DCU

SEMESTER ONE EXAM SOLUTIONS 2002

Question 1.

(@ Answer the following short questions. Keep your answers concise.
0] How is scope resolution performed in C++?

e Anautomatic variableis avariable with a scope local to the block of code in which
it was declared. Generally automatic variables are declared within functions,
destroyed when the function ends.

* Anexternal variableis used to declare avariable that is defined in some other
module. (e.g.use: extern float x;)

e A saticvariableis used to makeavariable private to the modulein which it occurs,
when used with the definition of aglobal variable.

The scope level can be resolved by the rules of scope, otherwiseif required avariable at a
different level can be used by using the scope resolution operator :: - for example Car.draw() isa
method that could be called from aderived class.

(i) WhaisaJT compiler?

When a Java applet is executed for the first time, the speed at which it executes may seem
disappointing. The reason being that the Java applet's bytecode isinterpreted by the VM rather
than compiled to native machine instructions. The solution to this problem lies in the Microsoft
developed Just-In-Time (JIT) compiler. The JIT compiler reads the bytecode of the Java applet
and convertsit into native machine code for the intended operating system. Once the Javaapplet is
converted into machine code it runs like a natively compiled program. The J T compiler can, in
certain cases, improve the run-time speed of applets by afactor of 510 times.

(iii) Explantheterm event listener.

An event listener allows an application to listen for events. For example an action listener can be
used to listen for button presses or enter presses within atextField. Events are generated when the
button is pressed or when the button is pressed. Y ou can use for example
myTextField.addActionListener(this) to add alistener to a component.

(iv) Explainthe concept of the Class dlassin Java

Objects of this class (called class descriptors) are automatically created and associated with
objectsto which they refer. For example the getName() and toString() methods return the String
containing the name of the class or interface... We could use this to maybe compare the classes of
objects...

(V) In C++ what is a static global variable and why would it be used?

A global variable has scope throughout the entire application. A static global variable is used to
make avariable private to the module in which it occurs, when used with the definition of a global
varigble.

(vi) What is meant by the term polymor phisn?

A derived class inherits its functions or methodsfrom the base class, often including the
associated code. It may be necessary to redefine an inherited method specifically for one of the
derived classes, i.e. ater the implementation. So, polymorphism is the term used to describe the
situation where the same method name is sent to different objects and each object may respond
differently.So polymorphism:- allows different kinds of objects that share a common behaviour to
be used in code that only requires that common behaviour.

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 1 of 1.

(vii) Inthefollowing piece of code explain what occurs. What isthe vaue of x
and y after execution (i.e. after thelast ling)?
int x=Ly=5*p*q;

Importantly we are operating on the pointer. P pointsto y and q pointsto x . * p+=5 increments the
value at y by 5 = 10, but the second operation on g moves the pointer by 2. At the end the val ue of
x is1andthevaueof yis10.

[14 marks]

(b) What are Java | nterfaces? Why and when are they used? Give an gpplication
example of when you might write your own interface.

A Javalnterfaceis away of grouping methods that describe a particular behaviour. They allow developers
to reuse design and they capture similarity, independent of the class hierarchy. We can share both
methods and constants — no states.

e Methodsin aninterface are public and abstract.
. Instance variablesin an interface are public, static and final.
public interface Demo

{
void go();
void stop();
}
public class SomeClassextends XY Z implements Demo
{
public void go()
{
/I write code here...
}
public void stop()
{
/l write code here...
}
}

Consider the mouse. We may write many applications that use the mouse, and within this application, the
mouseis used in different ways by different components. We can define a common interface for the
mouse that each one of these components implements. These components then share acommon
defined interface.

[6 marks— 4 for desc. 2 for example]

(c) Discuss congructors in C++. Can they be overloaded? Why can they not be virtua?
In what order are they called when inheritance takes place?

A Constructor can be used for the task of initialising datawithin aclass:

«It isamember function that has the same name as the class name. C++ calls the constructor of the base
class and eventually calls the constructor of the derived class.

*A constructor must not have adeclared return value (not even void!)

A constructor cannot be virtual. The constructor is specific to the classthat it isdeclared in. A new
constructor must be declared for children classes as it must be specific to that class.

