next stage of the switch (stage
n− 2), the switching decision there, for certain settings of
the downstream switch elements, is such that

d′lsb(n−2) = rn−2.

SUBMITTED TO JLT 2002 6

However, if lsb(n − 1) �= lsb(n − 2), it follows that the
value of d′lsb(n−1) is independent of rn−2. Thus, (12) holds
regardless of the setting of the switch elements in stage
n− 2. Applying this argument iteratively to the down-
stream stages, it may be concluded that (12) holds for all
settings of the downstream switch elements, if there is no
stage k for which lsb(k) = lsb(n − 1). Applying the same
logic to the other switch stages, it follows that a packet
can be routed to any link address d′n−1d

′
n−2 . . . d′0 at the

output of stage 0 by setting :

r0 ← d′0,

and
rj ← d′lsb(j), for 0 < j < n,

provided that

lsb(j) = lsb(k)⇔ j = k for 0 < j < n, 0 < k < n

and
lsb(j) �= 0 for 0 < j < n,

or, equivalently, provided that the set

{lsb(1), lsb(2), . . . , lsb(n− 1)}
is a permutation of the set {1, 2, . . . , n− 1}. Since stage 0
is followed by the link permutation LP0, the actual desti-
nation of the packet is:

dn−1dn−2 . . . d0 = LP0(d′n−1d
′
n−2 . . . d′0).

Hence, the routing strategy for the switch may readily be
determined from a knowledge of LP0 and the set {lsb(k)}.
D. Exact equivalence and blocking

Note that, from Fig. 8, in order for the numbering of
input and output ports to be identical in networks A and
B, it is required that:

LPA
n TAB

n−1 = LPB
n

and
(TAB

0)−1LPA
0 = LPB

0 .

If this is the case for two isomorphic networks, they are
said to be exactly equivalent. Exact equivalence implies
functional equivalence, although it is a stronger property.
If network A is not exactly equivalent to network B it may
be preceded by a link permutation

TAB
in = LPB

n (TAB
n−1)

−1(LPA
n)−1 (13)

and followed by a link permutation

TAB
out = (LPA

0)−1TAB
0 LPB

0 (14)

to obtain a network exactly equivalent to B. These link
permutations are not required to be tramline transforma-
tions.
If two networks are functionally equivalent, not only are

the routing algorithms for the two networks the same, but

the stages in the switch at which internal contention will
occur between two packets will be identical. There are few
contexts in which functional equivalence between two net-
works is required 4. Thus, it is rarely necessary to introduce
the link permutation TAB

in . TAB
out may also be dispensed

with, if the routing algorithm of network A is chosen to
emulate the routing in network B.
The permutation TAB

out may be used to determine the
routing algorithm required in network A, if the routing
algorithm for network B is known, and both networks are
isomorphic. For example, suppose that it is known that the
appropriate routing tag for network B is rn−1rn−2 . . . r0 =
dn−1dn−2 . . . d0, i.e., that the switching decision required
at stage j is rj = dj . It follows from the concept of exact
equivalence that, if network A is followed by a link permu-
tation TAB

out , it will also route packets to the output port
with address rn−1rn−2 . . . r0. If TAB

out is omitted, data will
be routed to the destination:

dn−1dn−2 . . . d0 = (TAB
out)

−1(rn−1rn−2 . . . r0).

It follows that the required pattern of bits in the routing
tag for network A is given by:

rn−1rn−2 . . . r0 = TAB
out (dn−1dn−2 . . . d0). (15)

E. Multi-hop networks

The discussion up to this point applies to multi-stage
rather than multi-hop networks. Logically multi-hop ar-
chitectures derived from multi-stage networks may be dis-
tinguished fr om the latter by three properties:
1. Each switch element acts as a source and sink of packets.
2. The outputs of the switch are looped back to the inputs.
Thus the numbering of stages is arbitrary.
3. The destination of a packet is defined by the stage num-
ber and switch element address, not by the link address.
Clearly, two multi-hop networks A and B can be shown

to be isomorphic by breaking the loop between stages 0
and n− 1 and establishing the equivalence of the resulting
multi-stage networks. The routing strategy which routes
a packet to switch element i in stage k of network B will
route a packet to switch element (TAB

k)′(i) in network A,
where T ′

k(x) = Tk(2x)/2.

