

DUBLIN CITY UNIVERSITY

SEMESTER TWO SOLUTIONS 2007

MODULE: 3D Graphics and Visualisation
(Title & Code) EE563

COURSE: M.Eng./Grad. Dip./Grad. Cert. in Electronic Systems
 M.Eng./Grad. Dip./Grad. Cert. in Telecommunications Engineering
 ECSA/GDE/GDEI/MEN/MENI/MTC/MTCN

YEAR: Postgraduate (C)

EXAMINERS: Prof. Paul Rees
 Dr Robert Sadleir (x8592)
 Dr Derek Molloy (x5355)

TIME ALLOWED: 3 Hours

INSTRUCTIONS: Please answer FOUR questions.

All questions carry equal marks

Requirements for this paper Log Table
Please tick (X) as appropriate Graph Paper
 Attached Answer Sheet
 Statistical Tables
 Floppy Disk
 Actuarial Tables

THE USE OF PROGRAMMABLE OR TEXT STORING
CALCULATORS IS EXPRESSLY FORBIDDEN

Please note that where a candidate answers more than the required number of
questions, the examiner will mark all questions attempted and then select the

highest scoring ones.

PLEASE DO NOT TURN OVER THIS PAGE UNTIL YOU ARE
INSTRUCTED TO DO SO

Question 1

(a) Answer all of the following short questions (make sure to keep your answers

concise):

(i) What two node component objects does a Shape3D object maintain

references to? Explain what the referenced node components represent.

 A Shape3D object maintains references to an Appearance node

component and at least one Geometry node component.

 The Appearance node component is a container that maintains references to

several appearance components that define how the Shape3D object appears
when it is rendered. Appearance components referenced by an Appearance
node component include: ColouringAttributes, PointAttributes,
LineAttributes, Material, Texture and TextureAttributes.

 The Geometry node component defines the structure of the shape and

typically consists of an array of vertices that represent individual points, lines,
triangles or quads. A Geometry node component can also represent a Raster
image or a Text3D object.

[2 marks]

(ii) A sphere has a radius of 1 metre and colouring attributes with a red colour

(1.0, 0.0, 0.0). The sphere is in the presence of linear fog with a back distance
of 25 metres, a front distance of 5 metres and a colour of mid grey (0.5, 0.5,
0.5). If the sphere is positioned so that its centre is 10 metres away form the
viewer then what colour does the closest point on the sphere appear to the
viewer?

 The distance from the closest point on the sphere to the viewer is 9 metres.
 The effect of the fog increases linearly from a distance of 5 metres to a

distance of 25 metes.
 A 9 metres the effect of the fog is (9 – 5) / (25 – 5) = 4/20 = 20%
 The colour of the closest point is therefore:
 (1.0, 0.0, 0.0) x 0.80 + (0.5, 0.5, 0.5) x 0.20 =
 (0.8, 0.0, 0.0) + (0.1, 0.1, 0.1) =
 (0.9, 0.1, 0.1)

[2 marks]

(iii) What are the texture coordinates at the top left hand corner of a texture image

with a width of 128 pixels and a height of 64 pixels. Explain your answer.

 The horizontal and vertical texture coordinates of a texture image are always

in the range [0.0 - 1.0]. This is the case no matter what the dimensions of the
image are and no matter what the aspect ration of the image is. Consequently,
the top left hand corner of a 128 x 64 pixel texture image will have texture
coordinates (1.0, 1.0). Note that it will not have texture coordinates (1.0, 0.5).

[2 marks]

(iv) How do you identify the front face of a polygon? Give an example of each.

Why does Java 3D differentiate between front facing and back facing
polygons?

 The front face of a polygon is where the order of the vertices makes a anti-

clockwise loop and the back face of a polygon is where the order of the
vertices makes a clockwise loop. This is illustrated below.

v2

v0 v1
Front-facing

v1

v0 v2
Back-facing

Java 3D differentiates between back and front facing polygons in order to
improve rendering efficiency. In the majority of cases the back face of a
polygon is not visible to the viewer and consequently it is not rendered to
improve rendering efficiency.