An example constructor code for the class Account:

/'l A constructor code exanple

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 2 of 2.

class account{

i nt myAccount Nunber ;

fl oat nyBal ance;

publi c:

/1l the constructor definition

account (fl oat aBal ance, int anAccNumber);
I
/'l the constructor code inplenentation
account::account (i nt anAccNunmber, float aBal ance)

{
myAccount Number = anAccNunber ;
myBal ance = aBal ance;

/! now call the constructor!
void main()

{
account anAccount = account(35.00,34234324); // XK
account testAccount (0.0, 34234325); // XK
account myAccount; //Wong!

}

«If aclass has a constructor then the arguments must be supplied. The constructor can be overloaded
alowing other constructors to be added to the same class.

«in main() above the first two object creation calls (for anAccount and testAccount) are correct and it isup
to the users style of programming. The third object construction (for myAccount) isincorrect, as the
parameters are not provided to match the declared constructor!

[5 marks — one for each point and 2 for code/other points]

Question 2.

(@ Explan multiple inheritance in C+. Why isauseful festure? How does it lead to
difficultiesin the desgn process? In particular explain the use of the virtud keyword
when it is used in rdation to multiple inheritance.

Multipleinheritanceis one aspect of C++ that leads to complications, especially when a defined class
inherits from two classes.

protected:)) protected:
time theTime: Transaction Transaction time theTime:
Lodgement Withdrawal
fundTransfer

Fig Q2(a)1— An example where multiple base class objects are required.

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 3 of 3.

account

e

Current Deposit
SpecialCurrent

Fig Q2(a)2 — An example where multiple base class objects are not required.

In Q2(a)-1 A Lodgement I SA Transaction, a Withdrawal ISA Transaction and at different timesduring
execution afundTransfer isalL odgement or a Withdrawal.

Two separatetransaction objectsarebeing used, and they do not interferewith each other.
When referringto atransaction object on the other hand, you must be car eful toresolvethe
ambiguity that results.

class fundTransfer: public Lodgenent,
public Wthdrawal
{ publi c: time tineTaken(){
return abs(Lodgenent::theTinme
- Wthdrawal ::theTine);

}
b
Any methods that are common to both parents must be referred to it unambiguously. For exampleif you:
fundTransfer * fundPtr;
fundPtr -> display(); /I not allowed — ambiguous

fundPtr -> Lodgement::display(); // OK!

fundPtr -> Withdrawal::display(); // OK!
Thisisawkward. It is often better to declare anew display() method in the fundTransfer classto try to
avoid this disambiguation.

Virtual Functions and Multiple Inheritance

Hereisan example of what goes on when using a virtual function in a multipleinheritance
hierarchy. The virtual function selectsthe definition of that function closest to the most
derived class:

In Q2(a)-2 Since account contains the balance of the account, and Special Current is atype of account, we
do not want the balance to be duplicated, i.e. Special Current should only have one instance of its common
indirect base class. We do this by declaring the base class to be virtual.

class Current: public virtual account { Il etc..

b

class Deposit: public virtual account {
/'l etc..

}s

cl ass Speci al Current:

public virtual Current,
public virtual Deposit/{
/'l etc.. This allows future reuse of Special Current

};

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 4 of 4.

We are declaring that if either Current or Deposit should be used in a multiple inheritance hierarchy, then
they should share the same instance of account with any other class that uses virtual inheritance of account.
Thisleadsto difficultiesin the design process as we must determine at the time that we write deposit and
current accounts that we are going to further develop ajoint account. If thisis not determined at thistime
then it will be necessary to alter and recompile these classes.

[10 marks — 5 for good example, 5 for other points from question]

(b) Write a section of code in C++ that demongtrates how you would structure multiple
inheritance for banking software where the following account Classes exist:
?? DepositAccount (which includes an interest rate state),
?? CurrentAccount (which includes an overdraft limit Sete),
?? Account (which is generic account with balance and account number states)
?? Cashsave (which has an overdraft limit and an interest rate for credit baances)
The code should include the fallowing functiondity:
?? display() (which displays the details relevant to the object)
?? makel odgement()
?? makeWithdrawal()
?? Reéevant congructors
Do not use separate compilation for thistask, i.e. use one C++ file for your code.
Show an example of your dass working.

