Chapter 6: Fundamentals of Psychoacoustics

- Psychoacoustics = auditory psychophysics
- Sound events vs. auditory events
 - Sound stimuli types, psychophysical experiments
 - Psychophysical functions
- Basic phenomena and concepts
 - Masking effect
 - Spectral masking, temporal masking
 - Pitch perception and pitch scales
 - Different pitch phenomena and scales
 - Loudness formation
 - Static and dynamic loudness
 - Timbre
 - as a multidimensional perceptual attribute
 - Subjective duration of sound

Psychophysical experimentation

- Sound events (s_i) = physical (objective) events
- Auditory events (h_i) = subject’s internal events
 - Need to be studied indirectly from reactions (b_i)
- Psychophysical function $h=f(s)$
- Reaction function $b=f(h)$
Sound events: Stimulus signals

- Elementary sounds
 - Sinusoidal tones
 - Amplitude- and frequency-modulated tones
 - Sinusoidal bursts
 - Sine-wave sweeps, chirps, and warble tones
 - Single impulses and pulses, pulse trains
 - Noise (white, pink, uniform masking noise)
 - Modulated noise, noise bursts
 - Tone combinations (consisting of partials)
- Complex sounds
 - Combination tones, noise, and pulses
 - Speech sounds (natural, synthetic)
 - Musical sounds (natural, synthetic)
 - Reverberant sounds
 - Environmental sounds (nature, man-made noise)

Sound generation and experiment environment

- Reproduction techniques
 - Natural acoustic sounds (repeatability problems)
 - Loudspeaker reproduction
 - Headphone reproduction
- Reproduction environment
 - Not critical in headphone reproduction
 - Anechoic chamber (free field)
 - Room effects minimized
 - Not a natural environment
 - Listening room
 - Carefully designed, relatively normal acoustics
 - Reverberation chamber
 - Special experiments with diffuse sound field

M. Karjalainen
Psychophysical functions

- Sound event property to auditory event property mapping

\[h = a \log(s) \] \hspace{1cm} \text{Weber, Weber-Fechner law}

\[h = c s^k \] \hspace{1cm} \text{(e.g., loudness)}

Experimental concepts: Thresholds

- Threshold values
 - Absolute thresholds (e.g., threshold of hearing)
 - Difference thresholds (just noticeable difference, JND)

Example: Threshold of perception:
- 50%, 75%, etc. thresholds
Experimental concepts

- Comparison of percepts
 - Magnitude estimation
 - Magnitude production
- Probe tone method
 - Generation of a probe tone to make test tone audible/noticeable
 - Modulation, canceling, interference
- Classification and scaling of percepts
 - Nominal scale (rough, sharp, reverberant, ...)
 - Ordinal scale (percepts have ordering)
 - Interval scale (numeric scale, no zero point defined)
 - Ratio scale (numeric scale, zero point defined)
- Multidimensional scaling
 - Semantic differentials: low – high, dull – sharp, ...

Psychoacoustic experiments

- Description of auditory events
 - Oral or written description
- Method of adjustment
 - Adjusting a stimulus to correspond to a reference
- Selection methods
 - Forced choice methods (select one!):
 - Two alternative forced choice (TAPC, 2AFC)
- Method of tracking
 - Tracking with varying stimulus
 - Bekesy audiometry
- Bracketing method
 - Descending and ascending bracketing
- Yes/no answering
- Reaction time measurement
 - Indicates the difficulty of decision task
Békésy audiometry

- Slow frequency sweep and level tracking

Typical psychoacoustical test types

- AB test
 - Set in preference order / select one
 - AB hidden reference (one must be recognized)
- AB scale test
 - As AB but assign numeric values for A and B
- ABC test
 - A is fixed reference (anchor point) for assigning values for B and C
- ABX test
 - Which one, A or B, is equal to X?
- TAFC (2AFC)
 - Two alternative forced choice

- Formation of a listening test panel
- Formation of a description language
Masking effect

- "A loud sound makes a weaker sound imperceptible"
- Categories and aspects of masking
 - Frequency masking
 - Temporal masking
 - Time-frequency masking
 - Frequency selectivity of the auditory system
 - Psychophysical tuning curves
 - Critical band
 - Bark bandwidth
 - ERB bandwidth

- Masking tone and test tone

Frequency masking

- Masking by white noise

M. Karjalainen
Frequency masking

• Masking by narrow-band noise (0.25, 1, 4 kHz)

Frequency masking

• Frequency masking as a function of masker level
Frequency masking

- Frequency masking by lowpass and highpass noise

Frequency masking

- Frequency masking by 1 kHz sinusoidal signal
Frequency masking

- Frequency masking by a complex tone (harmonic complex)