[2 marks]

(v) What is the difference between direct volume rendering and indirect volume

rendering? Give examples of each approach to support your answer.

 Direct volume rendering involves generating a 2D representation of a 3D

volume directly from the voxels of the volumetric data set. An example of this
would be ray casting.

 Indirect volume rendering involves extracting a polygonal mesh representation

of an isosurface from a 3D volumetric data set and then rendered the extracted
isosurface using conventional 3D surface rendering techniques. The polygonal
mesh representation of the isosurface can be extracted using the marching
cubes algorithm.

[2 marks]

(vi) If an ambient light with a cyan colour (0.18, 0.80, 0.87) illuminates an object

with a purple ambient colour (0.65, 0.23, 0.66) what colour will the object
appear to be in the rendered scene?

 The reflected light will be a product of the ambient colour of the material and

the colour of the ambient light.

 (0.18, 0.80, 0.87) x (0.65, 0.23, 0.66) =
 (0.12, 0.18, 0.57) = Dark blue

The reflected colour in specified lighting conditions will be dark blue.

 [2 marks]
(vii) What is the difference between the SCREEN_DOOR and BLENDED modes

defined by the TransparencyAttributes appearance component?

The SCREEN_DOOR mode creates gaps in the foreground colour to simulate
different levels of transparency. The BLENDED mode blends the foreground
and background colours to generate a more accurate and visually appealing
result. These two modes are illustrated below for a transparency setting of
50%.

SCREEN_DOOR – 50%

BLENDED - 50%

[2 marks]

(b) A line is defined by its two endpoints. Using the equation below rotate the 2D

line from (-3, -7) to (2, 2) by 30 degrees about the origin. Note that a positive
angle represents anticlockwise rotation about the origin.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1100
0cossin
0sincos

1
'
'

y
x

y
x

θθ
θθ

Briefly describe two other transformations that can be applied to a 2D image.

cos(30) = 0.866

 sin(30) = 0.5

First point (-3, -7) Second point (2, 2)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
7
3

100
0866.05.0
05.0866.0

1
'
'

y
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

×+−×+−×
×+−×+−×
×+−×−+−×

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

)11()70()30(
)10()7866.0()35.0(
)10()75.0()3866.0(

1
'
'

y
x

' 0.866 0.5 0 2
' 0.5 0.866 0 2

1 0 0 1 1

x
y

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

' (0.866 2) (0.5 2) (0 1)
' (0.5 2) (0.866 2) (0 1)

1 (0 2) (0 2) (1 1)

x
y

× + − × + ×⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= × + × + ×⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥× + × + ×⎣ ⎦ ⎣ ⎦

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++
+−−
++−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
0062.65.1
05.3598.2

1
'
'

y
x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
562.7

902.0

1
'
'

y
x

(x’, y’) = (0.902, -7.562)

' 1.732 1 0
' 1 1.732 0

1 0 0 1

x
y

− +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
732.2
732.0

1
'
'

y
x

(x’, y’) = (0.732, 2.732)

The endpoints of the line are located at (0.902, -7.562) and (0.732, 2.732).

Two other examples of transformations that can be applied to a 2D image are
scale and translate. Scaling a 2D image involves multiplying its horizontal
and vertical dimensions by a scale factor. A scale factor greater than 1.0
increases the size of the image and a scale factor less than 1.0 decreases the
size of the image. Translating an image involves moving the origin by the
specified distance in the horizontal and vertical directions.

[5 marks]

(c) What are the two rules that relate to the definition of polygons in VRML?

Describe in detail the operation of the VRML code listed below and provide a
wire frame illustration of the expected outcome.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

#VRML V2.0 utf8

Shape
{
appearance Appearance
 {
 material Material
 {
 diffuseColor 0 0 1
 }
 }
 geometry IndexedFaceSet
 {
 coord Coordinate
 {
 point [-1 -1 -1,
 1 -1 -1,
 -1 1 -1,
 -1 -1 1,
 -1 1 1,
 1 -1 1,
 1 1 -1,
 1 1 1]
 }
 coordIndex [0, 3, 4, 2, -1,
 0, 1, 5, 3, -1,
 0, 2, 6, 1, -1,
 7, 5, 1, 6, -1,
 7, 6, 2, 4, -1,
 7, 4, 3, 5, -1]
 }
}

A polygon in VRML must be convex and coplanar. Convex means that there
are no bays or convexities in the boundary of the polygon. Examples of
convex and non convex polygons are illustrated below.

v0

v1

v2

v3

v0

v2

v1

v4

It should be noted that it is possible to break a convex polygon down into two
or more non-convex polygons.