#include<iostream.h>

class Account

{
private:
float balance;
int accountNumber;
public:
Account(float theBal, int theActNum);
virtual void display();
virtual void makeLodgement(float);
virtual void makeWithdrawal(float);
¥
Account::Account(float theBal, int theActNum)
{
balance = theBal;
accountNumber = theActNum;
}
void Account::display()
{
cout<< "The balance is £" << balance <<end|;
cout<< "The account number is " << accountNumber << endl;
}
void Account::makeLodgement(float amount)
{
balance+=amount;
}
Object Oriented Programming — EES53 Semester One Solutions 2002

Page 5of 5.

void Account::makeWithdrawal(float amount)

{
balance-=amount;
}
class DepositAccount: virtual Account
{
private:
float interestRate;
public:
DepositAccount(float rate, float theBal, int theActNum);
virtual void display();
h

DepositAccount::DepositAccount(float rate, float theBal, int theActNum):
Account(theBal, theActNum)

{
interestRate = rate;
}
void DepositAccount::display()
{
Account::display();
cout << "The interest rate is " << interestRate << endl;
}
class CurrentAccount: virtual Account
{
private:
float overdraftLimit;
public:
CurrentAccount(float overdraft, float theBal, int theActNum);
virtual void display();
h

CurrentAccount::CurrentAccount(float overdraft, float theBal, int theActNum):
Account(theBal, theActNum)

overdraftLimit = overdraft;

}
void CurrentAccount::display()
{
Account::display();
cout << "The overdraft limit is " << overdraftLimit << endl;
}
class CashSaveAccount: CurrentAccount, DepositAccount
t
private:
public:
CashSaveAccount(float overdraft, float interest, float theBal, int theActNum);
virtual void display();
h
Object Oriented Programming — EES53 Semester One Solutions 2002

Page 6 of 6.

CashSaveAccount::CashSaveAccount(float overdraft, float interest, float theBal, int

theActNum):
Account(theBal, theActNum),
CurrentAccount(overdraft, theBal, theActNum),
DepositAccount(interest, theBal, theActNum)

¢

void CashSaveAccount::display()

{
DepositAccount::display();
CurrentAccount::display();

}

void main()
CashSaveAccount a(5000,5,200,12345);
a.display();

}

Mew Motes for OOF
Q00P2ZBPA Exam.zip.bfa
Painterﬂpg.jaua

gquestion2 .cpp

~“£503 — Exam Paper 28081 to 2882 .doc

~5553 — Solution to paper 2881 to 2682 .doc
“HWRLB586 . tmp

¢ C++ guestion2.cpp

halance i= F28@

account number is 12345
interest rate is 5
halance iz F280

account number is 12345
overdraft limit i= L0868

Object Oriented Programming — EES53

[15 marks]

Semester One Sol utions 2002
Page 7 of 7.

Question 3.

(@ What isRemote Method I nvocation (RMI) and how isit used in Java? Explain the
terms skeletons and stubs. What are the limitations of RMI?

Remote method invocation (RM1) isafull-grown architecture for distributed computing, scalable to very
complex tasks. Serialization handles the details of writing object level protocols, so the programmer can
send objects to a stream without worrying about their structure. RMI provides away of distributing objects

as services so that aremote service request looks like alocal request. The object is stationed in one place
and the VM isresponsible for serving the object declared exportable and puts it where an RM1 object
server can call on it when arequest comesin. Once the object is exported, RMI takes care of the rest:

?? Seidization
?? Object transport
?? Exception handling

?? Security management.
Advance knowledge of the remote callsis essential. Thisinvolved the use of a pair of classes called
skeletons and stubs. These two classes are derived directly from the class file of the remote object. When
the remote client calls on the object, it does so by alookup. Thislookup is coded into the client, as are the
callsto the object’ s methods. If the lookup succeeds the RMI server returns the remote object’ s stub,
which isastand-in for the remote object’ s class and methods. On a call to any of one of these methods, the

stub sends the request to the skeleton reference, which resides on the server side. The skeleton retrievesthe
operations of the method to co-ordinate routing the object’ s response back through the stub.

