DCU

DUBLIN CITY UNIVERSITY

REPEAT EXAMINATIONS 2009/2010

[SOLUTIONS]

MODULE: EE553 Object-oriented Programming for Engineers

COURSE: MTC — M.Eng. in Telecommunications Engineering
MEN — M.Eng. in Electronic Systems
IPME - Individual Postgrad. Modules-Electronics
MEQ - Masters Engineering Qualifier Course
GCES - Grad Cert. in Electronic Systems
GCTC — Grad Cert. in Telecommunications Eng.
GDE - Graduate Dip. in Electronic Systems
GTC — Graduate Dip. in Telecommunications Eng.

YEAR: C

EXAMINERS: Dr. Derek Molloy, Ext no. 5355
TIME ALLOWED: 3 Hours

INSTRUCTIONS: Answer Four Questions

Question 1(a)

(i) this - allows us to refer to "this object", i.e. to access states or methods for the class that the
code is currently within. It allows us to pass a reference to the current object and it also allows us to
access the states of the class that are currently out of scope.

(ii) The Math class has no constructor, which makes sense as there is no requirement to have an
object of Math. The methods are called statically, e.g. Math.sqrt(25.0) which compares directly to a
global function in C++. In Java it is not possible to have a global function.

(iii) Pointers require a deference type — e.g. int* x; means that x has a dereference type of int. This
is required as a pointer needs to know the size in order to increment its value — e.g. x++, which
needs to know how many bytes to move in memory. Also operations like cout << *x; needs to know
how to treat the value that has been dereferenced — in this case the output stream operator is being
passed an int value.

(iv) Translator programs called compilers then convert the high-level languages into machine code.
C, C++ and Java are all examples of high-level languages. Large programs can take significant time to
compile from the high-level language form into the low-level machine code form. An alternative to
this is to use interpreters; programs that execute high-level code directly by translating instructions
on demand. These programs do not require compilation time, but the interpreted programs execute
much more slowly.

(v) C++ has a structure that allows us to have different types of data within the same variable. A
union is particularly memory efficient as it calculates the minimum amount of memory to store the
largest element in the structure. Therefore, contained data overlaps in memory.

(vi) break causes a looping statement to quit and continue causes the statement to move to the next
iteration.

(vii) A modal dialog box must be closed or exited before an application can continue, but a modeless
dialog box can ‘run in parallel’ with the application. Modal dialog boxes are much easier to control in
feeding information to the application, but a modeless dialog can return values at any time, which is
more difficult to structure.

[1(a) 2 marks each part]
[14 marks total]

Question 1(b) In this segment of code class A'is a friend of class B. This means that when an object of
the class A is passed to the method x() within class B that class B has full access to the private x state
of A and Point 1 is therefore valid. However, friendship is not inherited and class C is therefore not a
friend of class A, meaning that it has no access to the private state x of class A.

Friend Methods are useful as: Friend methods avoid adding unnecessary public methods to the
interface; Prevent states from having to be made public. However, the overuse of friend methods
can make the code very complex and hard to follow.

[6 marks]
Question 1(c)

In C++ methods are non-virtual by default, so to replace the behaviour (allow over-riding) of a
method in the derived class you have to explicitly use the virtual keyword in the parent class. You
are able to replace the behaviour of a non-virtual method but this causes serious difficulties when
the behaviour of the object depends on the static rather than the dynamic type! In Java, methods
are virtual by default and we always operate on the dynamic type of the object. You cannot specify a
method as non-virtual, but there is a final keyword. Once you use the final keyword on a method
you cannot replace it - so there are no issues with static and dynamic types.

[5 marks]

Question 2(a)
STL can be described and categorised as follows:
Containers: Data structures with memory management capability.

Iterators: Logic that binds containers and algorithms together.

Algorithms: Provide a mechanism for manipulating data through the iterator interface.
Some examples of sequential containers are:

e vector: A flexible array of elements.

¢ deque: A dynamic array that can grow at both ends.

e list: A doubly linked list.

¢ map: A collection of name-value pairs, sorted by the keys value.

