
Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 1 of 22.

Question 1.

(a) Answer the following short questions. Keep your answers concise.

(i) How is scope resolution performed in C++?
(ii) Why are destructors required in C++?
(iii) Explain how Java avoids the difficulties associated with multiple

inheritance?
(iv) Explain the use of the Object class in Java.
(v) In C++ what is a static local variable and why would it be used?
(vi) What does the term overloading mean?
(vii) In the following piece of code explain what occurs. What is the value of x

after execution (i.e. after the last line)? Why?
int x=6, *p;
p = &x;
*p+=++x;

 [14 marks]
[2 marks each part]

1(a)(i)
• An automatic variable is a variable with a scope local to the block of code in
which it was declared. Generally automatic variables are declared within functions,
destroyed when the function ends.
• An external variable is used to declare a variable that is defined in some
other module. (e.g.use: extern float x;)
• A static variable is used to make a variable private to the module in which it
occurs, when used with the definition of a global variable.
The scope level can be resolved by the rules of scope, otherwise if required a variable
at a different level can be used by using the scope resolution operator :: - for example
Car.draw() is a method that could be called from a derived class.

1(a)(ii)
Destructors are used to tidy up objects on their destruction. For example in the case of
a Bank Account object the destructor could print a paper copy of the account object
before it is destroyed. Typically destructors are used in C++ to deallocate memory
that was allocated by an object. This does not refer to states, but rather memory that
was dynamically allocated using pointers and the new keyword. The destructor has
the same name as the class and looks like Account::~Account(). It does not accept any
parameters, or return any values.

1(a)(iii)
Java uses Interfaces to avoid the use of multiple inheritance. A Java Interface is a way

of grouping methods that describe a particular behaviour. They allow developers
to reuse design and they capture similarity, independent of the class hierarchy. We
can share both methods and constants – no states.
• Methods in an interface are public and abstract.
• Instance variables in an interface are public, static and final.

1(a)(iv)
The Object class in Java is actually the parent class of all classes. It defines methods
that are common to all classes. It allows very complex operations to be performed in
the Java language such as transporting objects across a network, storage on a common
stack or file storage using standard methods. It is referenced as java.lang.Object.

1(a)(v)

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 2 of 22.

A static local variable is a variable that has memory allocated to it when it is first
reached during programme execution. It only has local scope but exists until the
program has executed to completion. An example of a static local variable (also
known as a class variable) would be the nextAccountNumber state of the Account
class, as this state is made available to all objects of the Account class.

1(a)(vi)
Overloading – Re-using the same method name with different arguments and possibly
a different return type is known as overloading. In unrelated class there is no issues
when re-using names but in the same class, we can overload methods, provided that
those methods have different argument types. A method may not be distinguished by
return type alone.

1(a)(vii) x will have a value of 14
 the pointer points at the address of x and on the last line
 states that the value of p = p + (++x)
 which increments x before the assignment to 7
 but p points directly at x and so also has a value of 7
 therefore p = 7 + 7 = 14

(b) What is an abstract class? Why would you create an abstract class?

[4 marks]

An Abstract class is a class that is incomplete.

• It cannot be instantiated
• It can only be used through inheritance
• It defines a behaviour that must be present in the child classes
• It is defined in C++ using the =0 assignment

o E.g. void char* getName() =0
• In Java it is defined using the abstract keyword

You could use this to impose a behaviour on the child classes that you can still use
within the base class. A good example of its use is the mouseEvents in Java. You
could use abstract classes to impose a behaviour on a child, or another example would
be the thread class.

(c) Discuss constructors in C++. Can they be overloaded? Why can they not be virtual? In what order

are they called when inheritance takes place? What is the copy constructor and how can it provide
specific functionality?

[7 marks]

A Constructor can be used for the task of initialising data within a class:
•It is a member function that has the same name as the class name. C++ calls the
constructor of the base class and eventually calls the constructor of the derived class.
•A constructor must not have a declared return value (not even void!)
•A constructor cannot be virtual. The constructor is specific to the class that it is
declared in. A new constructor must be declared for children classes as it must be
specific to that class.

