
Chapter 1

Introduction

1.1 Introduction

This chapter introduces some basic concepts in the area of computer graphics. The
material is initially limited to a discussion of the 2D imaging and graphics function-
ality that is provided by Java. The concept of 3D content generation is subsequently
introduced using VRML. A range of practical examples are provided to illustrate the
various concepts that are discussed throughout this chapter. The material presented
here is intended to act as a basis for a more in depth discussion of 3D computer
graphics that will take place in subsequent chapters.

1.2 Java 2D Image and Graphics Support

The Java programming language from Sun Microsystems provides a high level of
support for 2D graphics. The graphics functionality provided by Java can be divided
into three main categories:

• Interpretation - reading various graphics file formats

• Manipulation - altering/processing graphical data

• Display - rendering graphics to a particular output device

There have been a number of incremental developments in relation to Java imaging
since the initial release of the Java Developers Kit (JDK).

• Java AWT Imaging - Supports basic file formats, colour spaces, drawing
capabilities and pixel level image process.

• Java 2D Imaging - Introduces more advanced support for colour spaces,
drawing and image processing operations as well as providing support for
printers.

• Java Advanced Imaging - Vastly increases the number of graphics file for-
mats supported and provides a large library of image processing operations.

1

Image File

Header

Information

Image

Data

Figure 1.1: An illustration of the format of a standard image file that consists of
separate header information and image data.

1.2.1 Image file formats

Java supports a variety of 2D image file formats through its various APIs. A file
format designed specifically for representing graphical image data. An image file
usually consists of header information and image data (either bitmap or vector).
The format of a typical image file is outlined below and illustrated in Figure 1.1.

• Header information

– Width in pixels

– Height in pixels

– Compression scheme

– Colour Palette

– Image Resolution

• Image data

– Encoded and or compressed pixel data

– Stored in a raster fashion as:

∗ Several colour intensity planes

∗ A plane of pixels with several colour components

There are a wide variety of image file formats that are available. Some of these are
listed below. It is important to note that Java does not support all of these formats
and in certain cases custom image file loaders must be developed.

• Windows Bitmap (BMP)

– Developed by Microsoft

– Supports RLE encoding

– Maximum pixel depth of 32 bits

2

• Graphics Interchange Format (GIF)

– 256 colour palette

– Uses Lemple-Zev-Welch (LZW) compression

• Joint Photographic Experts Group (JPEG)

– Supports 16.7 million colours

– Compression based on the Discrete Cosine Transform (DCT)

• Digital Imaging and Communication is Medicine (DICOM)

– Stores images from a large number of modalities

– Header contains information about the patient, exam & image data

– DICOM was developed by the American College of Radiology (ACR) and
the National Electrical Manufactures Association (NEMA)

Reference Text:

• James D. Murray and William vanRyper ”Encyclopedia of graphics file for-
mats” O’Reilly & Associates, 2nd edition (June 1996) ISBN 1-56592-161-5

1.3 Java AWT Imaging

Java AWT (Advanced Windowing Toolkit) imaging was primarily designed to fa-
cilitate the display of images in an Internet browser based environment. Using this
model the transfer of image data is based on the producer/consumer (push) model.
Image data can be loaded from the local file system as well as from the internet.
Java AWT imaging provides read only support for GIF and JPG images.

1.3.1 Graphics Support

Basic drawing is supported by the Graphics class. The types of data can be drawn
using this class are text, basic shapes and images. The Graphics class can be used
for drawing to onscreen GUI components or off-screen images. Some examples of
the methods provided by the Graphics class include:

• void setColor(Color c)

Sets the drawing colour of the associated Graphics object to the specified
colour. All subsequent drawing operations associated with the Graphics ob-
ject use this colour.

• void drawOval(int x, int y, int width, int height)

Draws an ellipse or circle with the specified dimensions at the specified (x, y)
coordinates.

• void drawRect(int x, int y, int width, int height)

Draw a rectangle with the specified dimensions at the specified (x, y) coordi-
nates.

3

(0, 0)

(10,20)

(50,60)

width

h
e

ig
h

t

Figure 1.2: An illustration of the 2D graphics coordinates system used by Java.

• void drawString(String str, int x, int y)

Draws the specified string at the specified (x, y) coordinates. The font used for
drawing strings can be specified using the setFont() method of the Graphics
class.

• boolean drawImage(Image img, int x, int y, ImageObserver obs)

Draws the specified image at the specified (x, y) coordinates. This method re-
turn true if the specified image has completely loaded and false otherwise. The
ImageObserver argument is notified once the image data becomes available.

Note: These methods use 2D (x, y) coordinates that related to points in the 2D
Java coordinate system. This coordinate system is illustrated in Figure 1.2.

Note: In each of the methods that deal with drawing the specified (x, y) coordi-
nates indicate the location of the top left hand corner of the object being drawn.

An example of an application that uses the Graphics class is listed below. The
program draws a series of lines, using a for loop, to create a pattern.

0 import java.awt.∗;

public class GraphicsExample extends Canvas
{

public static void main(String args[]){new GraphicsExample();}
5

Frame frame = new Frame();

public GraphicsExample()
{

10 // Initialise the display frame

4

Figure 1.3: The pattern generated by the GraphicsExample application.

frame.setLayout(new BorderLayout());
setSize (320,320);
frame.add(this, BorderLayout.CENTER);
frame.pack();

15 frame.setVisible (true);
}

public void paint(Graphics g)
{

20 g.setColor(Color.BLACK);

// Draw a series of black lines
for(int i=10; i<300; i+=10)

g.drawLine(10,i,300−i,10);
25 }

}

The class defined in this program extends the Canvas class and consequently repre-
sents a graphical user interface component that can be drawn upon. A Frame object
is created in the constructor to display the Canvas and the paint() method of the
Canvas object is overwritten to draw the desired pattern. The output generated by
this program is illustrated in Figure 1.3.

