
Object Oriented Programming – EE553 Semester One Solutions 2002
Page 1 of 1.

SEMESTER ONE EXAM SOLUTIONS 2002

Question 1.

(a) Answer the following short questions. Keep your answers concise.

(i) How is scope resolution performed in C++?
• An automatic variable is a variable with a scope local to the block of code in which

it was declared. Generally automatic variables are declared within functions,
destroyed when the function ends.

• An external variable is used to declare a variable that is defined in some other
module. (e.g.use: extern float x;)

• A static variable is used to make a variable private to the module in which it occurs,
when used with the definition of a global variable.

The scope level can be resolved by the rules of scope, otherwise if required a variable at a
different level can be used by using the scope resolution operator :: - for example Car.draw() is a
method that could be called from a derived class.
(ii) What is a JIT compiler?
When a Java applet is executed for the first time, the speed at which it executes may seem
disappointing. The reason being that the Java applet's bytecode is interpreted by the JVM rather
than compiled to native machine instructions. The solution to this problem lies in the Microsoft
developed Just-In-Time (JIT) compiler. The JIT compiler reads the bytecode of the Java applet
and converts it into native machine code for the intended operating system. Once the Java applet is
converted into machine code it runs like a natively compiled program. The JIT compiler can, in
certain cases, improve the run-time speed of applets by a factor of 5-10 times.
(iii) Explain the term event listener.
An event listener allows an application to listen for events. For example an action listener can be
used to listen for button presses or enter presses within a textField. Events are generated when the
button is pressed or when the button is pressed. You can use for example
myTextField.addActionListener(this) to add a listener to a component.
(iv) Explain the concept of the Class class in Java.
Objects of this class (called class descriptors) are automatically created and associated with
objects to which they refer. For example the getName() and toString() methods return the String
containing the name of the class or interface… We could use this to maybe compare the classes of
objects…
(v) In C++ what is a static global variable and why would it be used?
A global variable has scope throughout the entire application. A static global variable is used to
make a variable private to the module in which it occurs, when used with the definition of a global
variable .
(vi) What is meant by the term polymorphism?
A derived class inherits its functions or methods from the base class, often including the
associated code. It may be necessary to redefine an inherited method specifically for one of the
derived classes, i.e. alter the implementation. So, polymorphism is the term used to describe the
situation where the same method name is sent to different objects and each object may respond
differently.So polymorphism:- allows different kinds of objects that share a common behaviour to
be used in code that only requires that common behaviour.

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 2 of 2.

(vii) In the following piece of code explain what occurs. What is the value of x
and y after execution (i.e. after the last line)?

int x=1,y=5,*p,*q;
p = &y; q=&x;
*p+=5;
*(q+=2);

 Importantly we are operating on the pointer. P points to y and q points to x . *p+=5 increments the
value at y by 5 = 10, but the second operation on q moves the pointer by 2. At the end the value of
x is 1 and the value of y is 10.

 [14 marks]

(b) What are Java Interfaces? Why and when are they used? Give an application
example of when you might write your own interface.

A Java Interface is a way of grouping methods that describe a particular behaviour. They allow developers

to reuse design and they capture similarity, independent of the class hierarchy. We can share both
methods and constants – no states.
• Methods in an interface are public and abstract.
• Instance variables in an interface are public, static and final.

public interface Demo
{
 void go();
 void stop();
}

public class SomeClass extends XYZ implements Demo
{
 public void go()
 {
 // write code here…
 }

 public void stop()
 {
 // write code here…
 }
}

Consider the mouse. We may write many applications that use the mouse, and within this application, the
mouse is used in different ways by different components. We can define a common interface for the
mouse that each one of these components implements. These components then share a common
defined interface.

[6 marks – 4 for desc. 2 for example]

(c) Discuss constructors in C++. Can they be overloaded? Why can they not be virtual?
In what order are they called when inheritance takes place?

A Constructor can be used for the task of initialising data within a class:
•It is a member function that has the same name as the class name . C++ calls the constructor of the base
class and eventually calls the constructor of the derived class.
•A constructor must not have a declared return value (not even void!)
•A constructor cannot be virtual. The constructor is specific to the class that it is declared in. A new
constructor must be declared for children classes as it must be specific to that class.