IV. Some examples

A. Downstream permutations for some popular networks

A.1 The butterfly network

The downstream permutation for this network is, from
(3) and (10), DPk = βkβk−1 . . . β1. We know from Iden-
tity 1 in the Appendix that DPk = σ̄k. This moves bit
zero to bit k. Hence lsb(k) = k. Recall that bit lsb(k)
of a packet’s link address at the outputs of stage zero
is determined by the switching decision at stage k (for
0 < k < n). Since LP0 = I for the butterfly network, it

4A notable exception is when data is sorted by destination address
prior to being submitted to a multi-stage network. The resulting
switch is strictly nonblocking only if the multi-stage network is func-
tionally equivalent to the butterfly network.

SUBMITTED TO JLT 2002 7

follows that the routing strategy is to switch the packet at
stage k based on bit k of the destination address. Hence
rn−1rn−2 . . . r0 = dn−1dn−2 . . . d0.

A.2 The Omega network

Here, using (10) and (2), DPk = (σn−1)k. Hence
lsb(k) = k and the routing strategy required is identical
to that of the butterfly network.

A.3 The baseline network

Here, DPk = σ̄kσ̄k−1 . . . σ̄1 = ρk (using Identity 2).
Hence lsb(k) = k, implying the same routing strategy as
the two earlier networks.

A.4 The reverse butterfly network

From (4), DPk = βn−kβn−k+1 . . . βn−1. It follows from
Identity 3 that DPk = σ̄n−k−1σn−1. The permutation
σ̄n−k−1 moves bit zero to the position of bit n − k − 1.
The permutation σn−1 moves the bit in position n− k − 1
to bit position n− k. Thus, lsb(k) = n− k for 0 < k < n.
It follows that packets appear at link address r0r1 . . . rn−1

at the output of stage 0, where rk is the switching deci-
sion made at stage k. They are then re-ordered by LP0,
appearing at the switch output rn−1r0r1 . . . rn−2.

A.5 The reverse baseline network

From (5), DPk = σn−kσn−k+1 . . . σn−1. It follows from
Identity 4 that DPk = ρn−k−1ρn−1. Hence lsb(k) = k.
Thus the routing is the same as in the butterfly network.

B. Equivalence of the butterfly network and the Omega net-
work

The simplicity of the method described here shall be
demonstrated by verifying a well-known result. The equiv-
alence of these two networks was established by Wu and
Feng in [7]5. Network A is the butterfly network. We have
found above that DPA

k = σ̄k and lsbA(k) = k. Network
B is the Omega network, for which DPk = (σn−1)k and
lsbB(k) = k. It follows immediately that TAB

0 = I and
thus that both networks are isomorphic. Let us now calcu-
late the tramline transformations.

TAB
k = DPA

k TAB
0 (DPB

k)−1 (for 0 < k < n)
= σ̄k I ((σn−1)k)−1

= σ̄k(σ̄n−1)k.

In particular,

TAB
n−1 = σ̄n−1(σ̄n−1)n−1 = I.

Hence
TAB

in = LPB
n (TAB

n−1)
−1(LPA

n)−1

= σn−1(σn−1)−1 = I;

TAB
out = (LPA

0)−1TAB
0 LPB

0 = I.

5They considered the modified data manipulator rather than the
butterfly network - these networks differ only in LPn.

Fig. 9. Equivalence of butterfly and Omega networks.

Thus the two networks are exactly equivalent. The tram-
line transformations required for the 16× 16 case are pre-
sented below and are illustrated in Fig. 9.

TAB
0 : b3b2b1b0 → b3b2b1b0;

TAB
1 : b3b2b1b0 → b1b3b2b0;

TAB
2 : b3b2b1b0 → b2b1b3b0;

TAB
3 : b3b2b1b0 → b3b2b1b0.

In general, it may easily be shown that

TAB
k : bn−1bn−2 . . . b0 → bkbk−1 . . . b1bn−1bn−2 . . . bk+1b0.

(16)
A computer program implementing the above formula

can readily calculate the transformations for arbitrarily
large switches.