An example constructor code for the class Account:

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 3 of 22.

// A constructor code example
class account{
 int myAccountNumber;
 float myBalance;
 public:
 // the constructor definition
 account(float aBalance, int anAccNumber);
};
// the constructor code implementation
account::account(int anAccNumber, float aBalance)
{
 myAccountNumber = anAccNumber;
 myBalance = aBalance;
}
// now call the constructor!
void main()
{
 account anAccount = account(35.00,34234324); //OK
 account testAccount(0.0, 34234325); //OK
 account myAccount; //Wrong!
}

•If a class has a constructor then the arguments must be supplied. The constructor can
be overloaded allowing other constructors to be added to the same class.
•in main() above the first two object creation calls (for anAccount and testAccount)
are correct and it is up to the users style of programming. The third object
construction (for myAccount) is incorrect, as the parameters are not provided to
match the declared constructor!

The copy constructor is a default constructor associated with all Classes. It can be
used by simply creating a new object of a class, passing the object that you wish to
copy.

e.g.
Account a(1234, 10);
Account b(a);

Creates a b object of the Account class using a for that states. We can override the
behaviour of this copy constructor to provide specific behaviour. For example it does
not make sense to copy account numbers to new objects. Simply write a method of the
form Account::Account(Account &a) and add specific behaviour.

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 4 of 22.

Question 2.

(a) Explain the use of friend functions in C++. Why are they a useful feature? What difficulties could

arise with the use of friend functions?
[8 marks]

Normal access control has the keywords:
• private – only accessible within the class.
• protected – only accessible within the class and its derived classes.
• public – accessible anywhere.
A class can declare a function to be a friend, allowing that function to access private
and protected members (friendship is granted! Not acquired.)
Example:

class aClass
{ int x;
 friend void someFunction(aClass &);
 public:
 // the interface
};

// This function is somewhere!
void someFunction(aClass &a)
{
 a.x = 5; //allowed!
}

It is important to note that someFunction() is not a member function of the class
aClass. (It does not have scope within the class aClass)
So if we tried:
 aClass b;
 b.someFunction();
This is illegal, as someFunction() is not a member function of aClass.
• Friend functions avoid adding unnecessary public methods to the interface.
• Prevent us having to make member variables public.
• The overuse of friend functions can make the system very complex.
Friendship is not transitive.
Friendship is not inherited.

(b) You will find a section of code on the disk. It contains the outline definition for the Person,
Student, Staff, Lecturer and Postgraduate classes.

• Add constructors for the classes
• Add display() methods to the classes
• Create an array of Person objects and add constructed Lecturer and Postgraduate objects to the

array.
• Loop through the array and call the display() methods of the objects – where the correct

display() method should be called automatically.
[17 marks]

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 5 of 22.

(b) The code given on the disk is:

/* A student record sytem for DCU
 written by Derek Molloy
 29th October 2002 */

#include <iostream>

class Person
{
 private:
 char* name;
 char* idNumber;
 public:
};

class Student: public Person
{
 private:
 char* course;
 public:
};

class Staff: public Person
{
 private:
 float salary;
 int phoneNumber;
 public:
};

class Lecturer: public Staff
{
 private:
 char* researchArea;
 char* module;
 public:
};

class Postgraduate: public Student
{
 private:
 Lecturer supervisor;
 public:
};

void main(void)
{
 cout << "Question 2 Application";
}

This can be modified to:

/* A student record sytem for DCU Solution
 written by Derek Molloy
 29th October 2002 */

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 6 of 22.