An example constructor code for the class Account:

// A constructor code example

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 3 of 3.

class account{
 int myAccountNumber;
 float myBalance;
 public:
 // the constructor definition
 account(float aBalance, int anAccNumber);
};
// the constructor code implementation
account::account(int anAccNumber, float aBalance)
{
 myAccountNumber = anAccNumber;
 myBalance = aBalance;
}
// now call the constructor!
void main()
{
 account anAccount = account(35.00,34234324); //OK
 account testAccount(0.0, 34234325); //OK
 account myAccount; //Wrong!
}

•If a class has a constructor then the arguments must be supplied. The constructor can be overloaded
allowing other constructors to be added to the same class.
•in main() above the first two object creation calls (for anAccount and testAccount) are correct and it is up
to the users style of programming. The third object construction (for myAccount) is incorrect, as the
parameters are not provided to match the declared constructor!

[5 marks – one for each point and 2 for code/other points]

Question 2.

(a) Explain multiple inheritance in C++. Why is a useful feature? How does it lead to

difficulties in the design process? In particular explain the use of the virtual keyword
when it is used in relation to multiple inheritance.

Multiple inheritance is one aspect of C++ that leads to complications, especially when a defined class
inherits from two classes.

Fig Q2(a)-1 – An example where multiple base class objects are required.

Lodgement Withdrawal

fundTransfer

Transaction Transaction
protected:
 time theTime;

protected:
 time theTime;

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 4 of 4.

In Q2(a)-1 A Lodgement ISA Transaction, a Withdrawal ISA Transaction and at different t imes during
execution a fundTransfer is a Lodgement or a Withdrawal.
Two separate transaction objects are being used, and they do not interfere with each other.
When referring to a transaction object on the other hand, you must be careful to resolve the
ambiguity that results.

class fundTransfer: public Lodgement,
 public Withdrawal
{ public: time timeTaken(){
 return abs(Lodgement::theTime
 - Withdrawal::theTime);
 }
};

Any methods that are common to both parents must be referred to it unambiguously. For example if you:
 fundTransfer *fundPtr;
 fundPtr -> display(); // not allowed – ambiguous
 fundPtr -> Lodgement::display(); // OK!
 fundPtr -> Withdrawal::display(); // OK!
This is awkward. It is often better to declare a new display() method in the fundTransfer class to try to
avoid this disambiguation.

Virtual Functions and Multiple Inheritance
Here is an example of what goes on when using a virtual function in a multiple inheritance
hierarchy. The virtual function selects the definition of that function closest to the most
derived class:

In Q2(a)-2 Since account contains the balance of the account, and SpecialCurrent is a type of account, we
do not want the balance to be duplicated, i.e. SpecialCurrent should only have one instance of its common
indirect base class. We do this by declaring the base class to be virtual.

class Current: public virtual account { // etc..
};
class Deposit: public virtual account {
 // etc..
};

class SpecialCurrent:
 public virtual Current,
 public virtual Deposit{
// etc.. This allows future reuse of SpecialCurrent
};

Fig Q2(a)-2 – An example where multiple base class objects are not required.

Current Deposit

SpecialCurrent

account

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 5 of 5.

We are declaring that if either Current or Deposit should be used in a multiple inheritance hierarchy, then
they should share the same instance of account with any other class that uses virtual inheritance of account.
This leads to difficulties in the design process as we must determine at the time that we write deposit and
current accounts that we are going to further develop a joint account. If this is not determined at this time
then it will be necessary to alter and recompile these classes.

[10 marks – 5 for good example, 5 for other points from question]

(b) Write a section of code in C++ that demonstrates how you would structure multiple
inheritance for banking software where the following account Classes exist:
?? DepositAccount (which includes an interest rate state),
?? CurrentAccount (which includes an overdraft limit state),
?? Account (which is generic account with balance and account number states)
?? Cashsave (which has an overdraft limit and an interest rate for credit balances)
The code should include the following functionality:
?? display() (which displays the details relevant to the object)
?? makeLodgement()
?? makeWithdrawal()
?? Relevant constructors
Do not use separate compilation for this task, i.e. use one C++ file for your code.
Show an example of your class working.