C. Equivalence of the baseline network and the butterfly
network

Network A is the baseline network. Here DPA
k = ρk

and lsbA(k) = k. Network B is the butterfly network so
lsbB(k) = k. Again it follows immediately that TAB

0 = I
and thus that both networks are isomorphic. Also:

TAB
k = DPA

k TAB
0 (DPB

k)−1 (for 0 < k < n)
= ρkσk.

In particular,

TAB
n−1 = ρn−1σn−1 = δn−1,

where δn−1 is the bit switch permutation defined in [8].
Hence

TAB
in = LPB

n (TAB
n−1)

−1(LPA
n)−1

= σn−1σ
−1
n−1ρn−1 I = ρn−1;

TAB
out = (LPA

0)−1TAB
0 LPB

0 = I.

Thus the two networks are isomorphic but not exactly
equivalent. The tramline transformations required for the
32× 32 case are presented below.

TAB
0 : b4b3b2b1b0 → b4b3b2b1b0;

TAB
1 : b4b3b2b1b0 → b4b3b2b1b0;

TAB
2 : b4b3b2b1b0 → b4b3b1b2b0;

SUBMITTED TO JLT 2002 8

TAB
3 : b4b3b2b1b0 → b4b1b2b3b0;

TAB
4 : b4b3b2b1b0 → b1b2b3b4b0.

In general,

TAB
k : bn−1bn−2 . . . b0 → bn−1bn−2 . . . bk+1b1b2 . . . bkb0.

(17)

D. Equivalence of the baseline network and its reverse net-
work

Network A is the baseline network so lsbA(k) = k. Net-
work B is the reverse baseline network so lsbB(k) = k.
Again it follows immediately that TAB

0 = I and thus that
both networks are isomorphic. Also:

TAB
k = DPA

k TAB
0 (DPB

k)−1 (for 0 < k < n)
= ρk(ρn−k−1ρn−1)−1

= ρkρn−1ρn−k−1.

In particular,

TAB
n−1 = ρn−1ρn−1ρ0 = I.

Hence
TAB

in = LPB
n (TAB

n−1)
−1(LPA

n)−1 = I;

TAB
out = (LPA

0)−1TAB
0 LPB

0 = I.

Thus the baseline network and its reverse network are
exactly equivalent. The tramline transformations required
for the 16× 16 case are presented below.

TAB
0 : b3b2b1b0 → b3b2b1b0;

TAB
1 : b3b2b1b0 → b1b3b2b0;

TAB
2 : b3b2b1b0 → b2b1b3b0;

TAB
3 : b3b2b1b0 → b3b2b1b0.

It may be shown that

TAB
k : bn−1bn−2 . . . b0 → bkbk−1 . . . b1bn−1bn−2 . . . bk+1b0.

Note that these are the same transformations required to
convert the butterfly network to the Omega network.

E. Equivalence of the segmented two-shuffle network and
the butterfly network

Attention is now given to a rather more complex prob-
lem, which is to establish that the segmented two-shuffle
network is isomorphic to the butterfly network. From (6),

DPA
k =

{
(σn−1σ̄h+1βh+1)k if 0 < k < n− h;
(σh)k−n+h+1DPA

n−h−1 if n− h ≤ k < n.

Working out the bit-shuffles performed by these down-
stream permutations is straightforward, if tedious. It may
be shown that

DPA
k (bn−1bn−2 . . . b0) = bsk

n−1
bsk

n−2
. . . bsk

0

where, for 0 < k < n− h:

sk
j =

n− k if j = 0;
j if 0 < j ≤ h;
n− h + j − k if h < j < h + k;
0 if j = h + k;
j − k if h + k < j < n,

and for n− h ≤ k < n:

sk
j =

h + 1 if j = 0;
j − k + n if 0 < j < δk;
j − δk if δk ≤ j ≤ h;
j + 1 if h < j < n− 1;
n− k if j = n− 1,

where δk = k−n+h+1. To verify equivalence with the
butterfly network, all that is required of the above results
is the values of j for which sk

j = 0. This gives:

lsbA(k) =
{

h + k if 0 < k < n− h;
k − n + h + 1 if n− h ≤ k < n.