#include <iostream>

class Person
{
 private:
 char* name;
 char* idNumber;
 public:
 Person(char* theName, char* theIDNumber);
 virtual void display();
};

Person::Person(char* theName, char* theIDNumber)
{
 name = theName;
 idNumber = theIDNumber;
}

void Person::display()
{
 cout << "Has name: " << name << " and ID number: " << idNumber << endl;
}

class Student: public Person
{
 private:
 char* course;
 public:
 Student(char* theName, char* theIDNumber, char* theCourse);
 virtual void display();
};

Student::Student(char* theName, char* theIDNumber, char* theCourse):
 Person(theName,theIDNumber), course(theCourse) {}

void Student::display()
{
 cout << " Is a student \n";
 Person::display();
 cout << " With a course: " << course << endl;
}

class Staff: public Person
{
 private:
 float salary;
 int phoneNumber;
 public:
 Staff(char*,char*,float,int);
 virtual void display();
};

Staff::Staff(char* theName, char* theIDNumber, float theSalary, int thePhoneNumber):
 Person(theName,theIDNumber), salary(theSalary),
 phoneNumber(thePhoneNumber) {}

void Staff::display()
{

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 7 of 22.

 cout << "Is a staff member. \n";
 Person::display();
 cout << "With Salary of: " << salary << " and phone number: " << phoneNumber <<
endl;
}

class Lecturer: public Staff
{
 private:
 char* researchArea;
 char* module;
 public:
 Lecturer(char*,char*,float,int,char*,char*);
 virtual void display();
};

Lecturer::Lecturer(char* theName, char* theIDNumber, float theSalary, int thePhoneNumber,
char* theResearchArea, char* theModule):
 Staff(theName, theIDNumber, theSalary, thePhoneNumber),
researchArea(theResearchArea),
 module(theModule){}

void Lecturer::display()
{
 cout << "\nObject Is a Lecturer \n";
 Staff::display();
 cout << "With Research area: " << researchArea << " and module: " << module <<
endl;
}

class Postgraduate: public Student
{
 private:
 Lecturer supervisor;
 public:
 Postgraduate(char* theName, char* theIDNumber, char* theCourse, Lecturer
theSupervisor);
 virtual void display();
};

Postgraduate::Postgraduate(char* theName, char* theIDNumber, char* theCourse, Lecturer
theSupervisor):
 Student(theName,theIDNumber, theCourse), supervisor(theSupervisor) {}

void Postgraduate::display()
{
 cout << "\n\nIs a postgraduate\n";
 Student::display();
 cout << "And research Supervisor: " << endl;
 supervisor.display();
}

void main(void)
{
 cout << "Question 2 Application \n\n";

 Lecturer derek("Derek Molloy", "94971056", 10000, 5355, "Vision", "EE553");
 //derek.display();
 Postgraduate jack("Jack Murphy", "90079825", "EEPD1", derek);

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 8 of 22.

 //jack.display();

 //For the last section I created an array of only 2 elements - completes spec.
 Person *p[2] = {&derek, &jack};
 for (int i=0; i<2; i++)
 p[i]->display();
}

[6 marks for the constructors]
[5 marks for the display methods]

[3 marks for the creation of the array]
[3 marks for looping through the array]

[17 marks total]

Question 3
(a) What is Remote Method Invocation (RMI) and how is it used in Java? Explain the terms
skeletons and stubs. What are the limitations of RMI?

[9 marks]

Remote method invocation (RMI) is a full-grown architecture for distributed
computing, scalable to very complex tasks. Serialization handles the details of writing
object level protocols, so the programmer can send objects to a stream without
worrying about their structure. RMI provides a way of distributing objects as services
so that a remote service request looks like a local request. The object is stationed in
one place and the VM is responsible for serving the object declared exportable and
puts it where an RMI object server can call on it when a request comes in. Once the
object is exported, RMI takes care of the rest:

• Serialization
• Object transport
• Exception handling
• Security management.

Advance knowledge of the remote calls is essential. This involved the use of a pair of
classes called skeletons and stubs. These two classes are derived directly from the

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 9 of 22.

class file of the remote object. When the remote client calls on the object, it does so
by a lookup. This lookup is coded into the client, as are the calls to the object’s
methods. If the lookup succeeds the RMI server returns the remote object’s stub,
which is a stand-in for the remote object’s class and methods. On a call to any of one
of these methods, the stub sends the request to the skeleton reference, which resides
on the server side. The skeleton retrieves the operations of the method to co-ordinate
routing the object’s response back through the stub.