[9 marks- 2 each for stubs and skeletons— 5 for remaining description]

(b) Write a Java gpplication that uses the JavaSwing s&t to cregte the following
application. It isa stopwatch that starts when the “ start” button is pressed and stops
when the “stop” button is pressed.

1ol x|
19 Start Stop

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SwingApp extends JFrame implements ActionListener, WindowListener, Runnable

{

JButton start, stop;

JTextField count;

private int countValue = 0;
private boolean running = false;
Thread t;

SwingApp()
{
super("Counter Application");

start = new JButton("Start");
start.addActionListener(this);

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 8 of 8.

stop = new JButton("Stop");
stop.addActionListener(this);

count = new JTextField(5);
this.getContentPane().setLayout(new FlowLayout());
this.getContentPane().add(count);
this.getContentPane().add(start);
this.getContentPane().add(stop);
this.addWindowListener(this);

this.setSize(400,80);

this.show();
}
public void actionPerformed(ActionEvent €)
{
if(e.getSource().equals(start))
t = new Thread(this);
this.running = true;
this.countValue = 0;
t.start();
}
else
{
this.running = false;
}
}

public void windowOpened(WindowEvent €) {}
public void windowClosed(WindowEvent e) {}
public void windowClosing(WindowEvent e) {

this.dispose();
System.exit(0);
}

public void windowlconified(WindowEvent e) {}
public void windowDeiconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent €) {}

public void run()

while(this.running)

this.countValue++;
count.setText(""+countValue);

t.sleep(100);

catch(InterruptedException e) {}

{
try{
}
}
}
public static void main(String[] args)
; new SwingApp();

Object Oriented Programming — EES53

[16 marks — haf marks for structure — rest for innovation]

Semester One Sol utions 2002
Page 9of 9.

Question 4.

(@ What is IDBC? Give an example of how it may be used. Explain the key sepsand
terms related to JDBC.

A large amount of software development involves the development of client/server applications. Java
provides huge advantages when devel oping software for client/server applications, but also provides
advantages when devel oping client/server database applications. The facilitiesto do thisin Javaare
provided by Java DataBase Connectivity (JDBC). JDBC allows the development of platform and database
independent data handling solutions. The JDBC API has Java classes to represent database connections,

SQL statements, result sets, etc... It allows a Java programmer to send SQL queriesto a database and
process the returned results.

The JDBC API isimplemented using a driver manager that can support multiple drivers connecting to
different databases. These drivers can either be:

Written completely in Java, so that they may be downloaded within an applet, or

written using native methods to bridge existing database access libraries.

The Connection Object:

The Connection object represents a connection with a database. A connection session includes the SQL

statements that are executed and the results that are returned over the connection. One application may have
more than one connection with the same database, or multiple different databases.

The Statement Object:
The Statement object is used to send SQL statements to a database. There are three kinds of Statement
object that acts as containers for executing SQL statements on a connection.

A Statement object - used to execute simple SQL statements with no parameters.

A PreparedStatement object - inherits from Statement and is used to execute a precompiled SQL
statement, with or without parameters.

A CallableStatement inherits from PreparedStatement and is used to execute a call to a database
stored procedure.

So the Statement object is the generic form and the PreparedStatement/CallableStatement are specialised
formsfor sending particular SQL statements.

The ResultSet Object

The ResultSet contains all the rows that satisfy the conditionsin the SQL statement. It has a set of methods,

getString(), getFloat(), getDate() etc.. to provide access to the datain these rows. The resultSet.next()
method is used to move to the next row of the ResultSet.

TheDriver Manager

Thedriver manager dynamically maintains all the driver objects that the application needs for performing
database queries. If we have two different databases that we wish to connect to, we need to load in two

different driver objects. The driver objects register themselves with the driver manager at the time of
loading, which we can request using the Class.forName() method. The driver manager also takes care of
maintenance tasks, such as driver login time limits, log tracking etc..