#include<iostream.h>

class Account
{
 private:
 float balance;
 int accountNumber;
 public:
 Account(float theBal, int theActNum);
 virtual void display();
 virtual void makeLodgement(float);
 virtual void makeWithdrawal(float);
};

Account::Account(float theBal, int theActNum)
{
 balance = theBal;
 accountNumber = theActNum;
}

void Account::display()
{
 cout<< "The balance is £" << balance <<endl;
 cout<< "The account number is " << accountNumber << endl;

}

void Account::makeLodgement(float amount)
{
 balance+=amount;
}

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 6 of 6.

void Account::makeWithdrawal(float amount)
{
 balance-=amount;
}

class DepositAccount: virtual Account
{
 private:
 float interestRate;
 public:
 DepositAccount(float rate, float theBal, int theActNum);
 virtual void display();
};

DepositAccount::DepositAccount(float rate, float theBal, int theActNum):
 Account(theBal, theActNum)
{
 interestRate = rate;
}

void DepositAccount::display()
{
 Account::display();
 cout << "The interest rate is " << interestRate << endl;
}

class CurrentAccount: virtual Account
{
 private:
 float overdraftLimit;
 public:
 CurrentAccount(float overdraft, float theBal, int theActNum);
 virtual void display();
};

CurrentAccount::CurrentAccount(float overdraft, float theBal, int theActNum):
 Account(theBal, theActNum)
{
 overdraftLimit = overdraft;
}

void CurrentAccount::display()
{
 Account::display();
 cout << "The overdraft limit is " << overdraftLimit << endl;
}

class CashSaveAccount: CurrentAccount, DepositAccount
{
 private:

 public:
 CashSaveAccount(float overdraft, float interest, float theBal, int theActNum);
 virtual void display();
};

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 7 of 7.

CashSaveAccount::CashSaveAccount(float overdraft, float interest, float theBal, int
theActNum):
 Account(theBal, theActNum),
 CurrentAccount(overdraft, theBal, theActNum),
 DepositAccount(interest, theBal, theActNum)
{}

void CashSaveAccount::display()
{
 DepositAccount::display();
 CurrentAccount::display();
}

void main()
{
 CashSaveAccount a(5000,5,200,12345);
 a.display();

}

[15 marks]

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 8 of 8.

Question 3.

(a) What is Remote Method Invocation (RMI) and how is it used in Java? Explain the
terms skeletons and stubs. What are the limitations of RMI?

Remote method invocation (RMI) is a full-grown architecture for distributed computing, scalable to very
complex tasks. Serialization handles the details of writing object level protocols, so the programmer can
send objects to a stream without worrying about their structure. RMI provides a way of distributing objects
as services so that a remote service request looks like a local request. The object is stationed in one place
and the VM is responsible for serving the object declared exportable and puts it where an RMI object
server can call on it when a request comes in. Once the object is exported, RMI takes care of the rest:

?? Serialization
?? Object transport
?? Exception handling
?? Security management.

Advance knowledge of the remote calls is essential. This involved the use of a pair of classes called
skeletons and stubs . These two classes are derived directly from the class file of the remote object. When
the remote client calls on the object, it does so by a lookup. This lookup is coded into the client, as are the
calls to the object’s methods. If the lookup succeeds the RMI server returns the remote object’s stub,
which is a stand-in for the remote object’s class and methods. On a call to any of one of these methods, the
stub sends the request to the skeleton reference, which resides on the server side. The skeleton retrieves the
operations of the method to co-ordinate routing the object’s response back through the stub.

[9 marks- 2 each for stubs and skeletons – 5 for remaining description]

(b) Write a Java application that uses the Java Swing set to create the following
application. It is a stopwatch that starts when the “start” button is pressed and stops
when the “stop” button is pressed.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

public class SwingApp extends JFrame implements ActionListener, WindowListener, Runnable
{
 JButton start, stop;
 JTextField count;
 private int countValue = 0;
 private boolean running = false;
 Thread t;

 SwingApp()
 {
 super("Counter Application");
 start = new JButton("Start");
 start.addActionListener(this);

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 9 of 9.

 stop = new JButton("Stop");
 stop.addActionListener(this);
 count = new JTextField(5);
 this.getContentPane().setLayout(new FlowLayout());
 this.getContentPane().add(count);
 this.getContentPane().add(start);
 this.getContentPane().add(stop);
 this.addWindowListener(this);
 this.setSize(400,80);
 this.show();
 }

 public void actionPerformed(ActionEvent e)
 {
 if(e.getSource().equals(start))
 {
 t = new Thread(this);
 this.running = true;
 this.countValue = 0;
 t.start();
 }
 else
 {
 this.running = false;
 }
 }

 public void windowOpened(WindowEvent e) {}
 public void windowClosed(WindowEvent e) {}
 public void windowClosing(WindowEvent e) {
 this.dispose();
 System.exit(0);
 }
 public void windowIconified(WindowEvent e) {}
 public void windowDeiconified(WindowEvent e) {}
 public void windowActivated(WindowEvent e) {}
 public void windowDeactivated(WindowEvent e) {}

 public void run()
 {
 while(this.running)
 {
 this.countValue++;
 count.setText(""+countValue);
 try{
 t.sleep(100);
 }
 catch(InterruptedException e) {}
 }
 }

 public static void main(String[] args)
 {
 new SwingApp();
 }
}

[16 marks – half marks for structure – rest for innovation]

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 10 of 10.