[9 marks- 2 each for stubs and skeletons – 5 for remaining description]

(b) Write a Java application that looks like the application below. The application:

• Should open up with the format as shown in (a)
• When the “Set Status” button is pressed the internal frame should appear as in (b)
• When the details are entered in the fields and “Enter Details” is pressed as in (c)
• The Status at the bottom should display the data entered in the fields as in (d)
• If the “Set Status” button is pressed again then it should begin again.

[17 marks]

(a)

(b)

(c)

(d)

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 10 of 22.

Code for The Application Itself:

package mypackage1;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Question3 extends JFrame implements ActionListener
{
 private JDesktopPane theDesktop;
 private MyForm theForm;
 private JButton newForm;
 private JTextField theStatus;

 public Question3()
 {
 super("Question 3 Application");
 this.getContentPane().setLayout(new BorderLayout());
 this.theDesktop = new JDesktopPane();
 this.newForm = new JButton("Set Status");
 this.newForm.addActionListener(this);
 this.theStatus = new JTextField();

 this.getContentPane().add("North", this.newForm);
 this.getContentPane().add("Center", this.theDesktop);
 this.getContentPane().add("South", this.theStatus);

 this.setSize(400,400);
 this.show();
 }

 public void setStatus(String s)
 {
 theStatus.setText(s);
 }

 public void actionPerformed(ActionEvent e)
 {
 this.theForm = new MyForm(this);
 this.theDesktop.add(this.theForm);
 }

 public static void main(String args[])
 {
 new Question3();
 }

}

Code for the Internal Dialog:

package mypackage1;

import javax.swing.*;
import java.awt.*;

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 11 of 22.

import java.awt.event.*;

public class MyForm extends JInternalFrame implements ActionListener
{
 private String firstName;
 private String lastName;
 private JTextField firstField;
 private JTextField lastField;
 private JButton enterName;
 private Question3 theApp;

 public MyForm(Question3 q3)
 {
 super("The Form");
 theApp = q3;

 this.firstField = new JTextField();
 this.lastField = new JTextField();
 this.enterName = new JButton("Enter Details");
 this.enterName.addActionListener(this);

 this.getContentPane().setLayout(new GridLayout(3,2));
 this.getContentPane().add(new JLabel("First Name:"));
 this.getContentPane().add(firstField);
 this.getContentPane().add(new JLabel("Last Name:"));
 this.getContentPane().add(lastField);
 this.getContentPane().add(new JLabel("Press"));
 this.getContentPane().add(enterName);

 this.setSize(250,120);
 this.show();
 }

 public void actionPerformed(ActionEvent e)
 {
 this.firstName = firstField.getText();
 this.lastName = lastField.getText();
 theApp.setStatus(this.firstName + " " + this.lastName);
 this.setVisible(false);
 this.dispose();
 }

}

Important points for marks:

• Develop it as two classes
• Very important to pass the return value to the application
• Lay out the forms
• Implements the action events

An Outline mark allocation (Can change depending on student’s implementation)

 [5 marks for knowledge to create internal frames]
[5 marks for passing value to main window]

[3 marks for layout of main window]
[3 marks for action event implementation]

[16 marks total]

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 12 of 22.

Question 4.

(a) The java.util.Math contains many mathematical operations. In your opinion, why is there no public
constructor for the Math class? Show an example of how you would use the random() method to pick a
random whole number between 1 and 100 (inclusive).

[5 marks]

The Math class is defined as final and has no public constructor. There is no
requirement to create an instance of this class as it does not have any states. All the
methods in the class are static so that they can be called without an object – e.g.
Math.sqrt(25)

int x = (int) (Math.random()*99.9999) + 1;

It is important to add 1 otherwise 100 will never be reached.

(b) Write a Java application that uses a Java Vector and Stack as follows:

• Create an Account class that stores the account number, account balance, account owner and
has a constructor, display(), makeLodgement() and makeWithdrawal() methods.

• In a command line Java application create a Vector object
• Store 3 anonymous Account objects in this vector
• Create a loop, looping through the Vector object and display the details of the Account objects

stored in this vector.
• In the same loop “push” these elements onto a Stack object.
• From the java.util.Stack API documentation work out how to extract the elements from the

stack and display the Account details.