Temporal masking

- Masking before and after a noise signal
Temporal masking

- Beginning of postmasking

![Graph showing the beginning of postmasking](image)

- Postmasking as a function of time
 - For 200 ms long masker
 - For 5 ms long masker

![Graph showing postmasking as a function of time](image)
Time-frequency masking

- Masking of a tone burst in time and frequency by a time-frequency block of noise

Temporal masking

- Masking due to an impulse train
Frequency selectivity of hearing

- Masking curves tell much about auditory selectivity
- Psychophysical tuning curves match with physiological curves

![Graph showing masking curves](image)

M. Karjalainen

Critical band experiment

- Experiment: loudness vs. bandwidth of noise

![Diagram for critical band experiment](image)

M. Karjalainen
Critical band

- Loudness vs. bandwidth of noise
 - Loudness increases when bandwidth exceeds a critical band

![Critical band graph](image1)

Critical band (Bark band) vs. frequency

- Critical band (Bark band) Δf_G vs. mid frequency
- Ref: just noticeable tone frequency change vs. frequency

![Critical band (Bark band) vs. frequency graph](image2)
Critical band: 24 Bark bands (Zwicker)

<table>
<thead>
<tr>
<th>i</th>
<th>(f_i)</th>
<th>(f_c)</th>
<th>(f_i - f_c)</th>
<th>(f_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>50</td>
<td>0.5</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>130</td>
<td>1.5</td>
<td>160</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>250</td>
<td>2.5</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>350</td>
<td>3.5</td>
<td>200</td>
</tr>
<tr>
<td>4</td>
<td>400</td>
<td>450</td>
<td>4.5</td>
<td>110</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>570</td>
<td>5.5</td>
<td>120</td>
</tr>
<tr>
<td>6</td>
<td>630</td>
<td>740</td>
<td>6.5</td>
<td>130</td>
</tr>
<tr>
<td>7</td>
<td>720</td>
<td>840</td>
<td>7.5</td>
<td>140</td>
</tr>
<tr>
<td>8</td>
<td>920</td>
<td>1000</td>
<td>8.5</td>
<td>160</td>
</tr>
<tr>
<td>9</td>
<td>1000</td>
<td>1170</td>
<td>9.5</td>
<td>190</td>
</tr>
<tr>
<td>10</td>
<td>1270</td>
<td>1370</td>
<td>10.5</td>
<td>210</td>
</tr>
<tr>
<td>11</td>
<td>1580</td>
<td>1400</td>
<td>11.5</td>
<td>240</td>
</tr>
<tr>
<td>12</td>
<td>1800</td>
<td>1650</td>
<td>12.5</td>
<td>260</td>
</tr>
</tbody>
</table>

ERB band experiment

- **ERB = Equivalent Rectangular Bandwidth**
- Loudness of a tone is measured as a function of frequency gap in masking noise around the test tone
- ERB band is narrower than Bark band, especially at low frequencies
Pitch scales

- Pitch = subjective measure of tone height
- Mel scale
 \[m = 2595 \log_{10}(1 + f/700) \] or
 \[m = 1000 \log_2(1 + f/1000) \]
- Bark scale
 \[z/Bark = 13 \arctan(0,76 f/\text{kHz}) + 3.5 \arctan(f/7,5\text{kHz})^2 \]
 \[\Delta f_{EB}/\text{Hz} = 25 + 75 [1 + 1,4(f_c/\text{kHz})^{0.69}] \]
 \[z/Bark = 7 \ln \left(f/650 \text{Hz} + \sqrt{1 + (f/650 \text{Hz})^2} \right) \]
 Inverse function: \[f/\text{Hz} = 650 \sinh(z/7 \text{ Bark}) \]
- ERB scale
 \[ERB = 24,7 + 0,108 f_c \]
 \[R_{ERB} = 21,3 \log_{10}(1 + f/228,7 \text{ Hz}) \]
 Inverse: \[f/\text{Hz} = 228,7 (10^{R_{ERB}/21,3} - 1) \]

Logarithmic pitch scale

- Logarithmic scale used in music and audio
- Frequency ratios more important than absolute frequencies
- Octave and ratios of small integers important
Comparison of pitch scales

• Pitch scales are related to place coding on the basilar membrane, although they are measured by psychoacoustic experiments

Comparison (log reference) of:
 – logarithmic scale
 – ERB scale
 – Bark scale
 – linear scale
Comparison of pitch scales

• Comparison (linear reference) of:
 – logarithmic scale
 – ERB scale
 – Bark scale
 – linear scale

Pitch

• Continues in file KA6b