1.3.2 Image Support

Bitmapped image data is represented using the Image class in the AWT imaging
model. This class is essentially a container for image data and does not provide
direct access to the pixel information. The Image class is an abstract class and
consequently, an instance of this class cannot be constructed. However, it is possible

5

to create an image from a particular source (e.g. a URL or a local file path) using
the the createImage() method of the Toolkit class. The Image class provides a
limited number of methods, for example:

• int getWidth(ImageObserver observer)

Returns the width of the image in pixels. If the image is not yet loaded then
this method returns -1. The observer argument is a reference to object waiting
for the image to be loaded.

• int getHeight(ImageObserver observer)

Operates in a similar manner to the getWidth() method with the exception
that this method returns the height of the image in pixels.

• Graphics getGraphics()

Creates a graphics context for drawing to an off-screen image. This method can
only be called for off-screen images. Note that an off-screen image is created
using the CreateImage(int w, int h) method of the Component class.

The following example demonstrates how an instance of an Image object can be
created and displayed using Java AWT imaging.

0 import java.awt.∗;

public class ImageLoadExample extends GraphicsExample
{

public static void main(String args[]){new ImageLoadExample();}
5

Image i;

public ImageLoadExample()
{

10 super();

// Load the image and resize the frame
i = Toolkit.getDefaultToolkit().createImage(”image.jpg”);
waitForImage(i);

15 int width = i.getWidth(this);
int height = i.getHeight(this);
setPreferredSize (new Dimension(width, height));
frame.pack();

}
20 public void paint(Graphics g)

{
// Paint the image on the canvas
g.drawImage(i, 0, 0, this);

}
25

// Wait for image ’i ’ to be loaded
public void waitForImage(Image i)
{

try{
30 MediaTracker tracker = new MediaTracker(this);

tracker .addImage(i,0);

6

Figure 1.4: An illustration of the image loaded using the ImageLoadExample pro-
gram.

tracker .waitForAll();
}catch(InterruptedException e){System.out.println(e);}

}
35 }

This application loads the required image data in the constructor and displays the
loaded image by overwriting the paint() method. It should be noted that this
class extends the GraphicsExample class. The output generated by this program is
illustrated in Figure 1.4.

Creating an image does not guarantee that the image will be immediately loaded
into memory. However, it is possible to wait for the required image data to be loaded
into memory using a MediaTracker object in order to ensure that the image data
is available when required.

Note: An alternative to using the MediaTracker class would be monitor the di-
mensions of the image using the getWidth() or getHeight() methods. If the image
data is not fully loaded then then these methods will return -1. When the image
data is loaded then these methods will return the relevant image dimensions.

1.3.3 Image Processing Support

It is possible to get access to the pixel data indirectly using the PixelGrabber class.
It is possible to reproduce an image from pixel data using the MemorySourceImage

class in conjunction with the createImage() method of the Toolkit class. The
following program performs the pixel level invert operation using this mechanism.

0 import java.awt.∗;
import java.awt.image.∗;

7

public class ImageProcessExample extends ImageLoadExample
{

5 public static void main(String[] args){new ImageProcessExample();}

public ImageProcessExample()
{

super();
10

i = Toolkit.getDefaultToolkit().createImage(”greatwall.jpg”);
waitForImage(i);

int width = i.getWidth(this);
15 int height = i.getHeight(this);

int [] pixels = new int[width∗height];

try{
// Grab the pixels and put them in the array called pixels

20 PixelGrabber grabber = new PixelGrabber(i,0,0,width,height,
pixels ,0,width);

grabber.grabPixels();}
catch(InterruptedException e){System.out.println(e.toString());}

25

// Process each of the pixels individually
for(int index = 0; index < width∗height; index++)
{

int pixel = pixels[index];
30 int red = (pixel & 0x00ff0000) >> 16;

int green = (pixel & 0x0000ff00) >> 8;
int blue = pixel & 0x000000ff;

red = 255 − red;
35 green = 255 − green;

blue = 255 − blue;

pixels [index] = 0xff000000|(red<<16)|(green<<8)|blue;
}

40

// Create a new image from the processed data
MemoryImageSource data = new MemoryImageSource(width, height, pixels,0,width);

i = Toolkit.getDefaultToolkit().createImage(data);

45 waitForImage(i);

setPreferredSize (new Dimension(width, height));
frame.pack();

}
50

public void paint(Graphics g)
{

g.drawImage(i, 0, 0, this);
}

8

(a) (b)

Figure 1.5: The pixel level invert operation (a) The input image and (b) an inverted
representation of the input image.

55 }

The application obtains an integer array representation of the input image using
the grabPixels() method of the PixelGrabber class. Each pixel in the image is
decomposed into its red, green and blue colour components. The invert operation
is performed on each of these colour components and the processed pixels are used
to create a new image using the createImage() method of the Toolkit class. The
output generated by this program is illustrated in Figure 1.5.

1.3.4 Defining Colours

The most basic way to represent a colour in Java is by using a single integer prim-
itive. A java integer is 32-bits wide. This is divided into a total of four colour
components: alpha, red, green and blue. Each component is allocated 8-bits of
storage. Hence each component can have 28 (256) values. The alpha component
represents opacity (the opposite of transparency). A low alpha value indicates that
the colour is transparent and a high alpha value indicates that the colour is opaque.
The format of the Java colour is illustrated in Figure 1.6.

Java also provides a class that is used to encapsulate colour information. The Color
class represents ARGB colour information specified as a either integer primitives
or float primitives. An instance of the Color class can be created using one of the
following constructors:

• Color(float r, float g, float b, float a)

Creates a colour object with the specified floating point colour components.
It should be noted that when float primitives are used the colour components
have a value in the range 0.0 - 1.0.

• Color(int r, int g, int b, int a)

Creates a colour object with the specified integer colour components. It should

9

red green bluealpha

32-bit Java integer primitive

Four 8-bit colour components

031

Figure 1.6: An illustration of the pixel format used by Java. The 32-bit bits of an
integer primitive are divided into four 8-bit colour components representing: alpha
or opacity, red, green and blue. The minimum value for each colour component is 0
and the maximum value for each component is 255.

be noted that when integer primitives are used the colour components have a
value in the range 0 - 255.