The VRML file defines a single Shape node. The shape node has an
appearance and a geometry associated with it. The appearance
defines a Material with a diffuse colour of red (1.0, 0.0, 0.0). The geometry
is represented by an IndexedFaceSet. This means that the geometry will
be a set of one or more faces where the vertices for a face are defined as
indices into a vertex array. In this case, the array of vertices holds 8 points
organised in a cubic formation about the origin and the array of vertices
defines the six faces of a cube where the vertices are orientated so that the
exterior of the cube consists only of front facing polygons.

A wire frame representation of the expected outcome from the VRML file is
illustrated below:

v0 v1

v2

v3

v6

v7v4

v5

(-1, 1, -1) (1, 1, -1)

(1, -1, -1)

(1, 1, 1)(-1, 1, 1)

(-1, -1, -1)

(1, -1, 1)(-1, -1, 1)

y

x

z

[6 marks]

Question 2

(a) Briefly describe the functionality of the following subclasses of the Group
class:

 BranchGroup
 OrderedGroup
 TransformGroup
 ViewSpecificGroup

BranchGroup:

A BranchGroup object serves as a pointer to the root of a scene graph
branch. BranchGroup objects are the only objects that can be attached to, or
removed from, a Locale. The main method defined by a BranchGroup is
the compile() method. This causes the branch graph represented by the
BranchGroup object to be converted to an optimised internal representation.
Once the compile() method has been called, only changes that have been
explicitly enabled can be made to the scene graph.

[2 marks]

OrderedGroup:

The OrderedGroup node is a node that ensures its children are rendered in
a specific order. In addition to the list of children inherited from the base
Group class, the OrderedGroup class also maintains an integer array of
child indices that indicates the rendering order for its children.

[2 marks]

TransformGroup:

The TransformGroup class represents a group node that implements a 3D
spatial transformation that can position, orient and scale all of its children. The
transformation is represented by a Transform3D object.

[2 marks]

 ViewSpecificGroup:

The ViewSpecificGroup node is a Group whose descendants are
rendered only on a specified set of views. It contains a list of view on which
its descendants are rendered. Methods are provided to add views, removes
views and enumerate the list of view maintained by this node. The list of
views is initially empty. This means that by default, the children of this group
will not be rendered on any view.

[2 marks]

(b) Use the following set of vertices to define a line strip array, triangle strip array
and a triangle fan array. A single strip should be generated for each type of
geometry and each of the triangles should be numbered in the case of the
triangular geometries.

v1

v0

v2

v3

v4

What is the main benefit of using strip geometry over regular geometry?

The following diagrams illustrated the line strip array, triangle strip array and
triangle fan array geometries.

v1

v0

v2

v3

v4

1

2

3

4

v1

v0

v2

v3

v4

1 2

3

v1

v0

v2

v3

v4

1

2

3

The use of strip geometry reduces the amount of vertex reuse when defining
continuous geometry. In the line strip array example above, the definition of
separate line segments would require eight vertices, whereas the definition of a
strip required only 5 vertices. In the two triangle examples above, the
definition of separate triangles would have required 9 vertices, whereas the
definition of a triangle fan or strip required only 5 vertices.

[4 marks]

(c) Describe, in relation to the piece of geometry illustrated below, the difference
between the following subclasses of GeometryArray:

 TriangleArray
 IndexedTriangleArray

v1

v0

v2

v3v4

In both cases, calculate the number of bytes required to store each version of
the geometry. Given that a Java float primitive required 4 bytes and a Java
int primitive requires 4 bytes. Assume that the vertices are defined using
Point3f object.