[15 marks]

The Account class should look like this:

package mypackage1;

public class Account
{
 private String owner;
 private float balance;
 private int number;

 public Account(String owner, float balance, int number)
 {
 this.owner = owner;
 this.balance = balance;
 this.number = number;
 }

 public void makeLodgement(float amount)
 {
 this.balance+= amount;
 }

 public boolean makeWithdrawal(float amount)
 {
 if (amount > this.balance) return false;

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 13 of 22.

 balance-=amount;
 return true;
 }

 public void display()
 {
 System.out.println("Account details are - Owner: " + owner + " has balance " + balance + "
and act. number " + number);
 }
}

The Application Class should look like this

package mypackage1;

import java.util.*;

public class VectorTest
{
 public VectorTest()
 {
 }

 public static void main(String args[])
 {
 Vector v = new Vector();
 Stack s = new Stack();

 v.add(new Account("Derek", 100, 1234));
 v.add(new Account("Tom", 50, 1235));
 v.add(new Account("Jack", 500, 1236));

 for (int i=0; i<v.size(); i++)
 {
 Account temp = (Account) v.elementAt(i);
 temp.display();
 s.push(temp);
 }
 while(!s.empty())
 {
 Account temp = (Account) s.pop();
 temp.display();
 }
 }

}

The important points in this application are:

• Creation of the Account class – approx 3 marks
• Ability to create anonymous objects – approx 2 marks
• Knowledge of the Vector class – approx 2 marks
• This questions assumes that the student does not know the java.util.Stack class, and

looks up the documentation in the exam, working out how to use the class – 5 marks
• Tests that the student is able to cast convert. – approx 2 marks
• Displays knowledge of objects of the Object class. – approx 1 marks

[15 marks total]

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 14 of 22.

(c) In the example in (b) you created an Account object. How would you compare two Account object
to see if they had the same values? Show this with a short segment of code.

[5 marks]

In this question it is important to note that:

 Account a = new Account("Derek",100,1234);
 Account b = new Account("Derek",100,1234);
 if(a.equals(b)) System.out.println("Same");

Does not work as the object references are not the same! We would have to write a
method in the Account class to do this comparison. If we override the equals() method
then we can add a valid comparison. Add the code as below for the equals() method
and add getXXX methods – or make the states public (bolded code below)

Account Class

package mypackage1;

public class Account
{
 private String owner;
 private float balance;
 private int number;

 public Account(String owner, float balance, int number)
 {
 this.owner = owner;
 this.balance = balance;
 this.number = number;
 }

 public void makeLodgement(float amount)
 {
 this.balance+= amount;
 }

 public boolean makeWithdrawal(float amount)
 {
 if (amount > this.balance) return false;
 balance-=amount;
 return true;
 }

 public float getBalance() { return this.balance; }
 public int getNumber() { return this.number; }
 public String getOwner() { return this.owner; }

 public boolean equals(Account a)
 {
 if (this.balance!=a.getBalance()) return false;
 if (this.number!=a.getNumber()) return false;
 if (!this.owner.equals(a.getOwner())) return false;
 return true;
 }

 public void display()
 {

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 15 of 22.

 System.out.println("Account details are - Owner: " + owner + " has balance " + balance + "
and act. number " + number);
 }
}

Question 5.

(a) Explain using an example when you would need to synchronize a segment of code when using Java

threads? (Your answer should show a line-by-line step through of a segment of code, explaining
why it would not work correctly if the segment of code was not synchronized). If synchronization
is a solution to making an application thread safe, then as programmers, why should we not just
synchronize all code?

[7 marks]

It can be difficult to control threads when they need to share data. It is difficult to
predict when data will be passed, often being different each time the application is
run. We add synchronization to the methods that we use to share this data like:
public synchronized void theSynchronizedMethod()
or we can select a block of code to synchronize:

synchronized(anObject)
{
}

This works like a lock on objects. When two threads execute code on the same object,
only one of them acquires the lock and proceeds. The second thread waits until the
lock is released on the object. This allows the first thread to operate on the object,
without any interruption by the second thread.