1.4 Java 2D

The Java 2D API enhances the graphics, text and imaging capabilities of the Ab-
stract Windowing Toolkit providing:

• Richer graphics, font and imaging support

• Enhanced colour definition

• A rendering model for printers and display devices

1.4.1 Graphics

The Graphics2D class extends the Graphics class to provide more sophisticated
control over:

• Geometry

• Coordinate transformations

• Colour management

• Text layout

The Graphics2D class also provides an anti-aliasing feature. This facilites the
generation of smoother, more visually appealing, graphics. The methods of the
BufferedImage class include:

• void setRenderingHint(RenderingHints.Key key, Object value)

Sets the value of a single preference from the rendering algorithms. Hint
categories include controls for rendering quality and overall time/quality trade-
off in the rendering process.

• void scale(double sx, double sy)

Concatenaces the current Graphics2D transform with a scaling transforma-
tion. Subsequent renderings are resized according to the specified scaling fac-
tors relative to the previous scaling.

10

• void rotate(double theta)

Concatenates the current Graphics2D transform with a rotation transform.
Subsequent rendering is rotated by the specified number of radians relative to
the previous origin.

• void translate(double tx, double ty)

Concatenates the current Graphics2D transform with a translation transform.
Subsequent rendering is translated by the specified distance relative to the
previous position.

The following example illustrates how an instance of the Graphics2D class can be
accessed through the paint() method of a swing component.

0 import java.awt.∗;
import javax.swing.∗;

public class Graphics2DExample extends JPanel
{

5 public static void main(String args[]){new Graphics2DExample();}

JFrame frame = new JFrame();

public Graphics2DExample()
10 {

// Initialise the display frame
frame.getContentPane().setLayout(new BorderLayout());
frame.setSize (512,512);
frame.getContentPane().add(this, BorderLayout.CENTER);

15 frame.setVisible (true);
}

public void paint(Graphics g)
{

20 Graphics2D g2d = (Graphics2D)g;
g2d.setColor(Color.BLACK);

// Draw the pattern using a for loop
for(int i=10; i<300; i+=10)

25 g2d.drawLine(10,i,300−i,10);
}

}

This code performs the same function as the earlier example that demonstrated the
Graphics class. Consequently, the output generated by this example is similar to
the output illustrated in Figure 1.3. The differences between this example and the
earlier example are:

1. Swing graphical user interface components are used rather than AWT compo-
nents. Note that swing components are preceded by the letter ’J’.

2. The Graphics object passed to the paint method is converted to a Graphics2D

object (by casting). This enables access to the advanced graphics functionality
provided by the Graphics2D class.

11

1.4.1.1 Anti-aliasing

The Graphics2D class provides support for anti-aliasing. Anti-aliasing is used to
deal with the problems associated with drawing continuous shapes (e.g. lines and
circles) using discrete pixels. There are a number of different approaches to anti-
aliasing. The anti-aliasing approach supported by the Graphics2D class is called
prefiltering. This method treats a pixel as an area, and computes the colour of the
pixel based on the overlap of the scene’s objects with the region occupied by the
pixel. The colour of the pixel is based on how much of the pixel’s area is covered
by an object. Prefiltering thus amounts to sampling the shape of the object very
densely within a pixel region. For shapes other than polygons, this can be very
computationally intensive.

Anti-aliasing can be turned on and off using the setRenderingHints() method of
the Graphics2D class. As mentioned earlier, this method expects two arguments: a
key and a value. When dealing with anti-aliasing the key must be KEY ANTIALIASING

and the value can be one of the following:

• VALUE ANTIALIAS OFF rendering is done without anti-aliasing

• VALUE ANTIALIAS ON rendering is done with anti-aliasing

• VALUE ANTIALIAS DEFAULT rendering is done with a default anti-aliasing mode
chosen by the implementation

– Note: That the default anti-aliasing mode on the Windows XP imple-
mentation of Java Standard Edition 6 is VALUE ANTIALIAS OFF

The following example demonstrates how anti-aliasing can be used in a Java2D ap-
plication:

0 import java.awt.∗;
import javax.swing.∗;

public class AntiAliasingExample extends Graphics2DExample
{

5 public static void main(String args[]){new AntiAliasingExample();}

public AntiAliasingExample()
{

setPreferredSize (new Dimension(200,200));
10 frame.pack();

}

public void paint(Graphics g)
{

15 Graphics2D g2d = (Graphics2D)g;

// Set the anti−aliasing to the default mode
g2d.setRenderingHint(RenderingHints.KEY ANTIALIASING,

RenderingHints.VALUE ANTIALIAS DEFAULT);
20

int centreX = getWidth()/2;

12

int centreY = getHeight()/2;
int radMax = getWidth()/2;

25 // Draw a series of concentric circles
for(int radius=10; radius<radMax; radius+=10)
{

g2d.drawOval(centreX−radius, centreY−radius, radius∗2, radius∗2);
}

30 }
}

The program draws a series of concentric circles. The output of the program is
illustrated in Figure 1.7. Two versions of the output are illustrated. In the first
version the anti-aliasing key is set to VALUE ANTIALIAS OFF and in the second version
the anti-aliasing key is set to VALUE ANTIALIAS ON.

(a) (b)

(c) (d)

Figure 1.7: An example of anti-aliasing. A series of concentric circles drawn without
anti-aliasing (a) and zoomed version (c). The same circles drawn with anti-aliasing
(b) and zoomed version (d).

13

1.4.2 Image Support

Java 2D imaging is based on the immediate model for imaging. This makes it more
suitable for use in imaging applications. The Java 2D API provides a new image
class for the storage of bitmapped image data. This class, BufferedImage, extends
the original Image class and can be constructed as follows:

• BufferedImage(int width, int height, int imageType)

The width and height arguments give the dimensions of the image in pixels.
The imageType argument specifies the type of image to be created. There are
number of possible values for this argument:

– TYPE BYTE BINARY represents a binary image where pixel values are mapped
to either (0, 0, 0) or (255, 255, 255).

– TYPE INT ARGB represents an image with 8-bit RGBA colour components
packed into integer pixels. Note this is the default colour model.

– TYPE INT RGB represents an image with 8-bit RGB colour components
packed into integer pixels. If an alpha value is specified for a particular
pixel then it is discarded.