Question 4.

(a) What is JDBC? Give an example of how it may be used. Explain the key steps and
terms related to JDBC.

A large amount of software development involves the development of client/server applications. Java
provides huge advantages when developing software for client/server applications, but also provides
advantages when developing client/server database applications. The facilities to do this in Java are
provided by Java DataBase Connectivity (JDBC). JDBC allows the development of platform and database
independent data handling solutions. The JDBC API has Java classes to represent database connections,
SQL statements, result sets, etc... It allows a Java programmer to send SQL queries to a database and
process the returned results.

The JDBC API is implemented using a driver manager that can support multiple drivers connecting to
different databases. These drivers can either be:

Written completely in Java, so that they may be downloaded within an applet, or
written using native methods to bridge existing database access libraries.
The Connection Object:

The Connection object represents a connection with a database. A connection session includes the SQL
statements that are executed and the results that are returned over the connection. One application may have
more than one connection with the same database, or multiple different databases.

The Statement Object:

The Statement object is used to send SQL statements to a database. There are three kinds of Statement
object that acts as containers for executing SQL statements on a connection.

A Statement object - used to execute simple SQL statements with no parameters.

A PreparedStatement object - inherits from Statement and is used to execute a precompiled SQL
statement, with or without parameters.

A CallableStatement inherits from PreparedStatement and is used to execute a call to a database
stored procedure.

So the Statement object is the generic form and the PreparedStatement/CallableStatement are specialised
forms for sending particular SQL statements.

The ResultSet Object

The ResultSet contains all the rows that satisfy the conditions in the SQL statement. It has a set of methods,
getString(), getFloat(), getDate() etc.. to provide access to the data in these rows. The resultSet.next()
method is used to move to the next row of the ResultSet.

The Driver Manager

The driver manager dynamically maintains all the driver objects that the application needs for performing
database queries. If we have two different databases that we wish to connect to, we need to load in two
different driver objects. The driver objects register themselves with the driver manager at the time of
loading, which we can request using the Class.forName() method. The driver manager also takes care of
maintenance tasks, such as driver login time limits, log tracking etc..

[8 marks]

(b) Write a Java application that uses the AWT package to write an application as shown
in the figure. The colour can be chosen using the options on the left and the mouse may
be used to draw wherever the button is pressed. Remember that the picture must stay
visible after the application is minimized and then maximized. A code sample is provided
to get you started.

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 11 of 11.

import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class PainterApp extends Frame implements ActionListener, WindowListener
{
 Color currentColor;
 Button red, green, blue;
 MyCanvas c;

 PainterApp()
 {
 super("Painter Application");

 Panel topPanel = new Panel();
 topPanel.setLayout(new FlowLayout());
 red = new Button("Red");
 red.addActionListener(this);
 green = new Button("Green");
 green.addActionListener(this);
 blue = new Button("Blue");
 blue.addActionListener(this);

 topPanel.add(red);
 topPanel.add(green);
 topPanel.add(blue);

 this.add("North", topPanel);

 c = new MyCanvas();
 this.add("Center", c);

 this.addWindowListener(this);
 this.setSize(300,300);

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 12 of 12.

 this.show();
 }

 public void actionPerformed(ActionEvent e)
 {
 if (e.getSource().equals(red)) c.setColor(Color.red);
 else if (e.getSource().equals(green)) c.setColor(new Color(0,255,0));
 else c.setColor(new Color(0,0,255));
 }

 public void windowOpened(WindowEvent e) {}
 public void windowClosed(WindowEvent e) {}
 public void windowClosing(WindowEvent e) {
 this.dispose();
 System.exit(0);
 }
 public void windowIconified(WindowEvent e) {}
 public void windowDeiconified(WindowEvent e) {}
 public void windowActivated(WindowEvent e) {}
 public void windowDeactivated(WindowEvent e) {}

 public static void main(String[] args)
 {
 new PainterApp();
 }
}

class MyCanvas extends Canvas implements MouseListener
{
 Color curColour;
 int x1,y1,x2,y2;
 boolean pressed = false;
 Vector v;