¢ set: A collection of elements sorted by their own value.

e multimap: Same as a map, only duplicates are permitted.

e multiset: Same as a set, only duplicates are permitted.
Some lterators:

¢ |nputiterators

e QOutput iterators

Forward iterators

Bidirectional iterators

Random lterators
The algorithms can be classified as:
*Non-modifying algorithms: e.g. for_each, count, search ...
*Modifying algorithms: for_each, copy, transform ...
*Removing algorithms: remove, remove_if, ...
eMutating algorithms: reverse, rotate, ...
eSorting algorithms: sort, partial_sort, ...
eSorted range algorithms: binary_search, merge ...
eNumeric algorithms: accumulate, partial_sum ...
[7 marks — not all text required, only 4 examples of each]
[3 marks for general description, 4 marks for examples]
Question 2(b)
#include <iostream>

#include <vector>
#include <algorithm>

using namespace std;

template <class T>
void outputFunction(T x)

{

cout << x << endl;

int main(void)
{
int x;
vector<int> vect; // declare a vector container of ints

cout << "Please enter a list of numbers:" << end];
while(cin >> x)

{

vect.push_back(x);

sort(vect.begin(), vect.end()); // sort the array

cout << endl| << "Sorted output of numbers:" << endl;

// loop through vector with for_each loop and execute

// outputFunction() for each element

for_each(vect.begin(), vect.end(), outputFunction);

[6 marks, 2 for the template function, 1 for vector, 1 for sort, 2 for for_each]

Question 2(c) C++ introduces new explicit casts that identify the rationale behind the cast, clearly
identifies that a cast is taking place and confirms type-safe conversions. These casts are:

e static_cast for well-behaved casts such as automatic conversions, narrowing conversions
(e.g. a float to int), a conversion from void*, and safe downcasts (moving down the
inheritance hierarchy) for non-polymorphic classes. If the base class is a virtual base class

then you must use a dynamic_cast

e dynamic_cast is used for type-safe downcasting. The format of a dynamic cast is
dynamic_cast <type>(expression) and requires that the expression is a pointer if the type is a
pointer type. If a dynamic_cast fails then a null pointer is returned. The dynamic_cast is
actually safer than the static_cast as it performs a run-time check, to check for ambigious

casts (in the case of multiple-inheritance).

e const_cast is used for casting away const or volatile.

¢ reinterpret_cast is the most dangerous cast. It allows us to convert an object into any other
object for the purpose of modifying that object - often for low-level "bit-twiddling" as it is

known.

[1 mark for static and const, 2 each for dynamic and reinterpret]

Question 2(d)

Example in the notes like this:

3 #include <iostream>

4 using namespace std;

5

6 // Demo classes with a virtual base class
7 class Account {

8 public:

9 float balance; // for demonstration only!
10 virtual ~Account(){}

11 };

12 class Current: public Account {};
13 class Test { public: float x, y;};
14

15 // Demo Function

16 void someFunction(int& c)

17 {

18 c++; //ccan be modified

[6 marks total]

19 cout << "c has value " << ¢ << endl; //will output 11

20 }
21

22 int main()

23 {
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58 }
59

float f = 200.6f;

// narrowing conversion, but we have notified the compiler
int x = static_cast<int>(f);

cout << x << endl;

Account *a = new Current; //upcast - cast derived to base
//type-safe downcast - cast base to derived
Current *c = dynamic_cast<Current*>(a);

constinti=10; //noteiis const
//someFunction(i); //is an error as someFunction
// could modify the value of i
someFunction(*const_cast<int*>(&i));
// Allow i be passed to the function but it will still remain at 10.
cout << "i has value " << i << endl; // will still output 10

a = new Account;

a->balance = 1000;

//convert account address to long
long addr = reinterpret_cast<long>(a);

// safe to convert long address into an Account
Account* b = reinterpret_cast<Account*>(addr);
cout << "The balance of b is " << b->balance << end|;

// could convert to any class regardless of

// inheritance - ok this time! (not safe)

Current* cur = reinterpret_cast<Current*>(addr);

cout << "The balance of curis " << cur->balance << end];

// works, but not definitely not safe this time!