18 markg

(b) Write a Java gpplication that usesthe AWT package to write an application as shown
in the figure. The colour can be chosen using the options on the left and the mouse may
be used to draw wherever the button is pressed. Remember that the picture must stay
vigble after the gpplication is minimized and then maximized. A code sample is provided
to get you Sarted.

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 10 of 10.

E%Painter Application] = I I:Ilﬁ]

Red | Green | Blue |

import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class PainterApp extends Frame implements ActionListener, WindowListener
{

Color currentColor;

Button red, green, blue;

MyCanvas c;

PainterApp()
{
super("Painter Application™);

Panel topPanel = new Panel();
topPanel.setLayout(new FlowLayout());
red = new Button("Red");
red.addActionListener(this);

green = new Button("Green");
green.addActionListener(this);

blue = new Button("Blue");
blue.addActionListener(this);

topPanel.add(red);
topPanel.add(green);
topPanel.add(blue);
this.add("North", topPanel);

¢ = new MyCanvas();
this.add("Center", c);

this.addWindowListener(this);
this.setSize(300,300);

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 11 of 11.

this.show();

}

public void actionPerformed(ActionEvent €)

{
if (e.getSource().equals(red)) c.setColor(Color.red);
else if (e.getSource().equals(green)) c.setColor(new Color(0,255,0));
else c.setColor(new Color(0,0,255));

}

public void windowOpened(WindowEvent e) {}
public void windowClosed(WindowEvent e) {}
public void windowClosing(WindowEvent e) {
this.dispose();
System.exit(0);

public void windowlconified(WindowEvent €) {}
public void windowDeiconified(WindowEvent e) {}
public void windowActivated(WindowEvent e) {}
public void windowDeactivated(WindowEvent e) {}

public static void main(String[] args)

{
}

new PainterApp();

class MyCanvas extends Canvas implements MouseListener

{

Color curColour;

int x1,y1,x2,y2;

boolean pressed = false;
Vector v;

MyCanvas()

this.curColour = new Color(0,0,0);
this.addMouseListener(this);
v = new Vector(100);

public void paint(Graphics g)

{
g.drawRect(10,10,280,240);

g.setColor(curColour);
g.drawLine(x1,y1,x2,y2);

}

public void setColor(Color theColour) { this.curColour = theColour; }

public void mousePressed(MouseEvent e) {
x1=e.getX();
yl=e.getY();
pressed = true;

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 12 of 12.

public void mouseReleased(MouseEvent e) {
x2=e.getX();
y2=e.getY();
pressed = false;
repaint();

public void mouseClicked(MouseEvent e) {}

public void mouseEntered(MouseEvent e) {}
public void mouseExited(MouseEvent e) {}

[17 marks basad on sructure and initiative]

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 13 of 13.

Question 5.

(a) What does object seridization mean?

Before the advent of object serialization, if the programmer wished to send objects over a network, it was
necessary to break up the objectsinto its constituent parts, ints, arrays etc. Object serialization makes this a
relatively simple task. Once an object is committed to astream its state isfixed. The usual means of
communicating through streamsis a procedural one, the client sends arequest, and the server sends a

response. Serialization alone requires the user to maintain the protocol for communicating.

[3 markg

(b) A JavaVector (javautil.vector) is a useful gorage mechaniam cass Compareit to an
array and outline its advantages and disadvantages. Give an example of how you
might useiit.

A Vector classimplements agrowable array of objects. Like an array it contains components that can be

accessed using an integer index. However, the size of avector can grow or shrink as needed. It has no
serious disadvantages other than the overhead associated with a class/object.

Vector v = new vector(4); // space for 4 objectsinitialy
v.add(new String(“test”));
for (int i=0; i<v.5z&(); i++)
String s = (String) v.elementAt(i);
[6 marks — 3 for the description and 3 for code example]

(c) Write a Java client/server pair, where the client sends aVector (java.util.vector) object
containing a number of words to the server and the server sorts the vector
aphabeticaly and sends back a vector with the sorted words. The dient should then
display the sorted words.

eg. Send —[“Hdlo” “World” “Dog” “Cat” “House’] asaVector and receive back
[“Ca” “Dog’ “Hdlo” “Housg’ “World'].