 A TriangleArray defines each triangle as a set of three vertices. Therefore
the geometry illustrated above will require a total of 3x6 or 18 vertices to be
defined. If each vertex consists of three floating point values then the total
memory requirement for the definition of this geometry is 18x4x3 or 216
bytes.

 An IndexedTriangleArray defines each triangle as a set of indices into

a vertex array. Using this approach each vertex is defined only once and
subsequently referenced by an integer index. Therefore the geometry
illustrated above will require a total of 3x6 or 18 indices to be defined. The
number of unique vertices is 5 therefore 3x5 or 15 floating point values will
also have to be defined. The total memory requirement is 15x4 bytes for the
indices and 18x4 bytes for the vertices, i.e. a total of 132 bytes.

 It is clear that the IndexTriangleArray is more efficient than the

TriangleArray when there is a high degree of vertex reuse.
[5 marks]

(d) Draw the BranchGroup rooted scene graph represented by the code listed

below. Explain the operation of the code with reference to the scene graph and
draw an illustration of the expected outcome when the code is executed.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

public BranchGroup createContentBranch()
{
 BranchGroup root = new BranchGroup();

 Switch switchGroup = new Switch(Switch.CHILD_MASK);
 BitSet mask = new BitSet();
 mask.set(0);
 mask.set(2);
 switchGroup.setChildMask(mask);
 root.addChild(switchGroup);

 SharedGroup sharedGroup = new SharedGroup();
 ColorCube cube = new ColorCube(0.2);
 sharedGroup.addChild(cube);

 Transform3D t1 = new Transform3D();
 t1.setTranslation(new Vector3f(-0.25f, -0.25f, 0.0f));
 TransformGroup tg1 = new TransformGroup(t1);
 Link link1 = new Link();
 link1.setSharedGroup(sharedGroup);
 tg1.addChild(link1);
 switchGroup.addChild(tg1);

 Transform3D t2 = new Transform3D();
 t2.setTranslation(new Vector3f(0.25f, -0.25f, 0.0f));
 TransformGroup tg2 = new TransformGroup(t2);
 Link link2 = new Link();
 link2.setSharedGroup(sharedGroup);
 tg2.addChild(link2);
 switchGroup.addChild(tg2);

 Transform3D t3 = new Transform3D();
 t3.setTranslation(new Vector3f(0.0f, 0.25f, 0.0f));
 TransformGroup tg3 = new TransformGroup(t3);
 Link link3 = new Link();
 link3.setSharedGroup(sharedGroup);
 tg3.addChild(link3);
 switchGroup.addChild(tg3);

40.
41.

 return root;
}

[8 marks]

The following illustration represents the BranchGroup rooted scene graph
represented by the code listed above.

TGTGTG

ColorCube

Switch

Shared
Group

Link LinkLink

BG

The program begins by defining a BranchGroup object that represents the
root of the content branch of the scene graph. The first child of the
BranchGroup is a Switch group. The children of the Switch group to be
rendered are represented by a 3-bit mask. The specified mask values indicate
that only the first and the last of the three children are to be rendered.

A SharedGroup is then defined with a single child which is a ColorCube
object with sides 40 cm in length.

Three TransformGroup objects are then defined. Each one implements a
translation that translates its children to the bottom left, bottom right and top
centre respectively. The single child of each TransformGroup is a Link

leaf node and each Link references the SharedGroup defined earlier.
These references are indicated by dashed lines in the scene graph.

The child mask specified for the Switch group indicates that only the first and
the last child of the Switch group will be rendered, i.e. the ColorCube at the
bottom left and the ColorCube at the top centre.

The expected outcome of the program is illustrated below:

Question 3

(a) Describe the approach to texture mapping implemented by Java 3D.

A texture image has texture coordinates that range from zero to one in the
horizontal and vertical directions. The bottom left corner of the texture image
has texture coordinates (0, 0) and the top right corner of the texture image has
texture coordinates (1.0, 1.0). 2D texture coordinates are also assigned to the
vertices of the geometry to indicate how the texture should be applied to the
geometry. Texture mapping stretches the texture to make the texture locations
specified by the texture coordinates line up with the texture coordinates
assigned to the vertices of the geometry being texture mapped.