Test* test = reinterpret_cast<Test*>(addr);

cout << "The value of the float x is " << test->x <<
"and float y is " << test->y << end|;

1 mark for static, 1 mark for static and 2 marks each for reinterpret and constant
[6 marks total]

Question 3(a)
#include<iostream>
#include<string>
using namespace std;

class Person{

string name, id;

public:

Person(string, string);

virtual void display();

virtual string getRole() = 0;
2

Person::Person(string nm, string anid): name(nm), id(anid) {}

void Person::display()

{
cout << endl << "Role is: " << getRole() << end]l;
cout << "Name is: " << name << " and id is: " << id << end|;
}
class Student: public Person
{
string programme;
int year;
public:
Student(string, string, string, int);
virtual void display();
virtual string getRole();
2

Student::Student(string name, string id, string prog, int yr):
Person(name, id), programme(prog), year(yr) {}
string Student::getRole() { return "student"; }

void Student::display()
{
Person::display();
cout << "Programme is: " << programme << " and year is: " << year << end|;

}

class Lecturer: public Person

{
string office;
int phoneNum;

public:

Lecturer(string, string, string, int);
virtual void display();
virtual string getRole();

|7

Lecturer::Lecturer(string name, string id, string off, int ph):
Person(name, id), office(off), phoneNum(ph) {}
string Lecturer::getRole() { return "lecturer"; }

void Lecturer::display()
{
Person::display();
cout << "Office is: " << " and phone number is: " << phoneNum << endl;

int main(void)
{
// test of Student and Lecturer
Student s("John","1234", "MENG", 1);
s.display();
Lecturer I("Derek", "5123", "S356", 5355);
l.display();
}
[10 marks]
~1 for each of the 8 methods, 1 for main, and 1 for correct abstract use

Question 3(b)

template<class T, int size>
class Storage
{
T values|size];
int next;
public:
T& operator [](int index)
{

return values[index];

}

bool addElement(T value)
{
if (next>size) return false;
values[next++]=value;
return true;

}

int getSize() { return next-1; }
2
[7 marks]
2 for template syntax, 2 for operator and 2 for add, 1 for size

Question 3(c)

Storage<Person*, 10> store;
store.addElement(new Lecturer("Derek Molloy", "5123", "S356", 5355));
store.addElement(new Student("John Doe","1234", "MENG", 1));
store.addElement(new Student("James Doe","1235", "MENG", 1));
for (int i=0; i<=store.getSize(); i++)
store[i]->display();
[3 marks]

Question 3(d)

vector<Person*> vStore;
vStore.push_back(new Lecturer("Derek Molloy", "5123", "S356", 5355));

vStore.push_back(new Student("John Doe","1234", "MENG", 1));
vStore.push_back(new Student("James Doe","1235", "MENG", 1));
for (int i=0; i<vStore.size(); i++)

vStore[i]->display();

Question 4(a)

£ Applet Viewer: Question5.class

| Lower cage

Apnplet started.

import java.applet.*;
import java.awt.*;
import java.awt.event.*;

public class Question5 extends Applet implements ActionListener

{

private Button buttonl, button2;

private TextField status;

public void init()

{
status = new TextField(20);
this.buttonl = new Button("Upper case");
this.button2 = new Button("Lower case");
this.buttonl.addActionListener(this);
this.button2.addActionListener(this);
this.add(button1);
this.add(status);
this.add(button2);

}

public void actionPerformed(ActionEvent e)

{

if (e.getActionCommand().equals("Upper case"))

{
status.setText(status.getText().toUpperCase());

}

else if (e.getActionCommand().equals("Lower case"))

{

status.setText(status.getText().toLowerCase());

}
}

HTML page:

<title> Question 5 Page </title>

[5 marks]

<hr>
<applet code=Question5.class width=200 height=200>
</applet>
<hr>
[9 marks]
Question 4(b)

public class CaseApp extends Frame implements ActionListener {

public CaseApp () {
add constructor to replace init()

public void start() {

}

public void stop() {

}

public void run() {

}

public static void main(String args[])