Y ou have been supplied with three sets of code to handle the basic aspects of this
goplication. Thee arecdled

?7? Client.java,

?7? Server.javaand

7? ConnectionHandler java
These filesarein the directory question5.

Solution:

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 14 of 14.

ommand Prompt - java SortServer

Teaching Documents~EES53 (2088—2881)“exanple3d>dir
Uolume in drive D iz Perszonal Files
Jolume Serdial Humbher iz BA88-53BD

Directory of D:“\Teaching Documents“EES53 <(2000-2801>vexampled

31-10-2881 16:83 <DIR> &
31-10-2881 16:83 <DIR> i
31-10-.2001 16:15 2,226 HandleConnection.class
311020801 16:12 2,583 HandleGConnection.java
31-,18-.2001 16:23 2,522 SortClient.class
31-10-.2881 16:23 2.518 SortClient. java
31-18-28801 16:21 1,759 SortServer.class
31102881 15:55 1,738 SortServer.java
31-10-2801 16:22 655 SortService.class
31i-168-.2881 16:22 456 SortService.java

8 File<s> 14,649 bhytes

2 Divrds> 253.867.264 hytes free

D:~Teaching Documents~EES53 (2BB0-2801>vexampled>java SortServer
Start listening on port 5858

Accepted socket connection from client

Received: [Helleo. Dog. Cat. Fishl

Sending [Cat, Dog, Fiszh,. Hellol

mmand Prompt

16:15% 2.226 HandleConnection.class
16:12 2.583 HandleConnection.java
16:=23 2,522 SortClient.class
16:23 2,518 SortClient. java
16:21 1.75% SortServer.class
15:55 1.938 SortServer.java
16:22 655 SortService.class
16:22 456 SortService.java

8 File<s> 14,649 hytes

2 Dircs) 253,867,264 bytes free

D:~Teaching Documents“EE553 (2BB0-2801)vwexampled>java SortClient localhost
Connected to Server

Sending Uector

Sending [Hello,. Dog. Cat. Fishl

Documents~EES53 (200A-2001)~exampled>

/I The Sort Client - written by Derek Molloy

import java.net.*;
import java.io.*;
import java.util.*;

public class SortClient

{

private Socket socket = null;
private ObjectOutputStream os = null;
private ObjectinputStream is = null;

/Il the constructor expects the IP address of the server - the port is fixed
public SortClient(String serverlP)
{

if (lconnectToServer(serverlP))

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 15 of 15.

System.out.printin("Cannot open socket connection...");

}
}
private boolean connectToServer(String serverlP)
{
try /l open a new socket to port: 5050
{

this.socket = new Socket(serverlP,5050);

this.os = new ObjectOutputStream(this.socket.getOutputStream());
this.is = new ObjectinputStream(this.socket.getinputStream());
System.out.print("Connected to Server\n");

}

catch (Exception ex)

System.out.print("Failed to Connect to Server\n" + ex.toString());
System.out.printIn(ex.toString());
return false;

}
return true;
}
private void sortVector(Vector v)
{
System.out.printin("Sending Vector");
this.send(v);
Vector theReturn = (Vector)receive();
if (theReturn != null)
{
for (int i=0; i<v.size(); i++)
{
String s = (String) theReturn.elementAt(i);
System.out.printin(s+"\n");
}
}
}

// method to send a generic object.
private void send(Object o) {
try
{

System.out.printin("Sending " + 0);
os.writeObject(0);

os.flush();
catch (Exception ex)
{
System.out.printin(ex.toString());
}
}

/I method to receive a generic object.
private Object receive()

{
Object o = null;
try
Object Oriented Programming — EES53 Semester One Solutions 2002

Page 16 of 16.

o = is.readObject();
}

catch (Exception ex)

{
System.out.printin(ex.toString());
}

return o;

}

static public void main(String argsl])
{

Vector testVector = new Vector();
testVector.add("Hello");

testVector.add("Dog");
testVector.add("Cat");
testVector.add("Fish");

if(args.length>0)