The BufferedImage class also provides a number of useful methods that were not
available in the original Image class:

• int getRGB(int x, int y)

Returns the value of the specified pixel using the default RGB colour model i.e.
TYPE INT ARGB. The returned value is in the form 0xAARRGGBB. This method
may throw an ArrayOutOfBoundsException if the specified coordinates are
outside the bounds of the image.

• void setRGB(int x, int y, int rgb)

Sets the value of the pixel at the specified coordinates. The default RGB colour
model is assumed and the rgb argument must be in the form 0xAARRGGBB.
This methods may throw an ArrayOutOfBoundsException if the specified
coordinates are outside the bounds of the image.

• BufferedImage getSubImage(int x, int y, int w, int h)

Returns a subimage in the form of a BuffferedImage object that represents
the region defined by the specified origin coordinates and dimensions.

Note: The BufferedImage class also provides versions of the getWidth() and
getHeight() methods that do not require an ImageObserver argument.

It is possible to create a blank instance of a BufferedImage using the constructor
outlined earlier. It is also possible to create an instance of a BufferedImage that
is initialised from an image file. This is achieved using the read() method of the
ImageIO class. The image source is specified as the argument to this method and
can be a File object, a URL object or an InputStream object. There is no need to
wait for the image data to load as this is handled automatically within the read()

method. The following example demonstrates how a BufferedImage object can be
initialised from a local file and displayed using Java2D imaging.

14

0 import java.io.∗;
import javax.imageio.∗;
import javax.swing.∗;
import java.awt.∗;
import java.awt.image.∗;

5

public class BufferedImageLoadExample extends Graphics2DExample{

public static void main(String args[]){new BufferedImageLoadExample();}

10 BufferedImage b;

public BufferedImageLoadExample()
{

super();
15

try
{

// Load the image and resize the frame
b = ImageIO.read(new File(”image.jpg”));

20 int width = b.getWidth();
int height = b.getHeight();
setPreferredSize (new Dimension(width, height));
frame.pack();

}
25 catch(IOException ioe){System.out.println(ioe.toString());}

}
public void paint(Graphics g)
{

// paint the image on the JPanel
30 Graphics2D g2d = (Graphics2D)g;

g2d.drawImage(b, 0, 0, this);
}

}

The output generated by this example is the same as the output generated by the
AWT image load example illustrated in Figure 1.4.

1.4.3 Image Processing Support

It should be evident that the BufferedImage class provides direct access to pixel
data using the getRGB() and setRGB() methods. Consequently the BufferedImage
class provides a much more straightforward interface for image manipulation, and
image processing operations can be carried out without the processing overhead as-
sociated with the AWT imaging model. The following example demonstrates how
the colour to greyscale operation can be carried out using Java 2D imaging.

0 import java.io.∗;

import javax.imageio.∗;

15

import javax.swing.∗;
import java.awt.∗;

5 import java.awt.image.∗;

public class BufferedImageProcessExample extends Graphics2DExample{

public static void main(String args[]){new BufferedImageProcessExample();}
10

BufferedImage b;

public BufferedImageProcessExample()
{

15 super();

try
{

b = ImageIO.read(new File(”driveway.jpg”));
20 int width = b.getWidth();

int height = b.getHeight();

for(int y=0; y<height; y++)
for(int x=0; x<width; x++)

25 {
int pixel = b.getRGB(x,y);

// Extract individual colour components
int red =(pixel & 0x00ff0000) >> 16;

30 int green = (pixel & 0x0000ff00) >> 8;
int blue = pixel & 0x000000ff;

// Perform the greyscale operation
int grey = (red + green + blue)/3;

35

// Create representation of pixel using default ARGB colour model
pixel = 0xff000000 | (grey<<16) | (grey<<8) | grey;

b.setRGB(x,y,pixel);
40 }

setPreferredSize (new Dimension(width, height));
frame.pack();

}
45 catch(IOException ioe){System.out.println(ioe.toString());}

}

public void paint(Graphics g)
{

50 Graphics2D g2d = (Graphics2D)g;
g2d.drawImage(b, 0, 0, this);

}
}

16

(a) (b)

Figure 1.8: The pixel level grey-scale operation. (a) The input image and (b) a
grey-scaled representation of the input image.

The program extracts the red, green and blue colour components for each pixel and
averages them to generate a grey-scale representation of the image. The output
generated by this program is illustrated in Figure 1.8.

Exercise: Update the code to perform a mid-level threshold operation. The mid-
level threshold involves setting the output pixel to white if the grey-scale value of
the input pixel is > 127, and setting it to black of the grey-scale value of the input
pixel is ≤ 127.

1.4.4 2D Transformations

Transformations are very important in 2-D and 3-D graphics. This class represents
a 2D affine transform that performs a linear mapping from 2D coordinates to other
2D coordinates that preserves the straightness and parallelness of lines. Affine trans-
forms can be constructed using sequences of translations, scales , flips, rotations and
shears.




x′

y′

1


 =




m00 m01 m02

m10 m11 m12

0 0 1







x
y
1


 =




m00x + m01y + m02

m10x + m11y + m12

1


 (1.1)

1.4.4.1 Scale

A scale transformation indicates a horizontal scaling by a factor of sx and a vertical
scaling by a factor of sy. Note that a scale factor of 1.0 indicates that no scaling
takes place in the relevant direction. The coordinate transformation associated with
the scale operation is as follows:




sx 0 0
0 sy 0
0 0 1


 (1.2)

Example: Scale the point (2.0, 3.0) by a factor of 0.5 along the x axis and a factor
of 2.0 along the y axis.

17




x′

y′

1


 =




0.5 0.0 0.0
0.0 2.0 0.0
0.0 0.0 1.0







2.0
3.0
1.0


 =




0.5× 2.0 + 0.0× 3.0 + 0.0
0.0× 0.0 + 2.0× 3.0 + 0.0

1.0


 =




1.0
6.0
1.0




(1.3)
It is possible to create the affine transform that represents the scale operation
by calling the static getScaleInstance(double sx, double sy) method of the
AffineTransform class. The sx and sz arguments represent the factors by which
the coordinates are scaled along the x and y axes.