{
CaseApp ca = new CaseApp ();

[4 marks]
[1 change add main, 1 can const, 1 call start, 1 frame and setsize, setvisible]

Question 4(c) A Java Interface is a way of grouping methods that describe a particular behaviour.
They allow developers to reuse design and they capture similarity, independent of the class
hierarchy. We can share both methods and constants using Interfaces, but there can be no states in
an interface. Methods in an interface are implicitly public and abstract. Constant states in an
interface are implicitly public, static and final.

Interfaces differ from abstract classes in that an interface cannot have an implementation for any
method, i.e. all methods are abstract. Classes can implement many interfaces, all unconstrained by a
class inheritance structure.

interface Demo
{
public static final String demoConst = "hello";
// public static final can be omitted
// as is implicit

void go(); // these methods are public and abstract

void stop(); // even if public abstract is omitted

}
class SomeClass extends Object implements Demo
{
public void go()
{
// write implementation here
1
public void stop()
{
// write implementation here
1
}
public class TestApp
{
public static void main(String args[])
{
SomeClass ¢c = new SomeClass();
System.out.printin(SomeClass.demoConst); // will print out "hello"
}
}

Consider the mouse. We may write many applications that use the mouse, and within these
applications, the mouse may be used in many different ways. We can define a common interface for
the mouse that each one of these applications must implement. These applications then share a
common defined interface, without having to create an IS-A/IS-A-PART-OF relationship.

In this example we could write an interface called StringFormatter that has one method called
stringFormat. The Application to call this dialog could implement StringFormatter and implement a
stringFormat method that receives the value from the Frame in 2(b) — The Frame in 2(b) must accept
an object of the StringFormatter type (even though StringFormatter is an interface) — this being the
case, and the fact that the Application implments the interface it can be passed as an object to the
Frame.
[4 marks for Interfaces and when used, 3 for this example]
[7 marks total]
Quesiton 4(d)

In Java, when you declare an array of a class, you could say:
SomeObject[] a = new SomeObiject[5];
But this creates only an array of references, you must then instantiate each reference, using:
a[1] = new SomeObiject ();
Even for the default constructor (as shown). In C++, when you declare:
SomeObject a[5];
C++ would call the default constructor for each instance of the array, and there would be no need to
explicitly call 'new' again to instantiate each reference of the array. This form of initialisation only
allows you to call the default constructor (or constructor with no

parameters). In C++, you can create an array of objects, with each object sitting right next to each
other in memory, which lets you move from one object to another, simply by knowing the address of
the first object. This is impossible in Java.

In C++ you can also create arrays, of pointer or references to objects. This is more closely related to
how Java arrays work. Java arrays are always an array of references to objects (except if you create
arrays of the basic data types, int, float, double etc.). If you were to use an array of pointers or
references, you would have an array of null references (just like Java). The syntax would be like:
SomeObject **f = new SomeObject *[10];
[5 marks total]

Question 5(a) It can be difficult to control threads when they need to share data. It is difficult to
predict when data will be passed, often being different each time the application is run. We add
synchronization to the methods that we use to share this data like:

public synchronized void theSynchronizedMethod()
or we can select a block of code to synchronize:

synchronized(anObject)

{
}

This works like a lock on objects. When two threads execute code on the same object, only one of
them acquires the lock and proceeds. The second thread waits until the lock is released on the
object. This allows the first thread to operate on the object, without any interruption by the second
thread.

First Thread Second Thread
call theSynchronizedMethod()
acquires the lock on the theObject

executes theSynchronizedMethod on
theObject

calls theSynchronizedMethod on theObject

some other thread has a lock on theObject
returns from theSynchronizedMethod()

acquires the lock on the theObject

executes theSynchronizedMethod on
theObject

Again, synchronization is based on objects:

e two threads call synchronized methods on different objects, they proceed concurrently.

e two threads call different synchronized methods on the same object, they are synchronized.

e two threads call synchronized and non-synchronized methods on the same object, they
proceed concurrently.