 MyCanvas()
 {
 this.curColour = new Color(0,0,0);
 this.addMouseListener(this);
 v = new Vector(100);
 }

 public void paint(Graphics g)
 {
 g.drawRect(10,10,280,240);
 g.setColor(curColour);
 g.drawLine(x1,y1,x2,y2);

 }

 public void setColor(Color theColour) { this.curColour = theColour; }

 public void mousePressed(MouseEvent e) {
 x1=e.getX();
 y1=e.getY();
 pressed = true;
 }

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 13 of 13.

 public void mouseReleased(MouseEvent e) {
 x2=e.getX();
 y2=e.getY();
 pressed = false;
 repaint();
 }
 public void mouseClicked(MouseEvent e) {}
 public void mouseEntered(MouseEvent e) {}
 public void mouseExited(MouseEvent e) {}
}

[17 marks based on structure and initiative]

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 14 of 14.

Question 5.

(a) What does object serialization mean?

Before the advent of object serialization, if the programmer wished to send objects over a network, it was
necessary to break up the objects into its constituent parts, ints, arrays etc. Object serialization makes this a
relatively simple task. Once an object is committed to a stream its state is fixed. The usual means of
communicating through streams is a procedural one, the client sends a request, and the server sends a
response. Serialization alone requires the user to maintain the protocol for communicating.

[3 marks]

(b) A Java Vector (java.util.vector) is a useful storage mechanism class. Compare it to an
array and outline its advantages and disadvantages. Give an example of how you
might use it.

A Vector class implements a growable array of objects. Like an array it contains components that can be
accessed using an integer index. However, the size of a vector can grow or shrink as needed. It has no
serious disadvantages other than the overhead associated with a class/object.

 Vector v = new vector(4); // space for 4 objects initially

 v.add(new String(“test”));

 for (int i=0; i<v.size(); i++)

 String s = (String) v.elementAt(i);

[6 marks – 3 for the description and 3 for code example]

(c) Write a Java client/server pair, where the client sends a Vector (java.util.vector) object
containing a number of words to the server and the server sorts the vector
alphabetically and sends back a vector with the sorted words. The client should then
display the sorted words.

 e.g. Send – [“Hello” “World” “Dog” “Cat” “House”] as a Vector and receive back
[“Cat” “Dog” “Hello” “House” “World”].

You have been supplied with three sets of code to handle the basic aspects of this
application. These are called

?? Client.java,
?? Server.java and
?? ConnectionHandler.java

These files are in the directory question5.

Solution:

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 15 of 15.

// The Sort Client - written by Derek Molloy

import java.net.*;
import java.io.*;
import java.util.*;

public class SortClient
{

 private Socket socket = null;
 private ObjectOutputStream os = null;
 private ObjectInputStream is = null;

 // the constructor expects the IP address of the server - the port is fixed
 public SortClient(String serverIP)
 {
 if (!connectToServer(serverIP))

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 16 of 16.

 {
 System.out.println("Cannot open socket connection...");
 }
 }

 private boolean connectToServer(String serverIP)
 {
 try // open a new socket to port: 5050
 {
 this.socket = new Socket(serverIP,5050);
 this.os = new ObjectOutputStream(this.socket.getOutputStream());
 this.is = new ObjectInputStream(this.socket.getInputStream());
 System.out.print("Connected to Server\n");
 }
 catch (Exception ex)
 {
 System.out.print("Failed to Connect to Server\n" + ex.toString());
 System.out.println(ex.toString());
 return false;
 }
 return true;
 }

 private void sortVector(Vector v)
 {

 System.out.println("Sending Vector");
 this.send(v);
 Vector theReturn = (Vector)receive();
 if (theReturn != null)
 {
 for (int i=0; i<v.size(); i++)
 {
 String s = (String) theReturn.elementAt(i);
 System.out.println(s+"\n");
 }

 }
 }

 // method to send a generic object.
 private void send(Object o) {
 try
 {
 System.out.println("Sending " + o);
 os.writeObject(o);
 os.flush();
 }
 catch (Exception ex)
 {
 System.out.println(ex.toString());
 }
 }

 // method to receive a generic object.
 private Object receive()
 {
 Object o = null;
 try

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 17 of 17.