Since lsbA(k) = lsbA(j) ⇔ k = j it follows immediately
that the segmented two-shuffle is isomorphic to the butter-
fly network. This result was obtained far more compactly
than that presented in [11], which applied only for a single
value of h. It also provides more insight into the operation
of the switch, since it allows the routing algorithm to be
inferred.
It was established earlier that for network B (the but-

terfly network), lsbB(k) = k. Hence, TAB
0 is defined by:

TAB
0 (bn−1bn−2 . . . b0)

= bhbh−1 . . . b1bn−1bn−2 . . . bh+1b0.

Also LPA
0 = LPB

0 = I and so TAB
out = TAB

0 . Applying
(15) it follows that the required pattern of bits in the rout-
ing tag of the segmented two-shuffle network is given by:

rn−1rn−2 . . . r0 = TAB
out (dn−1dn−2 . . . d0)

= dhdh−1 . . . d1dn−1dn−2 . . . dh+1d0.

Thus for the network in Fig. 6 the routing tag required
is d1d3d2d0 and for the network in [11] it is d2d1d4d3d0.
The general form for TAB

k is rather complex. However
it may easily be evaluated using (9) for specific networks.
For example, the tramline transformations relating to the
network in Fig. 6 are:

TAB
0 : b3b2b1b0 → b1b3b2b0;

TAB
1 : b3b2b1b0 → b1b2b3b0;

TAB
2 : b3b2b1b0 → b1b3b2b0;

TAB
3 : b3b2b1b0 → b1b3b2b0.

SUBMITTED TO JLT 2002 9

V. A graphical method for checking equivalence

The rule for any 2n × 2n network constructed using
n stages of 2 × 2 switch elements to be equivalent to
a butterfly network, if the interconnection patterns be-
tween stages are all bit-shuffling link permutations, is that
lsb(k) = lsb(j) ⇔ k = j. In other words, the least signifi-
cant bit of the input link address should map to a unique
bit in the output link address, for each downstream per-
mutation. This may be checked graphically as follows. At
each stage of the switch, draw a line from the switch el-
ement output port corresponding to link address 00 . . . 01
(or 11 . . . 10), following the links between stages and pass-
ing straight through each downstream switch. If none of
the resulting n lines converge, the network is equivalent to
a butterfly network. This is illustrated in Figs. 3 and 4.
The butterfly network itself (Fig. 5) also has this property.
This method may also be applied in synthesising new net-
works, for example by tweaking a single link permutation
until the property holds.

VI. Conclusions

A novel method has been presented for investigating the
equivalences between multi-stage networks, where the in-
terconnections between stages are bit-shuffling permuta-
tions. It has been demonstrated that complex networks
may be easily and systematically analysed using the ap-
proach presented in this paper. The key to the method
is to devise a set of tramline transformations to demon-
strate that two networks are isomorphic. The method also
allows the routing algorithm for the network to be easily
determined and suggests a graphical approach for checking
equivalences. Clearly, extending the method to networks
of k × k switch elements is straightforward, requiring only
some enhanced notation to record k. It also has other areas
of application, such as in sorting networks. The generality
of the method means that it will be of use to the designers
of optical multi-stage and multi-hop networks, when they
encounter practical constraints which preclude the use of
classical multi-stage designs such as the butterfly network.
The method requires extension if it is to be applied to

networks where the link permutations are not restricted
to the class of bit-shuffling permutations, such as the
crossover network [16], because of difficulties caused by a
phenomenon the author calls tramline twisting. This will
be the subject of a future paper.

Appendix

The following properties of concatenated link permuta-
tions are used in the paper.
Identity 1: βkβk−1 . . . β1 = σ̄k.

Proof: It may easily be shown that σ̄k = βkσ̄k−1.
The result follows by induction.
Identity 2: σ̄kσ̄k−1 . . . σ̄1 = ρk.

Proof: It may easily be shown that ρk = σ̄kρk−1. The
result follows by induction.
Identity 3: βkβk+1 . . . βn = σ̄kσn.

Proof: Inverting both sides of Identity 1, and evalu-
ating for k = n gives:

β1β2 . . . βn = σn. (18)

Multiplying Identity 1 and (18), and observing that
βjβj = I, the result follows.
Identity 4: σkσk+1 . . . σn = ρk−1ρn.
Proof: It may be established by induction, since ρk =

ρk−1σk, that
σ1σ2 . . . σk = ρk. (19)

Hence

σkσk+1 . . . σn = (σ1σ2 . . . σk−1)−1(σ1σ2 . . . σn)
= ρ−1

k−1ρn (using (19)).