1.4.4.2 Translate

A translation transformation indicates a horizontal translation by a distance tx and
a vertical translation by a distance ty. Note that the translation distances are
measured in pixels. The coordinate transformation associated with the translate
operation is as follows:




1 0 tx
0 1 ty
0 0 1


 (1.4)

Example: The following example uses classes from Java 2D imaging to implement
a translation by 100 pixels in the positive x direction (across the screen to the left)
and 40 pixels in the positive y direction (down the screen).

0 import java.io.∗;
import javax.imageio.∗;
import java.awt.∗;
import java.awt.image.∗;
import java.awt.geom.∗;

5

public class Translate2DExample extends BufferedImageLoadExample{

public static void main(String args[]){new Translate2DExample();}

10 public void paint(Graphics g)
{

Graphics2D g2d = (Graphics2D)g;

double tx = 100.0;
15 double ty = 40.0;

// Degine the transformation matrix
double[] matrix = {1.0, 0.0,

0.0, 1.0,
20 tx, ty};

AffineTransform translateTransform = new AffineTransform(matrix);

// Set the interpolation type
25 int interpolationType = AffineTransformOp.TYPE NEAREST NEIGHBOR;

18

Figure 1.9: A translated version of the image illustrated in Figure 1.4. The transla-
tion moves the origin of the image by 100 pixels in the x direction and 40 pixels in
the y direction.

AffineTransformOp translateTransformOp =
new AffineTransformOp(translateTransform,

interpolationType);
30

// Perform the transformation
BufferedImage result = translateTransformOp.filter(b, null);
g2d.drawImage(result, 0, 0, this);

}
35 }

The translation transformation is defined using a suitably constructed AffineTransform

object. The AffineTransform object is used to create an instance of a AffineTransformOp
object in conjunction with an argument that represents the type of interpolation type
to be used. Three types of interpolation are supported:

• TYPE BICUBIC

• TYPE BILINEAR

• TYPE NEAREST NEIGHBOUR

The input image is subsequently filtered using the constructed AffineTransformOp

to create a translated version of the image. Finally, the resulting image is displayed
on the JPanel. The output generated by this application is illustrated in Figure
1.9. Note that the input to this operation was the image illustrated in Figure 1.4.

1.4.4.3 Rotate

A rotation transformation indicates a rotation about the origin by a specified angle θ.
The coordinate transformation associated with the translate operation is as follows:

19




cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 (1.5)

Exercise: Update the translation example (Translate2DExamle.java) above to
implement the rotation transformation using an angle of 45 degrees.

1.5 Java Advanced Imaging

Java advanced imaging (JAI) is an extension API that provides a set of object-
orientated interfaces that support a simple, high-level programming model for image
manipulation.

• Supports a wide range of image file formats (both read and write operations)
e.g. BMP, TIFF, PNM, GIF and JPEG.

• Includes more than 80 image processing operations, most of which are native
- optimised for performance

• Compatible with a variety of image formats and data types, support remote
imaging and interoperates with the Java 2D API (immediate model for imag-
ing).

The JAI API specification was developed by a consortium which includes:

• Sun Microsystems, Inc.

• Eastman Kodak, Inc.

• The Jet Propulsion Laboratory (JPL) @ NASA

JAI is currently being used in a variety of diverse applications.

• Defence and Intelligence

• Geospatial Data Processing

• Document Image Processing

• Bioinformatics

1.6 VRML

VRML is a text based language for describing 3D content. This language was orig-
inally known as Virtual Reality Markup Language and was subsequently renamed
to Virtual Reality Modeling Language. VRML is based on the inventor file format
from Silicon Graphics Inc. (SGI) and VRML version 1.0 is actually a subset of
Inventor:

• it doesn’t include the advanced interaction and animation capabilities sup-
ported by Inventor

• facilitated implementation on a wide variety of platforms

20

• Severely restricted flexibility and only facilitated the development of simple
static worlds

VRML 1.1 was intended to meet some of the shortcomings of the VRML 1.0 speci-
fication by introducing support for:

• Audio clips

• Very primitive animation

VRML 1.1 was never made public, instead attention was focused on a complete
overhaul of the language. This resulted in version 2.0 of the VRML language.
VRML 2.0 was released in 1996 and provided rich support for:

• interaction

• animation

• 3D content

1.6.1 Software

VRML content can be viewed can be viewed using a standard web browser a suitable
plug-in has been installed. The details for the VRML client used in the development
of this material are as follows:

• The Cortona VRML client from Parallel Graphics version 5.1 (release 157)

• Available as a free download from: http://www.parallelgraphics.com

This plug-in can be used in conjunction with either Mozilla Firefox or Microsoft
Internet Explorer.

1.6.2 VRML Coordinate System

VRML enables the definition of 3D content in a virtual world. VRML uses a carte-
sian coordinate system. Every point in a VRML world can be described by a set of
x, y and z coordinates.

• The x coordinate determines position left and right of the origin. A positive
x coordinate would indicate that a point is to the right of the origin.

• The y coordinate determines position above and below the origin. A positive
y coordinate would indicate that a point is above the origin.

• The z coordinate determines position in front of and behind the origin. A
positive z coordinate would indicate that a point is in front of the origin.

This coordinate system is illustrated in Figure 1.10.

21

y

z

x

Figure 1.10: An illustration of the VRML coordinate system.

1.6.3 VRML Scene Graphs

A scene graph defines the relationship between objects contained in a virtual world.
A common definition of a scene graph is a data structure composed of nodes and
arcs.

• A node is a data element in a scene graph.

• An arc is a relationship between data elements. The arcs typically represent
a parent-child relationship.

Scene graphs are constructed in the form of a directed-acyclic graph (DAG).

• A directed graph is a graph in which the arcs have direction.

• A directed-acyclic graph is a directed graph in which there are no other cycles
i.e. beginning at any node in the graph, a path cannot be found to return to
the same node.

There is only one path from the root of a scene graph to each of its leafs.

• The path from the root of a scene graph to a specific leaf node is known as a
scene graph path and there is only one scene graph path for each leaf node.

• Each scene graph path completely specifies the state information of its leaf. In
the case of a visual object, the state information would include the location,
orientation and size of the object. Consequently, the visual attributes of each
visual object depend only on its scene graph path.