What is the difference between the following two boundary modes defined by
the Texture class?

 CLAMP
 WRAP

CLAMP - clamps texture coordinate to be in the range [0, 1]. Texture boundary
texels are used for values that fall outside this range.

WRAP - repeat the texture by wrapping texture coordinates that are outside the
range [0, 1]. Only the fractional portion of the texture coordinates will be used
here. The integer portion in discarded, e.g. 1.5 would become 0.5.

Illustrate the effect of texture mapping on the following piece of geometry if
the horizontal boundary mode is set to CLAMP and the vertical boundary mode
is set to WRAP. Use the texture image that is provided in your illustration.

Here is an illustration of the texture mapped geometry

0.0 1.0 2.0-0.5
-0.5

0.0

1.0

2.0

s

t

3D geometry with 2D
texture coordinates

Describe one method provided by Java 3D for automatically generating
texture coordinates from geometry.

The OBJECT_LINEAR texture generation mode of the
TexCoordGeneration class can be used to do this - texture coordinates
are generated as a linear function of the object coordinates, i.e. in the case of
2D texture coordinates the (s, t) texture coordinates are obtained directly from
the (x, y) vertex coordinates.

[9 marks]

(b) Describe the operation of the ray casting approach to volume rendering.

The ray casting process involves projecting pixels ray from the viewpoint
through the view plane and into the volume. The path is traced back along the
pixel ray to the view plane and the colour of the a pixel in the view plane is
recursively calculated by combining the colour and opacity values of
consecutive voxels along its associated pixel ray.

Calculate the value of the shaded pixel in the 2-D view plane using this
equation:

αα Ccc inout +−=)1(

The colour and opacity values for the voxels numbered one to four are:

Voxel Colour (c) Opacity (α)

1 18 0.06
2 15 0.03
3 228 0.92
4 42 0.13

• Voxel 4

o Cin = 0, C = 42, Alpha = 0.13
o Cout = 42 x 0.13 = 5.46

• Voxel 3
o Cin = 5.46, C = 228, alpha = 0.92
o Cout = 5.46 x 0.08 + 228 x 0.92
o Cout = 0.44 + 209.76 = 210.2

• Voxel 2
o Cin = 210.2, C = 15, alpha = 0.03
o Cout = 210.2 x 0.97 + 15 x 0.03
o Cout = 203.89 + 0.45 = 204.34

• Voxel 1
o Cin = 204.34, C = 18, alpha = 0.06
o Cout = 204.34 x 0.94 + 18 x 0.06
o Cout = 192.08 + 1.08 = 193.16

Therefore, the value of the shaded pixel in the view plane is 193.16. This
value is most heavily influenced by voxel number 3 along the pixel ray.

 [8 marks]

(c) Describe the operation of the marching cubes algorithm.

The marching cubes algorithm begins by thresholding the data set, assigning a
1 to voxels ≥ diso (inside the isosurface) and a 0 to voxels < diso (outside the
isosurface). A cubic mask of size 2 x 2 x 2 is then passed through the volume
and at each mask location the configuration of the eight underlying voxels is
examined and the relevant surface patches are generated.

Draw the surface patches that correspond to the following voxel
configurations according to the marching cubes algorithm. Note that a corner
sphere indicates the presence of a voxel inside the isosurface, whereas the
omission of a corner sphere indicates the presence of a voxel outside the
isosurface.

These are the surface patches for the 3 voxel configurations:

Discuss one of the problems associated with the standard marching cubes
algorithm and suggest a possible solution to this problem.

Problem: The standard MCA does not generate airtight surfaces. In certain
cases holes may be inadvertently introduced into the generated mesh.

Solution: The holes are due to ambiguous cases resulting from mismatches
between the surface patches of adjoining cubes. The ambiguous cases that
result in unwanted holes are a direct result of the use of complementary cases
in the standard MCA to reduce the number of core cube configurations that
must be specified. By disregarding complementary cases and using only
rotation to identify equivalent cube configurations the number of core
configurations increases from 15 to 23.