{
SortClient theApp = new SortClient(args[0]);

try
{
theApp.sortVector(testVector);

catch (Exception ex)

System.out.printin(ex.toString());

else

System.out.printin("Error: you must provide the IP of the server");
System.exit(1);

}
System.exit(0);

}

/l The DateServer - by Derek Molloy

import java.net.*;
import java.io.*;

public class SortServer

{

public static void main(String argsl])

{

ServerSocket serverSocket = null;
try

serverSocket = new ServerSocket(5050);

System.out.printin("Start listening on port 5050");

}
catch (IOException e)

{

System.out.printin("Cannot listen on port: " + 5050 + ", " + e);
System.exit(1);

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 17 of 17.

}

while (true) // infinite loop - wait for a client request

{
Socket clientSocket = null;
try

clientSocket = serverSocket.accept();
System.out.printin("Accepted socket connection from client");

catch (IOException e)
{
System.out.printin("Accept failed: 5050 " + e);
break;
} Il create a new thread for the client
HandleConnection con = new HandleConnection(clientSocket);
if (con == null)
{
try

ObjectOutputStream 0s = new
ObjectOutputStream(clientSocket.getOutputStream());

os.writeObject("error: Cannot open socket thread");

os.flush();

os.close();

catch (Exception ex)

System.out.printin("Cannot send error back to client: 5050 " + ex);
}
}
else { con.init(); }
}
try
{ _ .
System.out.printin("Closing server socket.");
serverSocket.close();

catch (IOException e)
{

System.err.printin("Could not close server socket. " + e.getMessage());

}

}
}

/I The connection handler class - by Derek Molloy
import java.net.*;

import java.io.*;
import java.util.*;

public class HandleConnection

{
private Socket clientSocket; /I Client socket object
private ObjectinputStream is; /Il Input stream
private ObjectOutputStream os; // Output stream
private SortService theSortService;
Object Oriented Programming — EES53 Semester One Solutions 2002

Page 18 of 18.

/I The constructor for the connecton handler
public HandleConnection(Socket clientSocket)

{

this.clientSocket = clientSocket;
theSortService = new SortService();

}

/** Thread execution method */
public void init()

{
String inputLine;

try
this.is = new ObjectinputStream(clientSocket.getinputStream());

this.os = new ObjectOutputStream(clientSocket.getOutputStream());
while (this.readCommand()) {}

}
catch (IOException e)
{
e.printStackTrace();
}

}

/** Receive and process incoming command from client socket */
private boolean readCommand()

{

Vector v = null;

try
{
v = (Vector)is.readObject();

catch (Exception e)
v = null;
if (v ==null)

this.closeSocket();
return false;

}
System.out.printin("Received: "+v.toString());

theSortService.setData(v);
this.getSorted();

return true;

}

private void getSorted()
{

Vector returnData = theSortService.sortData();
this.send(returnData);

}

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 19 of 19.

/I Send a message back through the client socket
private void send(Object o)
{
try
{
System.out.printin("Sending " + 0);
this.os.writeObject(0);
this.os.flush();

catch (Exception ex)

{

}
}

ex.printStackTrace();

/I Send a pre-formatted error message to the client
public void sendError(String msg)
{
this.send("error:" + msg); /lremember a string I1S-A object!

}

/I Close the client socket
public void closeSocket() /[close the socket connection
{
try
{
this.os.close();
this.is.close();
this.clientSocket.close();

}

catch (Exception ex)

{

}
}

}

System.err.printin(ex.toString());

/I The DateTimeService that provides the current date
/I by Derek Molloy.

import java.util.*;
public class SortService
{

Vector v;

public SortService()
{

}

public Vector sortData()
{

v = new Vector();

Object 0[] = v.toArray();

Arrays.sort(0);

Object Oriented Programming — EES53 Semester One Solutions 2002
Page 20 of 20.

Vector x = new Vector();
for (int i=0; i<o.length; i++)

x.add(o[i]);

}

return Xx;
}
public void setData(Vector v)
{

this.v = v;
}

}
[16 marks — 8 for sructure and 8 for coding that shows initiative]
Object Oriented Programming — EES53 Semester One Solutions 2002

Page21 of 21.