Static methods are synchronized per class. The standard classes are multithread safe.

It may seem that an obvious solution would be to synchronize everything!! However this is not that
good an idea as when we write an application, we wish to make it:

o Safe - we get the correct results
o Llively - It performs efficiently, using threads to achieve this liveliness

These are conflicting goals, as too much synchronization causes the program to execute sequentially,
but synchronization is required for safety when sharing objects. Always remove synchronization if

you know it is safe, but if you're not sure then synchronize.
[9 marks overall]
[4 marks for correct example]
[3 marks for intro explain]
[2 marks for safety vs. lively]

Question 5(b)

Solution:

mmand Prompt - java SortServer

~Teaching Documents~EE553 (Z2PAA-2001 > exampled>dir
Uplume in drive D iz Personal Files
Uolume Serial Humber iz BBES-53BD

Directory of D:“\Teaching Documents“~EES53 (2000-2001>-exampleld

16:83 <DIR> .
16:83 <DIR> .-
16:15% HandleConnection.class
16:12 HandleConnection. java
16:23 SortClient.class
16:23 SortClient. java
16:=21 SortServer.class
15:55 SortServer. java
16:22 SortService.class
16:22 SortService. java

8 File<s) 14,649 hytes

2 Divdsd 253.867.264 hytes free

D:“Teaching Documents“~EES5%3 (28000-2801)>v\exampled*java SortServer
Start listening on port 5858

Accepted socket connection from client

Received: [Hello, Dog,. Cat, Fishl

Sending [Cat,. Dog, Fish, Hellol

[1Command Prompt

16:=15 2,226 HandleConnection.class
16:=12 2.583 HandleConnection.java
16:23 2,522 SortClient.class
16:23 2.518 SortClient.java
16:=21 1,757 SortServer.class
15:55 1,238 SortServer.java
16:=22 655 SortService.class
16:22 456 SortService.java

8 File<s> 14,6492 hytes

2 Divisd 293,867,264 hytes free

D:“Teaching Documents~EE553 (20002001 > exampled>java SortClient localhost
Connected to Server

Sending Uector
Sending [Hello. Dog, Cat. Fizhl

D:~Teaching Documents“EE553 (2AAB—2081)-exampled>

// The Sort Client - written by Derek Molloy

import java.net.*;
import java.io.*;
import java.util.*;

public class SortClient

{

private Socket socket = null;
private ObjectOutputStream os = null;
private ObjectIinputStream is = null;

// the constructor expects the IP address of the server - the port is fixed
public SortClient(String serverIP)

{
if (IconnectToServer(serverlP))
{
System.out.printIn("Cannot open socket connection...");
}
}
private boolean connectToServer(String serverlP)
{
try // open a new socket to port: 5050
{
this.socket = new Socket(serverlIP,5050);
this.os = new ObjectOutputStream(this.socket.getOutputStream());
this.is = new ObjectInputStream(this.socket.getInputStream());
System.out.print("Connected to Server\n");
}
catch (Exception ex)
{
System.out.print("Failed to Connect to Server\n" + ex.toString());
System.out.printin(ex.toString());
return false;
}
return true;
1
private void sortVector(Vector v)
{
System.out.printIn("Sending Vector");
this.send(v);
Vector theReturn = (Vector)receive();
if (theReturn != null)
{
for (int i=0; i<v.size(); i++)
{
String s = (String) theReturn.elementAt(i);
System.out.printin(s+"\n");
}
}

// method to send a generic object.
private void send(Object o) {

try
{
System.out.printin("Sending " + 0);
os.writeObject(o);
os.flush();
}
catch (Exception ex)
{
System.out.printin(ex.toString());
}
}

// method to receive a generic object.
private Object receive()

{
Object o = null;
try
{
o = is.readObject();
1
catch (Exception ex)
{
System.out.printin(ex.toString());
}
return o;
}

static public void main(String args[])
{
Vector testVector = new Vector();
testVector.add("Hello");
testVector.add("Dog");
testVector.add("Cat");
testVector.add("Fish");

if(args.length>0)