The result follows.

Acknowledgment

The author wishes to acknowledge the constructive feed-
back of the reviewers.

References

[1] H. S. Hinton, T. J. Cloonan, F. B. McCormick, A. L. Lentine,
and F. A. Tooley, “Free-space digital optical systems,” Proceed-
ings of the IEEE, vol. 82, pp. 1632–1649, November 1994.

[2] Y. Li, J. Ai, and J. Popelek, “Board-level 2-D data-capable op-
tical interconnection circuits using polymer fiber-image guides,”
Proceedings of the IEEE, vol. 88, pp. 794–805, June 2000.

[3] S. Yao, B. Mukherjee, and S. Dixit, “Advances in photonic
packet switching: an overview,” IEEE Communications Mag-
azine, vol. 38, pp. 84–94, February 2000.

[4] M. G. Hluchyj and M. J. Karol, “ShuffleNet: an application
of generalized perfect shuffles to multihop lightwave networks,”
IEEE Journal of Lightwave Technology, vol. 9, pp. 1386–1397,
October 1991.

[5] J. Iness, S. Banerjee, and B. Mukherjee, “GEMNET: A gener-
alized, shuffle-exchange-based, regular, scalable, modular, mul-
tihop, WDM lightwave network,” IEEE/ACM Transactions on
Networking, vol. 3, pp. 470–476, August 1995.

[6] D. Lawrie, “Access and alignment of data in an array processor,”
IEEE Trans. Comput., vol. 24, pp. 1145–1155, December 1975.

[7] C.-L. Wu and T.-Y. Feng, “On a class of multistage intercon-
nection networks,” IEEE Trans. Comput., vol. 29, pp. 694–702,
August 1980.

[8] C.-L. Wu and T.-Y. Feng, “The reverse-exchange interconnec-
tion network,” IEEE Trans. Comput., vol. 29, pp. 801–811,
September 1980.

[9] T. Cloonan, “Topological equivalence of optical crossover net-
works and modified data manipulator networks,” Applied Op-
tics, vol. 28, pp. 2494–2498, 1 July 1989.

[10] S. Even and A. Litman, “Layered cross product - a technique
to construct interconnection networks,” in ACM Symposium on
Parallel Algorithms and Architectures, pp. 60–69, 1992.

[11] T. J. Cloonan, G. W. Richards, R. Morrison, A. Lentine,
J. Sasian, F. McCormick, S. Hinterlong, and H. Hinton, “Shuffle-
equivalent interconnection topologies based on computer-
generated binary-phase gratings,” Applied Optics, vol. 33,
pp. 1405–1430, March 1994.

[12] Y. Pan, C. Qiao, and Y. Yang, “Optical multistage interconnec-
tion networks: new challenges and approaches,” IEEE Commu-
nications Magazine, vol. 37, pp. 50–56, February 1999.

[13] A. Pattavina, Switching Theory: Architecture and Performance
in Broadband ATM networks. John Wiley and Sons, 1998.

[14] H. Stone, “Parallel processing with the perfect shuffle,” IEEE
Trans. Comput., vol. 20, pp. 153–161, February 1971.

[15] H. Siegel and R. McMillen, “The multistage cube: a versatile
interconnection network,” IEEE Comput., vol. 14, pp. 65–76,
December 1981.

[16] J. Jahns and M. Murdocca, “Crossover networks and their op-
tical implementation,” Applied Optics, vol. 25, pp. 3155–3160,
August 1988.

SUBMITTED TO JLT 2002 10

Martin Collier received the B.Eng. and
M.Eng. degrees in Electronic Engineering at
the National Institute for Higher Education,
Dublin in 1986 and 1988 respectively. He was
awarded a Ph.D. degree by Dublin City Uni-
versity in 1993. He is currently a lecturer
at Dublin City University where he runs the
Switching and Systems Laboratory. He es-
tablished the Research Institute for Networks
and Communications Engineering (RINCE) at
DCU in 1999. His research interests include

programmeable networks, quality of service, and advanced switching
techniques.