First Thread Second Thread
call theSynchronizedMethod()
acquires the lock on the theObject
executes theSynchronizedMethod on
theObject

 calls theSynchronizedMethod on
theObject

 some other thread has a lock on
theObject

returns from
theSynchronizedMethod()

 acquires the lock on the theObject

 executes theSynchronizedMethod on
theObject

Again, synchronization is based on objects:

 • two threads call synchronized methods on different objects, they proceed

concurrently.
 • two threads call different synchronized methods on the same object, they are

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 16 of 22.

synchronized.
 • two threads call synchronized and non-synchronized methods on the same

object, they proceed concurrently.
Static methods are synchronized per class. The standard classes are multithread safe.

It may seem that an obvious solution would be to synchronize everything!! However
this is not that good an idea as when we write an application, we wish to make it:

• Safe - we get the correct results
• Lively - It performs efficiently, using threads to achieve this liveliness

These are conflicting goals, as too much synchronization causes the program to
execute sequentially, but synchronization is required for safety when sharing objects.
Always remove synchronization if you know it is safe, but if you're not sure then
synchronize.

(b) Write a Java client/server application pair, where the client passes a DepositAccount object to the

server and the server calculates the interest on the account using the current interest rate available
on the server. The account object is then passed back to the client, where the client displays the
details including the updated balance.

You have been supplied with three sets of code to handle the basic aspects of this application. These
are called:

• Client.java,
• Server.java and
• ConnectionHandler.java

These files are in the directory question5.

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 17 of 22.

Classes Required

Deposit Account class – must implement serializable and must add in a calculate interest
method - [approx 8 marks]
Client Class – must be modified to send account objects [approx 5 marks]
Connection Handler class – must be modified to call methods of deposit account [approx 5
marks]
Server Class – does not have to change from server class given.

[18 marks total]

Solution Code:

DepositAccount Class

package mypackage1;

import java.io.Serializable;

public class DepositAccount implements Serializable
{
 private String owner;
 private float balance;
 private int number;

 public DepositAccount(String owner, float balance, int number)
 {
 this.owner = owner;
 this.balance = balance;
 this.number = number;
 }

 public void makeLodgement(float amount)
 {
 this.balance+= amount;
 }

 public boolean makeWithdrawal(float amount)

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 18 of 22.

 {
 if (amount > this.balance) return false;
 balance-=amount;
 return true;
 }

 public void display()
 {
 System.out.println("Account details: Owner: " + owner + " Balance: " + balance + " Act.
Num: " + number);
 }

 public float addInterest(float rate)
 {
 float interestAmountAdded = this.balance*rate/100;
 this.balance+=interestAmountAdded;
 return interestAmountAdded;
 }
}

ClientClass

package mypackage1;
// The Date Client - written by Derek Molloy

import java.net.*;
import java.io.*;
import java.util.*;

public class Client
{

 private Socket socket = null;
 private ObjectOutputStream os = null;
 private ObjectInputStream is = null;

 // the constructor expects the IP address of the server - the port is fixed
 public Client(String serverIP)
 {
 if (!connectToServer(serverIP))
 {
 System.out.println("Cannot open socket connection...");
 }
 }

 private boolean connectToServer(String serverIP)
 {
 try // open a new socket to port: 5050
 {
 this.socket = new Socket(serverIP,5050);
 this.os = new ObjectOutputStream(this.socket.getOutputStream());
 this.is = new ObjectInputStream(this.socket.getInputStream());
 System.out.print("Connected to Server\n");
 }
 catch (Exception ex)
 {
 System.out.print("Failed to Connect to Server\n" + ex.toString());
 System.out.println(ex.toString());
 return false;
 }

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 19 of 22.

 return true;
 }

 private void getInterest()
 {
 DepositAccount d = new DepositAccount("Derek Molloy", 1000, 12345);
 System.out.println("Current Details:");
 d.display();
 System.out.println("Sending Account object to Server.");
 this.send(d);
 d = (DepositAccount)receive();
 if (d != null)
 {
 System.out.println("Received the Updated object");
 d.display();
 }
 System.out.println("End of client application.");
 }