[8 marks]

Question 4

(a) Describe the Binary Space Partitioning (BSP) approach and the use of BSP
Trees as space subdivision management structures.

[6 marks]

Binary Space Partitioning (BSP) is a technique for recursively subdividing a 3-D space into
two non-overlapping regions using a plane, referred to as a hyperplane. Any point in 3-D
space lies within only one of these regions. BSP is a hierarchal approach where the space
that is divided can be further subdivided using the same space partitioning approach until
some condition is met, resulting in a space-partitioning tree, which is particularly useful when
building techniques for dealing with hidden surface removal. The basic properties of BSPs are
that objects on one side of a hyperplane cannot intercept an object on the other side; and
given a particular view point objects on the same side of the hyperplane are closer than
objects on the other side.

This 2-D example illustrates the sample creation of a BSP Tree using lines to create the tree.
Each line represents a partition plane (a) creates the partition plane and thus the root node,
(b) through (d) illustrates the addition of further planes, with f representing the front side and b
representing the back side.

(b) Outline the general algorithm used in building BSP Trees.
[3 marks]

The algorithm to build a BSP tree is:
• Select a partition plane - The choice of planes is application dependent, but often axis
aligned. In an ideal situation this will result in a balanced tree, but a poor choice will result in a
large number of splits and an increase in the number of polygons. There is usually a trade-off
between a well-balanced tree and a large number of splits.
• Segment the current set of polygons using the chosen plane - If a polygon lies entirely to
one side or other of the plane then it is not modified and is added to the partition set for the
side that it is on. If the polygon spans the partition plane then it is split into two pieces, which
are added to the set on the correct side of the plane.
• Repeat again using the new sets of polygons - The termination condition is a application
specific, often based on a maximum number of nodes in a leaf node, or maximum tree depth.

(c) Apply the algorithm outlined in (b) to step-by-step subdivide the scene as
illustrated in Figure 4.1(a) and to build a representative BSP Tree.

[6 marks]

(d) Why are BSP Trees useful when building hidden surface removal algorithms?

Using the BSP Tree that you built in (c) illustrate how you could perform a
search to find the visibility order of all of the objects in the scene if the
observer was placed in the top right-hand corner, facing towards the centre of
the object cluster (as illustrated in Figure 4.1(b)).

One reason that BSP trees are appropriate for hidden surface removal algorithms is that
splitting difficult polygons can be an automated part of tree construction. To draw the contents
of the tree you can perform a back to front tree traversal, which begins at the root node and
classifies the eye point with respect to its partition plane. We draw the subtree at the far child
from the eye, then the polygons in this node, followed by the near subtree. This is repeated
recursively for each subtree.

We can do this by traversing the tree (rather than calculating the Euclidean distance to every
object in the scene). Starting at the root node, is the observer in front of, or behind L1? In this
case the observer is behind L1, and so we continue down the tree.

In this case we traverse to L2, where the viewer is in front of L2, so then to L8 and repeating
on to object C, where the viewer is behind L8. We can then traverse backwards through the
tree to give a visibility order of: C B* B* E G A F D

(e) Compare and contrast the BSP approach to the Bounding Volume Hierarchy
(BVH) approach. How does the use of these approaches differ?

[4 marks]

A Bounding Volume Hierarchy (BVH) is a tree of bounding volumes where the root node
includes every object in the scene and at the leaf nodes each bounding volume is just large
enough to contain each scene object. The tree takes on the same hierarchical shape as the
scene graph. Once again, we can quickly determine if an object is in a particular region of
space using its bounding volume, but the hierarchy also allows us to determine if the
segmented objects’ bounding volumes contained in the child nodes are also within this region
of space. The tree like structure allows all these tests to be performed very quickly. It is
common practice for us to use the same object-oriented tree structure for the scene graph
and also for the bounding volume hierarchy. This figure illustrates the BVH approach.

The BVH Approach is a hierarchial approach, which may require a priori knowledge of the
structure of the objects in the scene. BSP does not rely on any higher a priori knowledge,
rather it partitions space entirely. BSP can segment individual objects into collections of
polygons depending on the way that the space is segmented.

