
Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 1 of 13.

Solutions to Semester 1 EE553 Exam Paper 2000 to 2001.
Object Oriented Programming

Dr. Derek Molloy

Answer 4 questions out of 5.

Question 1.
(a) 14 marks total 2 marks per section.

(i) Friendly in Java relates to the package that the class is defined in. If a
state or method has no defined access modifier (public, private,
protected) then it is friendly and assessable throughout the package in
which it is defined. In C++ a friend is explicitly specified from within
the definition of a C++ class. A method or even an entire class may be
specified as a friend of a class. Friendship in both cases is granted.
There is no concept of the package in C++ so the friend must be
explicitly declared.

(ii) Casting is used in C++ and Java to convert a variable type of a wider
band to a variable type of a narrower band. It is usually used to in
effect ‘let the compiler know’ that you are aware that there could be a
loss of resolution of data. You are not solving this loss of resolution.
An example would be where you are converting a floating point
number into an integer, e.g. int y = 5.766; would leave y with the
truncated value of 5 not the rounded value of 6.

(iii) The Object class in Java is actually the parent class of all classes. It
defines methods that are common to all classes. It allows very complex
operations to be performed in the Java language such as transporting
objects across a network, storage on a common stack or file storage
using standard methods. It is referenced as java.lang.Object.

(iv) A static method is a method that operates on static data. No other
methods may operate on static data. Static methods and static data are
related to the class and not to the object (often being called class
methods and class states). The storage for the data is defined once for
the class (the first time it is met in program execution) and remains for
the duration of the application. An example of a static method is the
public static void main method.

(v) Encapsulation may simply be defined as data hiding. It allows us to
distinguish internal methods from the interface. We can use the public,
private and protected modifiers to set the level of encapsulation.

(vi) Heavyweight components are related to the operating system whereas
Leightweight components exist independently of the operating system.
This allows the development of applications that have similar looks-
and-feels across different operating systems. It also allows us to
develop our own components. There is of course an overhead related to
leightweight components.

(vii) (a) is true as all elements are initialised to 0. (b) is therefore false. (c) is
false as there are 25 elements 0 to 24, so 25 is out of bounds. (d) is

Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 2 of 13.

false as x[0] = 0. (e) is true as there are 25 elements so 25 would be
returned.

Question 1 (b) 6 marks

Exceptions are generated during program execution if something occurs that is not
quite normal from the task in question. For example the network may fail, a file may
be corrupt or there may be a bug in the application the causes it to address invalid
memory. In Java we may recover from this type of run time error, allowing the user to
choose a different file, or check the network before continuing. The syntax we can use
is in the form of try{} and catch{}

try{
 // Some statement that may generate an exception
} catch (Exception e)
{
 // perform some operation to recover
}

We may write our own type of exception for our application. For example if we wrote
a method that required a non-negative number and a negative number was passed, we
could generate an InvalidNumberArgument exception that was to be handled by the
caller, allowing the user to re-enter the number or for that number to be skipped.

Question 1 (c) 5 marks

Java uses automated garbage collection. C++ suffers from memory leaks, but this is
not the case in Java. A threaded system thread (daemon) runs alongside the developed
application with the role of checking for unused memory. Under certain conditions
this unused memory will be removed and allocated back to the heap. There is an
overhead in having this extra thread, but it allows mission critical applications to be
developed. There are three ways that the garbage collector may be invoked:

(i) The system is running low on memory
(ii) The system is not using the CPU (e.g. user input time)
(iii) The user may request for the garbage collector to run.

Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 3 of 13.

Question 2 (a) 9 marks

An applet is a specific type of Java application that is designed to be portable and
downloadable over the Internet. For this reason an applet may only contain a subset of
the total functionality of an application. For example, an applet cannot have access to
local files on a machine; otherwise it is theoretically possible for a hostile applet to
upload (to some destination) the contents of a local machine. This type of hostile
applet also includes applets that may try to use all CPU available, or contact remote
sites, without your permission. These too are not allowed. Applications on the other
hand are assumed to be trusted, as they reside on the local hard disk. These
applications have full access to the local hard-drive and to all network addresses.

An applet would be chosen when an application must be distributed to a number of
clients who trust, or don’t trust the content. They allow a local version to reside on the
server, so only one copy exists, allowing complete version control.

An application on the other hand does not contain the inherent restrictions and so
must be completely trusted by the client. An independent version is distributed to each
client so there is not the same degree of version control as that associated with
applets. There is no overhead in downloading the application before running it. You
also do not have to be connected to the Internet to run an application.