 {
 o = is.readObject();
 }
 catch (Exception ex)
 {
 System.out.println(ex.toString());
 }
 return o;
 }

 static public void main(String args[])
 {
 Vector testVector = new Vector();
 testVector.add("Hello");
 testVector.add("Dog");
 testVector.add("Cat");
 testVector.add("Fish");

 if(args.length>0)
 {
 SortClient theApp = new SortClient(args[0]);
 try
 {
 theApp.sortVector(testVector);
 }
 catch (Exception ex)
 {
 System.out.println(ex.toString());
 }
 }
 else
 {
 System.out.println("Error: you must provide the IP of the server");
 System.exit(1);
 }
 System.exit(0);
 }
}

// The DateServer - by Derek Molloy

import java.net.*;
import java.io.*;

public class SortServer
{
 public static void main(String args[])
 {
 ServerSocket serverSocket = null;
 try
 {
 serverSocket = new ServerSocket(5050);
 System.out.println("Start listening on port 5050");
 }
 catch (IOException e)
 {
 System.out.println("Cannot listen on port: " + 5050 + ", " + e);
 System.exit(1);

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 18 of 18.

 }
 while (true) // infinite loop - wait for a client request
 {
 Socket clientSocket = null;
 try
 {
 clientSocket = serverSocket.accept();
 System.out.println("Accepted socket connection from client");
 }
 catch (IOException e)
 {
 System.out.println("Accept failed: 5050 " + e);
 break;
 } // create a new thread for the client
 HandleConnection con = new HandleConnection(clientSocket);
 if (con == null)
 {
 try
 {
 ObjectOutputStream os = new

ObjectOutputStream(clientSocket.getOutputStream());
 os.writeObject("error: Cannot open socket thread");
 os.flush();
 os.close();
 }
 catch (Exception ex)
 {
 System.out.println("Cannot send error back to client: 5050 " + ex);
 }
 }
 else { con.init(); }
 }
 try
 {
 System.out.println("Closing server socket.");
 serverSocket.close();
 }
 catch (IOException e)
 {
 System.err.println("Could not close server socket. " + e.getMessage());
 }
 }
}

// The connection handler class - by Derek Molloy

import java.net.*;
import java.io.*;
import java.util.*;

public class HandleConnection
{

 private Socket clientSocket; // Client socket object
 private ObjectInputStream is; // Input stream
 private ObjectOutputStream os; // Output stream
 private SortService theSortService;

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 19 of 19.

 // The constructor for the connecton handler
 public HandleConnection(Socket clientSocket)
 {
 this.clientSocket = clientSocket;
 theSortService = new SortService();
 }

 /** Thread execution method */
 public void init()
 {
 String inputLine;

 try
 {
 this.is = new ObjectInputStream(clientSocket.getInputStream());
 this.os = new ObjectOutputStream(clientSocket.getOutputStream());
 while (this.readCommand()) {}

 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }

 /** Receive and process incoming command from client socket */
 private boolean readCommand()
 {
 Vector v = null;

 try
 {
 v = (Vector)is.readObject();
 }
 catch (Exception e)
 {
 v = null;
 }
 if (v == null)
 {
 this.closeSocket();
 return false;
 }

 System.out.println("Received: "+v.toString());

 theSortService.setData(v);
 this.getSorted();

 return true;
 }

 private void getSorted()
 {
 Vector returnData = theSortService.sortData();
 this.send(returnData);
 }

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 20 of 20.

 // Send a message back through the client socket
 private void send(Object o)
 {
 try
 {
 System.out.println("Sending " + o);
 this.os.writeObject(o);
 this.os.flush();
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 // Send a pre-formatted error message to the client
 public void sendError(String msg)
 {
 this.send("error:" + msg); //remember a string IS-A object!
 }

 // Close the client socket
 public void closeSocket() //close the socket connection
 {
 try
 {
 this.os.close();
 this.is.close();
 this.clientSocket.close();
 }
 catch (Exception ex)
 {
 System.err.println(ex.toString());
 }
 }
}

// The DateTimeService that provides the current date
// by Derek Molloy.

import java.util.*;

public class SortService
{
 Vector v;

 public SortService()
 {
 v = new Vector();
 }

 public Vector sortData()
 {
 Object o[] = v.toArray();

 Arrays.sort(o);

Object Oriented Programming – EE553 Semester One Solutions 2002
Page 21 of 21.

 Vector x = new Vector();
 for (int i=0; i<o.length; i++)
 {
 x.add(o[i]);
 }

 return x;
 }

 public void setData(Vector v)
 {
 this.v = v;
 }
}

[16 marks – 8 for structure and 8 for coding that shows initiative]