{
SortClient theApp = new SortClient(args[0]);
try
{
theApp.sortVector(testVector);
}
catch (Exception ex)
{
System.out.printin(ex.toString());
}
}
else
{
System.out.printIn("Error: you must provide the IP of the server");
System.exit(1);
}

System.exit(0);

}

// The DateServer - by Derek Molloy

import java.net.*;
import java.io.*;

public class SortServer

{
public static void main(String args[])
{
ServerSocket serverSocket = null;
try
{

serverSocket = new ServerSocket(5050);
System.out.printIn("Start listening on port 5050");
}
catch (IOException e)
{
System.out.printin("Cannot listen on port: " + 5050 + ", " + e);
System.exit(1);
}
while (true) // infinite loop - wait for a client request
{
Socket clientSocket = null;
try
{
clientSocket = serverSocket.accept();
System.out.printIn("Accepted socket connection from client");
}
catch (IOException e)
{
System.out.printin("Accept failed: 5050 " + e);
break;
} // create a new thread for the client
HandleConnection con = new HandleConnection(clientSocket);
if (con == null)
{
try
{
ObjectOutputStream os = new ObjectOutputStream(clientSocket.getOutputStream());
os.writeObject("error: Cannot open socket thread");
os.flush();
os.close();
}
catch (Exception ex)
{
System.out.printin("Cannot send error back to client: 5050 " + ex);
}
}
else { con.init(); }

}
try

System.out.printin("Closing server socket.");
serverSocket.close();

}

catch (IOException e)
{

System.err.printin("Could not close server socket. " + e.getMessage());
}

}
}

// The connection handler class - by Derek Molloy
import java.net.*;

import java.io.*;
import java.util.*;

public class HandleConnection

{
private Socket clientSocket; // Client socket object
private ObjectinputStream is; // Input stream
private ObjectOutputStream os; // Output stream

private SortService theSortService;

// The constructor for the connecton handler
public HandleConnection(Socket clientSocket)
{

this.clientSocket = clientSocket;

theSortService = new SortService();

}

/** Thread execution method */
public void init()
{

String inputline;

try

{
this.is = new ObjectInputStream(clientSocket.getInputStream());
this.os = new ObjectOutputStream(clientSocket.getOutputStream());
while (this.readCommand()) {}

}
catch (IOException e)
{
e.printStackTrace();
}

}

/** Receive and process incoming command from client socket */
private boolean readCommand()

{

Vector v = null;

try
{

v = (Vector)is.readObject();
}

catch (Exception e)

{

v =null;
}
if (v ==null)
{

this.closeSocket();
return false;

}
System.out.printIn("Received: "+v.toString());

theSortService.setData(v);
this.getSorted();

return true;

}

private void getSorted()

{
Vector returnData = theSortService.sortData();
this.send(returnData);

}

// Send a message back through the client socket
private void send(Object o)
{
try
{
System.out.printin("Sending " + 0);
this.os.writeObject(o);
this.os.flush();
}
catch (Exception ex)
{
ex.printStackTrace();
}
!

// Send a pre-formatted error message to the client
public void sendError(String msg)
{

this.send("error:" + msg); //remember a string IS-A object!

}

// Close the client socket
public void closeSocket() //close the socket connection
{
try
{
this.os.close();
this.is.close();
this.clientSocket.close();
}

catch (Exception ex)

{

System.err.println(ex.toString());

}
}
}

// The DateTimeService that provides the current date
// by Derek Molloy.

import java.util.*;

public class SortService

{

Vector v;

public SortService()

{
v = new Vector();

}

public Vector sortData()

{
Object o[] = v.toArray();
Arrays.sort(o);
Vector x = new Vector();
for (int i=0; i<o.length; i++)
{

x.add(oli]);

1
return x;

}

public void setData(Vector v)

{
this.v =v;

}

}

[16 marks total]

[6 marks for sort service]

[4 marks for constructing suitable client]
[4 marks for suitable server]

[2 marks for communications]