Question 5

(a) OpenGL has two matrix modes GL_MODELVIEW and GL_PROJECTION.
Describe the use of these two matrix modes.

[4 marks]

The GL PROJECTION is a matrix transformation that is applied to every vertex that comes
after it and GL MODELVIEW is a matrix transformation that is applied to every vertex on a
particular model. The GL PROJECTION matrix should contain only the projection
transformation calls it needs to transform eye space coordinates into clip coordinates - i.e.

think of the projection matrix as describing the attributes of the camera, such as the focal
length, field of view etc. The GL MODELVIEW matrix, as its name implies, should contain
modelling and viewing transformations, which transform object space coordinates into eye
space coordinates.

(b) Describe the OpenGL retained mode and immediate mode with reference to

the OpenGL client/server model. Discuss the advantages and disadvantages of
each mode. Use a short segment of pseudo-code to outline how you would
define and use a display list in OpenGL.

[8 marks]

OpenGL has an immediate mode where as soon as our C++ program executes a statement
that defines a primitive (or indeed vertices, attributes, viewing information etc.), the primitive is
sent immediately to the graphics card server for display. When the scene needs to be
redrawn, as in our rotating sphere example, then the vertices defining the sphere must be
resent to the server. Clearly, this will involve sending large amounts of data between your
C++ client application and the 3-D graphics server.

OpenGL also provides retained mode graphics, which provides us with display lists. As
discussed, we define the object once and place it in a display lists. Since display lists are part
of the server state, therefore residing on the 3-D graphics server, the cost of repeatedly
sending vertex information is dramatically reduced. Some graphics hardware may store
display lists in dedicated memory or may store the data in an optimised form that is more
compatible with the graphics hardware. There are some disadvantages with display lists;
display lists require memory on the server and there is a small overhead in creating the
display lists.

#define SPHERE 1 // An identifier for a sphere

void defineGLSphere(GLfloat radius, GLfloat step)
{

glNewList(SPHERE, GL COMPILE); // define a sphere
for (GLfloat phi=−80.0f; phi<80.0; phi+=step)
{ ...

glBegin(GL QUAD STRIP);
...
glEnd();
}
// Close one end
glBegin(GL TRIANGLE FAN);
…
glEnd();
// Close the other
glBegin(GL TRIANGLE FAN);
...
glEnd();

glEndList(); // end sphere definition
}

// Called to draw the scene
int drawGLScene(float theta)
{

...
glCallList (SPHERE); // actually draw the sphere
...

}

(c) Draw and describe the output of this segment of C++ OpenGL code:

[8 marks]

The code will generate a pyramid, with a square base and an apex that is offset to be directly
above one of the vertices of the underlying base. The colour of the apex should be white and
blended to the base where colours will blend from red, to magenta, to blue to black.

(d) What functions does the OpenGL stack perform? Use a short segment of
pseudo-code to describe how you would use this stack to place objects in a
scene.

[5 marks]

Because we need to apply many transformations to different objects and vertices in using
OpenGL, we have to be careful that we only apply these transformations to the correct
objects and vertices. This can be a difficult problem, but fortunately OpenGL has provided us
with the matrix and attribute stacks. These stacks allow us to store the current state, by
pushing it onto the stack; change the state to some other value, perform some operations and
finally to restore the original state. We can do this by pushing and popping them from the
stack. It is good practice to push both the current matrices and attributes onto the their correct
stacks when we enter a display list, and to pop them off when we are exiting the list. For
example, this piece of code draws a blue sphere at (1,0,0) and a red sphere at (-1,0,0).

{

glPushMatrix();
glColor3f(0.0 f , 0.0 f , 1.0 f); // blue
glTranslatef (1.0 f , 0.0 f , 0.0 f);
glCallList (SPHERE);

glPopMatrix();

glPushMatrix();
glColor3f(1.0 f , 0.0 f , 0.0 f); // red
glTranslatef (−1.0f, 0.0 f , 0.0 f);
glCallList (SPHERE);

glPopMatrix();
}

Question 6

(a) Describe the following terms, which are used to describe shaded surfaces:
Specular, Translucent, and Diffuse.