Graphic representations of a scene graph can be used for design and/or documen-
tation i.e. the scene graph can be used in the specification for the program. An
example of a scene graph is illustrated in Figure 1.11.

1.6.3.1 Nodes

A node is a component in a VRML scene graph that describes some type of function-
ality. The nodes of a VRML scene graph can be divided into two main categories:

• Leaf nodes: A scene graph node without any children. Leaf nodes typically
define content within a VRML scene. Examples of leaf nodes include:

22

G

T

S

T

T S

S

S

Figure 1.11: An example of a scene graph consisting of a ground node, three trans-
form nodes and three shape nodes.

– Shape nodes - Represent shapes that consist of nodes representing ap-
pearance and geometry

– Sound nodes - Represent sound sources and can be associated with either
WAV or MIDI files.

– Light nodes - Represent a range of different light sources including am-
bient lights, point lights and spot lights.

• Group nodes: A scene graph node with children. Group nodes have one
parent and an arbitrary number of children. Examples of group nodes include:

– Transform node - Groups a series of leaf nodes together. The transfor-
mation associated with this node affects all of the grouped leaf nodes.

– Switch node - Used to conditionally render a group of leaf nodes.

– LOD node - Used to define many different representations of a particular
object. The representation that is rendered is determined based on the
distance between the view point and the LOD node.

1.6.3.2 Fields

Each node contains a list of fields that describe its functionality. A cone is an
example of geometry node and it has two fields:

• base radius (default = 1 metre)

• height (default = 2 metres)

A field can have one of many data types:

• Single Value Fields (SF)

– SFBool - A Boolean value, either true or false

23

– SFFloat - A 32-bit floating point value

– SFInt32 - A 32-bit signed integer

– SFTime - An absolute or relative time value

– SFVect2f - A 2D coordinate (u, v) often used to represent texture coor-
dinates

– SFVect3f - A 3D coordinate (x, y, z) used to represent a position in space

– SFColor - Three floating point values ranging from 0.0 to 1.0 that define
red, green and blue colour components

– SFRotation - Four floating point values. The first three values represent
a point on the rotation axis (which goes through the origin). The fourth
point represents the angle of rotation (in radians) around that axis

– SFImage - A 2D image with between one and four colour components

∗ One colour component ⇒ greyscale

∗ Four colour components ⇒ RGB + transparency

– SFString - A UTF8 string, supports the majority of international char-
acter sets

– SFNode - A container for a VRML node

• Multiple Value Fields (MF)

– MFFloat - An array of 32-bit floating point values

– MFInt32 - An array of 32-bit signed integer values

– MFVec2f - An array of 2D floating point coordinates

– MFVec3d - An array of 3D floating point coordinates

– MFColor - An array of colour values, each with three components ranging
from 0.0 to 1.0

– MFRotation - An array of values representing axes and angles of rotation.

– MFString - An array of UTF8 encoded strings

1.6.4 Shapes

A VRML node has two main properties:

• Geometry

– Defines the structure of the shape

– Can be a simple primitive (e.g. a sphere or cube) or a complex structure
consisting of many faces

• Appearance

– Material: Provides information about the colour, shininess, brightness
and transparency of the shape

– Texture: Defines an image to be stretched over the shape

The basic definition of a VRML shape node has the following format:

24

0 Shape
{

exposedField SFNode appearance NULL
exposedField SFNode geometry NULL

}

1.6.4.1 Geometry

VRML provides support for several primitive types of geometry that include: Box,
Cone, Cylinder and Sphere. These primitives have the following definitions:

0 Box
{

field SFVec3f size 2 2 2
}

0 Cone
{

field SFFloat bottomRadius 1
field SFFloat height 2
field SFBool side TRUE

5 field SFBool bottom TRUE
}

0 Cylinder
{

field SFBool bottom TRUE
field SFFloat height 2
field SFFloat radius 1

5 field SFBool side TRUE
field SFBool top TRUE

}

0 Sphere
{

field SFFloat radius 1
}

An illustration of how these shapes are rendered in a VRML enabled browser is
illustrated in Figure 1.2.

1.6.4.2 Appearance

The Appearance node provides support for all information that relates to the ap-
pearance of a shape. This includes information relating to the material and the
texture that is to be applied to the geometry of the shape. The Appearance node

25

(a) (b)

(c) (d)

Figure 1.12: Renderings of four of the primitives supported by VRML (a) box, (b)
Cone, (c) Cylinder, (d) Sphere.

has the following definition:

0 Appearance
{

exposedField SFNode material NULL
exposedField SFNode texture NULL
exposedField SFNode textureTransform NULL

5 }

The Material node provides provides information about how a shape responds to
different types of lighting e.g. ambient light and diffuse light. It can also be used to
define an emissive colour so that the shape appears to emit light. A transparency
value can also be set using the Material so that can shape can appear to be trans-
parent.

0 Material
{

exposedField SFFloat ambientIntensity 0.2
exposedField SFColor diffuseColor 0.8 0.8 0.8
exposedField SFColor emissiveColor 0 0 0

5 exposedField SFFloat shininess 0.2
exposedField SFColor specularColor 0 0 0

26

exposedField SFFloat transparency 0
}

1.6.5 The VRML File Format

VRML content must be stored using a specific file format. The properties of this
file format are as follows:

• The filename ends with the .wrl suffix

• The # symbol is used to indicate the start of a line of comments

• VRML 1.0 used 7-bit ASCII encoding

• VRML 2.0 uses UTF8 encoding

– A multi-byte encoding in which each character can be encoded in as little
as one byte and as many as four bytes

– Supports the encoding of the character sets from most languages including
Japanese

• The main components of a VRML file are:

– The Header: #VRML V1.0 ascii or #VRML V2.0 utf8

– The Body: Defines the structure and function of the virtual world

Example: Create a 3D world with a cone located at the origin. The cone should
have the following properties:

• base radius = 1.2 meters

• height = 4.6 meters

• colour = red (r = 1.0, g = 0.0, b = 0.0)

This objective can be realised using the following VRML code:

0 #VRML V2.0 utf8

Shape
{

geometry Cone
5 {

bottomRadius 1.2
height 4.6

}
appearance Appearance

10 {
material Material
{

diffuseColor 1.0 0.0 0.0
}

15 }
}

27

The output generated when this file is loaded into a VRML enabled browser is
illustrated in Figure 1.13.