The order of execution of an applet is main() and then whatever functionality that is
involved in main()

In an applet the order is init() -> start() -> paint() and stop() on the destruction. These
calls may happen asynchronously.

An application may be an applet and an application. This is created by extending the
Applet class (java.awt.Applet) and then adding a main() method to the Applet class by
calling the init()->start()->paint() methods in the order that the appletviewer would.

Question 2 (b) 16 marks

The source code of this is as follows:

// The Applet Class - by Derek Molloy Oct 2000.

import java.applet.*;
import java.awt.*;

public class MyApplet extends Applet
{
 MyCanvas myCanvas;

 public void init()
 {
 Image theTempImage = this.getImage(this.getDocumentBase(),"test.jpg");
 while (theTempImage.getHeight(this)!=-1) {}

 myCanvas = new MyCanvas(theTempImage);

Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 4 of 13.

 this.setLayout(new BorderLayout());
 this.add("Center",myCanvas);
 }

}

// The Canvas Class - by Derek Molloy Oct 2000.

import java.awt.*;
import java.awt.event.*;

public class MyCanvas extends Canvas implements MouseListener, MouseMotionListener
{
 private Image theDragImage;
 private int mouseX, mouseY;

 MyCanvas(Image theImage)
 {
 this.theDragImage = theImage;
 this.addMouseListener(this);
 this.addMouseMotionListener(this);
 }

 public void paint(Graphics g)
 {
 g.drawImage(this.theDragImage, this.mouseX, this.mouseY, this);
 }

 public void mousePressed(MouseEvent e) {}
 public void mouseReleased(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}
 public void mouseClicked(MouseEvent e)
 {
 this.mouseX = e.getX();
 this.mouseY = e.getY();
 this.repaint();
 }
 public void mouseDragged(MouseEvent e)
 {
 this.mouseX = e.getX();
 this.mouseY = e.getY();
 this.repaint();
 }
 public void mouseMoved(MouseEvent e) {}

}

The marks are roughly split as 6 marks for the applet and 10 marks for the Canvas
class.

Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 5 of 13.

The example applet output.

Question 3 (a) 5 marks

Constructors are used to provide initial values for the creation of objects. If
constructors were not available then every object that was created would have the
exact same initial states. Constructors may be overloaded so that several different sets
of parameter types may be used for the creation of objects. Constructors on the other
hand may not be inherited by children classes.

Destructors are called on the destruction of an object. They may be used to unallocate
dynamic memory, or to perform some task such as closing network sockets or
database connections. In C++ destructors can and should be virtual. In Java this is
enforced.

Question 3(b) 11 marks

Overloading – Re-using the same method name with different arguments and possibly
a different return type is known as overloading. In unrelated class there is no issues
when re-using names but in the same class, we can overload methods, provided that
those methods have different argument types. A method may not be distinguished by
return type alone.

Overriding – Re-using the same name with the exact same arguments is known as
overriding. This is most commonly used in a derived class, where the method has
been defined in the parent, but a version with different functionality is required. This
allows the facility to add specialised behaviour to a derived class.

e.g.

public void aMethod(String s) {}
public void aMethod(int s) {}

is an example of an overloaded method.

Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 6 of 13.

We can call an overridden method using the super keyword. For example to call the
aMethod from a derived class we can use super.aMethod().

Difficulties occur when we override a method in a derived class, as the other
overloaded methods in the base class are no longer available to the derived class.

Access modifiers affect the use of overriding. If for example a method is declared as
private then the overriding method may not reduce the level of access to the method.

Question 3 (c) 9 marks

An example of polymorphism in C++.

// code segment 3 – Derek Molloy

class account{
 // state
 public:
 virtual void display()
 // rest of the methods.
};

void account::display() {
 // Normal account display methods
}

class currentAccount:public account{
 // state
 public:
 virtual void display();
 virtual void display(String s);
 // rest of the methods
};

void currentAccount::display() {
 cout << “Current Account”;
 // example of overriding in of display in Account
 // scope resolution is:
 account::display();
}

void currentAccount::display(String s) {
 // do something else…
 // example of overloading in currentAccount
}

Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 7 of 13.

Question 4 (a) 10 marks

Serialization makes is it easy to send objects across the network, or to write objects to
a file, however it does suffer from the problems: Once an object is written to a stream,
its state is fixed. In effect a copy of the object is created on the client side and sent to
the server side. If this object changes on the client side, while the server is busy
processing the copy, then the copy is no longer up-to-date. This is very problematic.
One solution is to lock the client object on the client side, so that it cannot be altered
while the copied object is in transit to or from the server.