[3 marks]

• Specular surfaces - These surfaces appear shiny as the light that is reflected is
maintained within a narrow range of angles, close to the angle of reflection. Mirrors
are perfect specular surfaces.

• Translucent surfaces - These surfaces allow some of the light to penetrate the
surface and to emerge from some other location on the object. For example,
refraction in glass or water would cause the light to emerge from another location
on the object.

• Diffuse surfaces - These surfaces are characterised by having light scattered in all
directions; for example, walls painted with a matte paint are diffuse reflectors.

(b) Describe the Phong Reflection Model. What is the Lambertian Surface Model
and how does the intensity of reflected light vary as the angle to the light and
viewer changes with respect to the surface normal?

[7 marks]

The Phong Reflection model provides a good approximation to physical reality, producing
good renderings under varying lighting conditions and materials. The Phong model uses four
vectors to calculate the colour at a particular point P on a surface; these are n, the normal
vector at that point on the surface; v, which is in the direction from point P to the viewer (or
centre of projection); l, the direction of a line from P to a point light source; and r is the
direction that a perfectly reflected ray from l would take. The Phong model supports the three
types of material-light interaction of ambient, diffuse and specular. OpenGL works by
assuming that if there is a set of point sources that each source can have separate red, green
and blue ambient, diffuse and specular components.

Diffuse relections are characterised by rough surfaces, where rays of light that strike
the surface are reflected back at quite different angles. Perfectly diffuse surfaces are
called Lambertian Surfaces and can be modelled by Lambert’s law, which states that:

θcos∝dR , where theta is the angle between the normal at the point of interest n
and the direction of the light source l. If only a fraction of incoming light is reflected
we can add in a reflection coefficient kd (where 0 < kd < 1) we can write: Rd = kdLd cos
theta.

(c) Using C++ pseudo-code, write a generic container class for a Scene Graph
Tree that is capable of storing and identifying scene graph elements, such as
lights, objects, cameras etc.

[10 marks]

#include<vector> // Use the STL Vector as our container

enum RTTI_OBJECT_TYPE
{
 RTTI_CAMERA, //does not exist yet
 RTTI_LIGHT, //does not exist yet
 RTTI_DUMMY,
};

class SceneObject

{

protected:
 SceneObject* parentObject;
 std::vector<SceneObject*> childrenObjects;

public:
 SceneObject();
 virtual ~SceneObject();

 // assessors/mutators
 void setParent(SceneObject* parent) { parentObject = parent; }
 void addChild(SceneObject* child);
 std::vector<SceneObject*>* getChildrenObjects() { return &childrenObjects; }
 virtual RTTI_OBJECT_TYPE getType() const = 0;

 // Force every child to have a render and update methods
 virtual void render(float timeElapsed) = 0;
 virtual void update(float timeElapsed) = 0;
};

void SceneObject::addChild(SceneObject *child)
{
 if (!child) { std::cerr << "Attempt to add invalid child to scene graph."; }

 child->setParent(this);
 childrenObjects.push_back(child);
}

(d) Using C++ pseudo-code, write an algorithm for traversing your scene graph
tree containers from part (c) in a recursive manner.

[5 marks]

class SceneObject; //avoid a circular definition

class SceneGraph
{
 public:

 SceneGraph();
 virtual ~SceneGraph();

 void updateScene(SceneObject* sceneObject, float timeElapsed);
};

void SceneGraph::updateScene(SceneObject* sceneObject, float timeElapsed)
{
 if (!sceneObject)
 {
 std::cerr << "Attempt update of object not on the scene graph.";
 return;
 }
 else
 {
 sceneObject->update(timeElapsed);
 // and call all the children

 std::vector<SceneObject*>::iterator it = sceneObject->getChildrenObjects()-
>begin();
 for (; it!=sceneObject->getChildrenObjects()->end(); ++it)
 {
 updateScene(*it, timeElapsed);
 }
 }
}