Figure 1.13: A cone VRML cone rendering using the Cortona VRML client plug-in
for the Mozilla Firefox web browser.

1.6.6 Transformations

The Transform node represents a transformation from one 3D coordinates system
into another preserving parallelness and straightness of lines. The Transform node
can be used to implement:

• Translations - Translates the coordinates by the specified offsets i the x, y
and z directions.

• Scaling - Scales the coordinates in the x, y and z directions by the specified
ratios.

• Rotation - Rotates the coordinates about an axis, the rotation angle is mea-
sured in radians.

The general definition of a Transform node is as follows:

0 Transform
{

eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField SFVec3f center 0 0 0

5 exposedField MFNode children []
exposedField SFRotation rotation 0 0 0 0

28

exposedField SFVec3f scale 1 1 1
exposedField SFRotation scaleOrientation 0 0 1 0
exposedField SFVec3f translation 0 0 0

10 field SFVec3f bboxCenter 0 0 0
field SFVec3f bboxSize −1 −1 −1

}

The following examples illustrate the operation of the different types of transforma-
tion.




x′

y′

z′

w′


 =




m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33







x
y
z
w


 =




m00x + m01y + m02z + m03w
m10x + m11y + m12z + m13w
m20x + m21y + m22z + m23w
m30x + m31y + m32z + m33w




(1.6)

1.6.6.1 Translation

The child of the translation is a cone with the default properties. The translation
moves the cone 4 meters above the origin and 4 meters to the right of the origin.
The output generated when this file is loaded into a VRML enabled browser is il-
lustrated in Figure 1.14.

0 #VRML V2.0 utf8

Transform
{

translation 4 4 0
5 children Shape

{
appearance Appearance
{

material Material
10 {

diffuseColor 1 0 0
}

}
geometry Cone{ }

15 }
}

1.6.6.2 Scale

As before the child of the transformation is a cone with the default properties. The
scale causes the size of the cone to change by the specified ratios in the x, y and
z directions. The output generated when this file is loaded in a VRML enabled
browser is illustrated in Figure 1.15.

0 #VRML V2.0 utf8

29

Figure 1.14: A VRML cone with the default geometry translated by 4 metres in the
positive x direction and 4 metres in the positive y direction.

Figure 1.15: A VRML cone with the default geometry scaled by 0.5 in the x direction,
1.5 in the y direction and 1.0 in the z direction.

Transform
{

scale 0.5 1.5 1.0
5 children Shape

{
appearance Appearance
{

material Material
10 {

diffuseColor 0 1 0
}

30

}
geometry Cone{ }

15 }
}

1.6.6.3 Rotation

In this example the child of the transformation is a box with the default properties.
The rotation causes the box to rotate about a give axis by a given angle. The axis is
defined by the vector (0, 1, 0), i.e. the y-axis, and the angle is 0.524 radians. This is
equivalent to 30 degrees. The output generated when this file is loaded in a VRML
enabled browser is illustrated in Figure 1.16.

0 #VRML V2.0 utf8

Transform
{

rotation 0 1 0 0.524
5 children Shape

{
appearance Appearance
{

material Material
10 {

diffuseColor 0 0 1
}

}
geometry Box{ }

15 }
}

Figure 1.16: A VRML box with the default geometry rotated by 30 degrees (or
0.524) radians about the y axis.

31

1.6.7 Texture Mapping

Texture mapping involves applying a 2D image to the surface of a 3D object. The
texture is scaled/streched to fit the particular surface. There are default texture
mapping rules for all VRML shapes:

• Box - put one copy of the texture on each of the six faces of the box.

• Cylinder - Wrap once around the horizontal diameter and apply circular
cutouts of the images to the top and bottom faces of the cylinder.

• Sphere - Wrap the image once around the horizontal diameter and squeeze it
to a single point at the top and bottom.

The texture is specified as a URL. This can be located either remotely on the Inter-
net or locally on the file system. The file formats supported for textures depend on
the browser being used. GIF and JPEG images are generally supported by default.
The following example shows how straightforward it is to create a 3D model of the
planet earth in VRML using texture mapping. The texture mapping process used
in this example is illustrated in Figure 1.17.

0 #VRML V2.0 utf8

Shape
{

geometry Sphere{}
5 appearance Appearance

{
material Material{}
texture ImageTexture
{

10 url ”textures/earth−low.jpg”
}

}

15 }

Figure 1.17: An illustration of the texture mapping process. The earth texture
is mapped to the sphere by wrapping it once around the horizontal diameter and
squeezing it to a single point at the top and bottom.

Mapping more than one texture to a shape with several faces is more complicated.
Take a soft drinks can for example. This has three faces: top, bottom and label, see

32

Figure 1.18.

Figure 1.18: An illustration of the texture mapping process to create a soft drinks
can from a cylinder geometry. Three separate textures must be specified in order to
completely specify the appearance of the can.

It is only possible to map one texture to a particular shape, i.e. the same texture
is mapped onto each face. In order to generate the can appearance three textured
cylinders located at the same coordinates must be superimposed. The final textured
cylinder is then generated by making the unwanted faces invisible, see Figure 1.19.

Hide label

and bottom

Hide label

and top

Hide top

and bottom

Figure 1.19: The stages of texture mapping that are involved to create a soft drinks
can. Three separate cylinders must be created with the required textures. In each
case the faces that are not required must be hidden and the cylinders must be
co-located to give the final result.

The VRML code for the soft drinks can example is listed below:

0 #VRML V2.0 utf8

Group {
children [
Can top

5 Shape {
appearance Appearance {

material Material { }
texture ImageTexture {

url ”textures/cantop.jpg”
10 }

33

}
geometry Cylinder {

bottom FALSE
side FALSE

15 height 2.7
}

}
Can bottom

Shape {
20 appearance Appearance {

material Material { }
texture ImageTexture {

url ”textures/canbot.jpg”
}

25 }
geometry Cylinder {

top FALSE
side FALSE
height 2.7

30 }
}

Can side
Shape {

appearance Appearance {
35 material Material { }

texture ImageTexture {
url ”textures/canlabel.jpg”

}
}

40 geometry Cylinder {
top FALSE
bottom FALSE
height 2.7

}
45 }

]
}

In this example a total of three texture mapped cylinders are created. In each case
the unwanted faces are hidden in order to create the final result.