 // method to send a generic object.
 private void send(Object o) {
 try
 {
 System.out.println("Sending " + o);
 os.writeObject(o);
 os.flush();
 }
 catch (Exception ex)
 {
 System.out.println(ex.toString());
 }
 }

 // method to receive a generic object.
 private Object receive()
 {
 Object o = null;
 try
 {
 o = is.readObject();
 }
 catch (Exception ex)
 {
 System.out.println(ex.toString());
 }
 return o;
 }

 static public void main(String args[])
 {
 if(args.length>0)
 {
 Client theApp = new Client(args[0]);
 try
 {
 theApp.getInterest();
 }
 catch (Exception ex)
 {
 System.out.println(ex.toString());

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 20 of 22.

 }
 }
 else
 {
 System.out.println("Error: you must provide the IP of the server");
 System.exit(1);
 }
 System.exit(0);
 }
}

ConnectionHandler Class

package mypackage1;
// The connection handler class - by Derek Molloy

import java.net.*;
import java.io.*;
import java.util.*;

public class ConnectionHandler
{

 private Socket clientSocket; // Client socket object
 private ObjectInputStream is; // Input stream
 private ObjectOutputStream os; // Output stream

 // The constructor for the connecton handler
 public ConnectionHandler(Socket clientSocket)
 {
 this.clientSocket = clientSocket;
 //Set up a service object to get the current date and time
 //theDateService = new DateTimeService();
 }

 /** Thread execution method */
 public void init()
 {
 String inputLine;

 try
 {
 this.is = new ObjectInputStream(clientSocket.getInputStream());
 this.os = new ObjectOutputStream(clientSocket.getOutputStream());
 while (this.readAccount()) {}

 }
 catch (IOException e)
 {
 e.printStackTrace();
 }
 }

 /** Receive and process incoming command from client socket */
 private boolean readAccount()
 {
 DepositAccount tempAct = null;
 float rate = 5;

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 21 of 22.

 try
 {
 tempAct = (DepositAccount)is.readObject();
 System.out.println("Received a valid account object");
 }
 catch (Exception e)
 {
 tempAct = null;
 }
 if (tempAct == null)
 {
 this.closeSocket();
 return false;
 }

 // invoke the appropriate function based on the command
 if (tempAct!=null)
 {
 float amount = tempAct.addInterest(rate);
 System.out.println("Added interest to the account object at "+rate+"%");
 System.out.println("Increasing the balance by:"+amount);
 System.out.println("Returning the account object");
 this.send(tempAct);
 System.out.println("Object Sent! - waiting for next account object");
 }
 else
 {
 this.sendError("Invalid Account Object");
 }
 return true;
 }

 // Send a message back through the client socket
 private void send(Object o)
 {
 try
 {
 System.out.println("Sending " + o);
 this.os.writeObject(o);
 this.os.flush();
 }
 catch (Exception ex)
 {
 ex.printStackTrace();
 }
 }

 // Send a pre-formatted error message to the client
 public void sendError(String msg)
 {
 this.send("error:" + msg); //remember a string IS-A object!
 }

 // Close the client socket
 public void closeSocket() //close the socket connection
 {
 try
 {
 this.os.close();
 this.is.close();

Exam Paper Solutions – EE553 (2002-2003) Dr. Derek Molloy (Derek.Molloy@dcu.ie)

 Page 22 of 22.

 this.clientSocket.close();
 }
 catch (Exception ex)
 {
 System.err.println(ex.toString());
 }
 }
}

Exam Details (General) 2002-2003 Dublin City University, Ireland.

MODULE: Object Oriented Programming – EE553

COURSE: M.Eng./Grad. Dip. in Electronic Systems
 M.Eng./Grad. Dip. in Telecommunications Engineering
 RAEC – Remote Access to Continuing Eng. Education
YEAR: Postgraduate (Year 5)
EXAMINER: Dr. Derek Molloy (DCU extension 5355)
TIME ALLOWED: 3 hours
INSTRUCTIONS: Answer FOUR questions. All questions carry equal marks
 .