As the communication becomes more complex, the task becomes even more difficult.
Serialization, although providing a huge advantage over manually streaming data, still
requires the programmer to maintain the protocol for communication, distributing the
protocols and making sure that both the client and server are aware of the serialized
object Class allowing the casting to take place.

RMI is a full architecture for distributed computing. It provides a way for distributing
objects as services, where a remote service request looks similar to a local one. The
object is not passed to and from the client/server, rather it is fixed in the one place.
The Virtual Machine responsible for the object declares it exportable and makes it
available to an object server that can call on it when a request is received.

The remote client obtains a reference, so it must know the name of the object, where
it is and also what methods it has. Once we know this information, RMI takes care
of the other parts, such as: object serialization, object transport, exception handling
(Exceptions may occur when network connections are broken, one of the client/server
pair may crash etc..) and security management.

To use a remote object, we first must have a reference to it. The only concise way to
do this is to have lookup information available (such as the method names) to the
client, generally prior to run-time. This is facilitated through the use of a pair of
classes, called skeletons and stubs that are derived directly from the remote object.

So now, the client calls the remote object by using this lookup information, which is
coded into the client. If the lookup succeeds then the RMI Server returns the remote
object's stub, which acts as a stand-in for the remote object's class and methods. A call
to any of the stub's methods is sent from the stub to the skeleton reference, which
resides on the server side. The skeleton in effect calls the method on the server side
and routes the remote objects response back through the stub.

Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 8 of 13.

This communication takes place over the RMI remote reference layer (which relies on
the TCP/IP transport layer). The main() method creates a registry on port 1099 (this
is the default port for the registry services) and binds a new instance of the Request
object (obj) to it. So, createRegistry(int port) creates and exports a Registry on a local
host that accepts requests on a specified port (It returns a static Registry, i.e. The
registry.). Placing an object in a registry makes it available to clients on other virtual
machines, once those clients have access to the machine, they can obtain a reference
to the remote object by specifying the machine name, port number and the name of
the exported object.

Question 4 (b) 15 marks

// Example6 - Swing Example 6 - Derek Molloy

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class Example6 extends JFrame
{
 JDesktopPane desktop;

 public Example6()
 {
 super("Derek's Frame");
 JLabel aLabel = new JLabel("Derek's Test Internal Image
Viewer");
 this.getContentPane().add("North",aLabel);

 desktop = new JDesktopPane();
 this.getContentPane().add("Center",desktop);

 // First Internal Frame...
 JInternalFrame jif1 = new JInternalFrame();
 jif1.setTitle("Test Frame 1");
 jif1.setSize(150,150);
 jif1.show();
 Image image1 = this.getToolkit().getImage("test.gif");
 ImageIcon i1 = new ImageIcon(image1);
 JLabel l1 = new JLabel(i1);
 JScrollPane p1 = new JScrollPane(l1);
 jif1.getContentPane().add(p1);
 jif1.setResizable(true);

 // Second Internal Frame...
 JInternalFrame jif2 = new JInternalFrame();
 jif2.setTitle("Test Frame 2");
 jif2.setSize(150,150);
 jif2.show();
 Image image2 = this.getToolkit().getImage("test2.jpg");
 ImageIcon i2 = new ImageIcon(image2);
 JLabel l2 = new JLabel(i2);
 JScrollPane p2 = new JScrollPane(l2);
 jif2.getContentPane().add(p2);
 jif2.setResizable(true);

Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 9 of 13.

 jif2.setLocation(100,100);

 desktop.add(jif1);
 desktop.add(jif2);

 this.setSize(300,300);
 this.show();
 }

 public static void main(String[] args)
 {
 Example6 example = new Example6();
 }
}

Question 5(a) 10 marks

JDBC allows the development of platform and database independent data handling
solutions. The JDBC API has Java classes to represent database connections, SQL
statements, result sets, etc... It allows a Java programmer to send SQL queries to a
database and process the returned results.
The JDBC API is implemented using a driver manager that can support multiple
drivers connecting to different databases. These drivers can either be: Written
completely in Java, so that they may be downloaded within an applet, or written using
native methods to bridge existing database access libraries:
JDBC consists of three main steps:

(i) Create a connection to a database
(ii) Send SQL statements
(iii) Process the results

The Connection Object: The Connection object represents a connection with a
database. A connection session includes the SQL statements that are executed and the
results that are returned over the connection. One application may have more than one
connection with the same database, or multiple different databases.

Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 10 of 13.

The Statement Object: The Statement object is used to send SQL statements to a
database. There are three kinds of Statement object that acts as containers for
executing SQL statements on a connection.

(i) A Statement object - used to execute simple SQL statements with no
parameters.

(ii) A PreparedStatement object - inherits from Statement and is used to
execute a precompiled SQL statement, with or without parameters.

(iii) A CallableStatement inherits from PreparedStatement and is used to
execute a call to a database stored procedure.

So the Statement object is the generic form and the
PreparedStatement/CallableStatement are specialised forms for sending particular
SQL statements.
The ResultSet Object: The ResultSet contains all the rows that satisfy the conditions
in the SQL statement. It has a set of methods, getString(), getFloat(), getDate() etc.. to
provide access to the data in these rows. The resultSet.next() method is used to move
to the next row of the ResultSet.
The Driver Manager The driver manager dynamically maintains all the driver
objects that the application needs for performing database queries. If we have two
different databases that we wish to connect to, we need to load in two different driver
objects. The driver objects register themselves with the driver manager at the time of
loading, which we can request using the Class.forName() method. The driver manager
also takes care of maintenance tasks, such as driver login time limits, log tracking
etc..

Question 5 (b) 15 marks

A Java client/server pair, where the client sends a string to server and returns an
encrypted version. Here are the modifications to the code required. First off, write the
encryption service:

public class EncryptService
{

 public String encryptString(String s)
 {
 String back = "";
 char[] theChars = s.toCharArray();
 for (int i=0; i<s.length(); i++)
 {
 theChars[i] = (char)((int)theChars[i] + 1);
 }
 back = new String(theChars);
 return back;
 }

 public String decryptString(String s)
 {
 String back = "";

Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 11 of 13.

 char[] theChars = s.toCharArray();
 for (int i=0; i<s.length(); i++)
 {
 theChars[i] = (char)((int)theChars[i] - 1);
 }
 back = new String(theChars);
 return back;
 }

}

Then modify the client.java to send the string as a parameter:
public void getEncrypt(String toEncrypt)
{

 String theEncrypt = "";
 System.out.println("Encrypt the string: "+toEncrypt);
 send("Encrypt"+toEncrypt);
 theEncrypt = (String)receive();
 if (theEncrypt != null)
 {
 System.out.println("The Encrypted string is " + theEncrypt);
 }

}

public void getDecrypt(String toDecrypt)
{

 String theDecrypt = "";
 System.out.println("Decrypt the string: "+toDecrypt);
 send("Decrypt"+toDecrypt);
 theDecrypt = (String)receive();
 if (theDecrypt != null)
 {
 System.out.println("The Decrypted string is " + theDecrypt);
 }

}

and modifying the main method()

 EncryptClient myApp = new EncryptClient(args[0]);
 try
 {
 myApp.getEncrypt(args[1]);
 }
 catch (Exception ex)
 {
 System.out.println(ex.toString());

 }

 try
 {
 myApp.getDecrypt(args[1]);

Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 12 of 13.

 }
 catch (Exception ex)
 {
 System.out.println(ex.toString());

 }

Then modify the ConnectionHandler.java code:

/** Receive and process incoming command from client socket */
private boolean readCommand()
 {

 String s = null;

 try
 {
 s = (String)is.readObject();
 }
 catch (Exception e)
 {
 s = null;
 }

 if (s == null)
 {
 closeSocket();
 return false;
 }

 // invoke the appropriate function based on the command
 String startx = s.substring(0,7);
 if (startx.equals("Encrypt"))
 {
 getEncrypt(s.substring(7,s.length()));
 }
 else if (startx.equals("Decrypt"))
 {
 getDecrypt(s.substring(7,s.length()));
 }
 else
 {
 sendError("Invalid command -> " + s);
 }

 return true;
 }

 private void getEncrypt(String theString)
 {
 String encrypt = theService.encryptString(theString);
 send(encrypt);

Solutions to EE553 Semester 1 exam 2000 to 2001

Dr. Derek Molloy (DCU Extension 5355) Page 13 of 13.

 }

 private void getDecrypt(String theString)
 {
 String decrypt = theService.decryptString(theString);
 send(decrypt);
 }

The Server.java class remains mainly the same. This is shorter than it seems to write
as sections of the code can be cut and paste without much difficulty.