1.6.8 Creating Custom Geomtery

Previous examples all used simple predefined shapes with limited flexibility. It was
only possible to adjust the properties of the shapes and use them in conjunction
with transformations. These simple shapes do not provide the power and flexibility
required to create complex virtual worlds. Consequently, VRML provides a number
of nodes for describing custom geometry e.g.

• IndexFaceSet

• IndexLineSet

34

• PointSet

• ElevationGrid

1.6.8.1 IndexedFaceSet

The IndexedFaceSet is used to define arbitrarily shaped flat surfaces. Surfaces are
defined using a set of points with explicit ordering information:

• Straight lines are drawn between consecutive points

• A line is drawn between the first and last points

• The area with this closed boundary is then filled according to the associated
appearance node

It should be noted that the coordinates of the points and the ordering information
(indices) are specified in separate lists. It is possible for many indices to reference
the same coordinate. Consequently, this is a very efficient way of defining geometry.
Two rules govern the definition of these faces:

• Rule 1: All the points of the face must be coplanar

• Rule 2: A face must be convex (see Figure 1.20)

(a) (b)

Figure 1.20: Examples of convex (a) and non-convex (b) faces. In the convex ex-
ample the interconnections between each of the vertices are all located within the
face. In the non-convex example some of the interconnections intersect with the
boundaries of the face.

It should be noted that the convexity requirement does not restrict flexibility when
creating complex geometry as a non-convex can be broken down into two or more
convex faces (see Figure 1.21).

The IndexedFaceSet node is a very powerful and flexible node. As a result it is
also a complex node with a large number of fields. A simplified representation is:

35

Figure 1.21: An example of a convex face divided into two non-convex faces.

0 IndexedFaceSet
{

exposedField SFNode coord NULL
field SFBool ccw TRUE
field SFBool convex TRUE

5 field MFInt32 coordIndex []
field SFBool solid TRUE

}

One or both sides of a face can be rendered. This can be used to increase perfor-
mance by removing the need to render faces that may never be visible, i.e. those
inside a solid object. The order in which the points of a face are defined distinguishes
the inside of a face from the outside of the face. Faces can ultimately be used as the
building blocks for complex VRML models.

The IndexedLineSet node is very similar to the IndexedFaceSet node. Note that
in the case of the IndexedLineSet node, the shape is not filled. The PointSet

node defines a set of points and their associated colours and the ElevationGrid is
intended to model terrain and consists of a 2D grid and an associated height map.

Example 1: The most straightforward example of a shape generated using an
IndexedFaceSet node is a triangle, e.g. the equilateral triangle illustrated in Fig-
ure 1.22.

Such a triangle can be realised using the following VRML code:

0 #VRML V2.0 utf8

Shape
{

geometry IndexedFaceSet
5 {

coord Coordinate
{

36

(0, 1, 0)

(-1, 0, 0) (1, 0, 0)

Figure 1.22: A simple equilateral triangle with vertices at (0,1,0), (-1,0,0) and (1,0,0)

point [−1 0 0, 1 0 0, 0 1 0]
}

10 coordIndex [0 1 2 −1]
}

}

There are a total of three points and these correspond to the vertices of the triangle.
The three points are indexed in the relevant order and the face is then closed by
specifying an index of -1. The output obtained when this code is rendered in a
VRML enabled browser is illustrated in Figure 1.23.

Figure 1.23: A simple equilateral triangle created using an IndexedFaceSet node.

Example 2: A more complicated example of shape that can be defined using an
IndexedFaceSet node is a cube, see Figure 1.24. A cube has six faces and eight

37

v0 v1

v2

v3

v6

v7v4

v5

(-1, 1, -1) (1, 1, -1)

(1, -1, -1)

(1, 1, 1)(-1, 1, 1)

(-1, -1, -1)

(1, -1, 1)(-1, -1, 1)

y

x

z

Figure 1.24: A simple cube consisting of six faces and eight vertices.

vertices. A cube can be realised using the following VRML code.

0 #VRML V2.0 utf8

Shape
{
appearance Appearance

5 {
material Material
{

diffuseColor 0 0 1
}

10 }
geometry IndexedFaceSet
{

coord Coordinate
{

15 point [−1 −1 −1, # v0
1 −1 −1, # v1
−1 1 −1, # v2
−1 −1 1, # v3
−1 1 1, # v4

20 1 −1 1, # v5
1 1 −1, # v6
1 1 1] # v7

}
coordIndex [0, 3, 4, 2, −1, # left face

25 0, 1, 5, 3,−1, # bottom face
0, 2, 6, 1, −1, # back face
7, 5, 1, 6, −1, # right face
7, 6, 2, 4, −1, # top face
7, 4, 3, 5, −1] # front face

30 }
}

All eight vertices are defined in the point array and each face is subsequently created
by specifying the relevant indices into the point array. In each case the point is closed

38

by specifying an index of -1. This is an efficient way to define geometry as it removes
the need to define multiple instances of the same coordinate.

Figure 1.25: A custom cube structure created using an IndexedFaceSet node.

1.6.9 Other VRML features

VRML also provides support of a series of additional advanced features that include
the following:

• Event handling i.e. support for user interaction

• Various modes of lighting

– Point lights

– Directional lights

– Spot lights

• 3D sound

• Behaviors

– Motion

– Rotation

– Morphing

• Atmospheric effects

– Fog

– Smoke

39

1.7 Summary

This chapter has introduces various concepts in relation to 2D and 3D graphics.
The material dealing with 2D graphics demonstrated the graphics capabilities of
the Java programming language and is relevant to the discussion on Java 3D that
will take places in the next chapter. The use of VRML provided a straightforward
introduction to 3D graphics is particularly relevant to the material discussed in the
next chapter as Java 3D is based on VRML and many of the concepts including
scene graphs will be discussed again in more detail in relation to Java 3D.

40

