
Double.MAX VALUE));
root.addChild(light);

45 root.compile();

return root;
}

}

This program creates two spheres of radius 40 cm and positions them 50 cm behind
the origin. The sphere with the red material is moved 50 cm in the negative x
direction and the sphere with the blue material is moved 50 cm in the positive x
direction. A single point light with the default parameters, white colour (1.0, 1.0,
1.0) and no attenuation, is placed at the origin in order to illuminate the two spheres.
The output generated when this program is executed is illustrated in Figure 2.32.

Figure 2.32: An examples of two spheres located left and right of the origin illumi-
nated by a PointLight that is located at the origin.

2.7.9.3 SpotLight

The SpotLight class specifies an attenuated light source located at a fixed point
in space that radiates light in a specified direction. The SpotLight class extend
PointLight to include this additional functionality. A SpotLight node has the
same attributes as a PointLight node, with the addition of the following:

• Direction - The axis of the cone of light. The default direction is (0.0, 0.0,
-1.0), i.e. into the screen. The direction of the spotlight is only significant
when the spread angle is not π radians (the default value for this attribute).

• Spread angle - The angle in radians between the direction axis and a ray along
the edge of the cone of light.

– Note that the angle of the cone at the apex is twice this angle.

– The range of values for the spread angle is [0.0, π
2
] radians, with a special

value of π radians.

– Spread angle values lower than 0 are clamped to 0 and values greater
than π

2
are clamped to π

2
.

111

• Concentration - Specifies how quickly the light intensity attenuates as a func-
tion of the angle of radiation as measured from the direction of radiation. The
light’s intensity is highest at the centre of the cone and is attenuated towards
the edges of the cone by the cosine of the angle between the direction of the
light and the direction from the light to the object being lit, raised to the power
of the spot concentration exponent. The higher the concentration value, the
more focused the light source. The range of values is [0.0, 128.0]. The default
concentration is 0.0, which provides uniform light distribution.

A SpotLight contributes to diffuse and specular reflections, which depend on the
orientation and position of an object’s surface. A SpotLight does not contribute to
ambient reflections. An illustration of the spread angle and the concentration for a
SpotLight node are illustrated in Figure 2.33.

Object being illuminated

θ −

2θ

Spot Light

Source

Spread angle

(a)

Object being illuminated

φ

Spot Light

Source

Angle of ray

with respect to

central ray -

Intensity @ =

col x cos(φ)

col = light colour

conc = concentration

conc

(b)

Figure 2.33: An illustration of two of the main attributes associated with a spot
light. The spread angle (a) and the concentration (b).

The most comprehensive constructor for a SpotLight has the following format:

• SpotLight(boolean on, Color3f color, Point3f position, Point3f

attenuation, Vector3f dir, float spreadAngle, float conc)

Creates a new instance of a SpotLight object with the specified attributes.

The SpotLight class also defines methods to set or retrieve its various attributes:

• void setConcentration(float concentration)

Sets the concentration for this SpotLight object.

• float getConcentration()

Retrieves the concentration for this SpotLight object.

• void setDirection(Vector3f direction)

Sets the direction for this SpotLight object to the specified vector.

112

• void getDirection(Vector3f direction)

Retrieves the direction for this SpotLight and stores it in the specified vector.

• void setSpreadAngle(float spreadAngle)

Sets the spread angle for this SpotLight object. The minimum spread angle
is 0 radians and the maximum spread angle is π

2
radians.

• float getSpreadAngle()

Retrieves the spread angle for this SpotLight object.

Note: If you are more comfortable specifying angles in degrees then the following
method may be useful:

• double Math.toDegrees(double radians)

Converts the specified angle from radians to degrees.

• double Math.toRadians(double degrees)

Converts the specified angle from degrees to radians.

The SpotLight class also defines a series of capability bits that can be used to enable
access to its attributes after the scene graph has gone live, these include:

• ALLOW CONCENTRATION READ

Indicates that this SpotLight allows read access to its concentration informa-
tion after the scene graph has gone live.

• ALLOW CONCENTRATION WRITE

Indicates that this SpotLight object allows write access to its concentration
information after the scene graph has gone live.

• ALLOW DIRECTION READ

Indicates that this SpotLight object allows read access to its direction infor-
mation after the scene graph has gone live.

• ALLOW DIRECTION WRITE

Indicates that this SpotLight object allow write access to its direction infor-
mation after the scene graph has gone live.

• ALLOW SPREAD ANGLE READ

Indicates that this SpotLight object allows read access to its spread angle
information after the scene graph has gone live.

• ALLOW SPREAD ANGLE WRITE

Indicates that this SpotLight object allows write access to its spread angle
information after the scene graph has gone live.

The following example demonstrates how a SpotLight can be used to illuminate an
object.

0 import javax.media.j3d.∗;
import javax.vecmath.∗;
import java.lang.∗;

import com.sun.j3d.utils.behaviors.mouse.MouseRotate;

113

5 import com.sun.j3d.utils.geometry.∗;

public class SpotLightExample extends BasicScene
{

public static void main(String args[]){new SpotLightExample();}
10

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

15 Transform3D transform1 = new Transform3D();
transform1.setTranslation(new Vector3f(0.0f, 0.0f , −20.0f));
TransformGroup tg1 = new TransformGroup(transform1);
root.addChild(tg1);

20 // Red appearance
Appearance appearance1 = new Appearance();
Material material1 = new Material();
material1.setDiffuseColor(new Color3f(1.0f, 0.0f , 0.0f));
appearance1.setMaterial(material1);

25

// A detailed sphere with a large radius
Sphere sphere1 = new Sphere(15.0f, Primitive.GENERATE NORMALS,

500, appearance1);
tg1.addChild(sphere1);

30

TransformGroup tg2 = new TransformGroup();
tg2.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(tg2);

35 // A mouse rotate behaviour to control the direction of the light
MouseRotate rotate = new MouseRotate();
rotate .setTransformGroup(tg2);
tg2.addChild(rotate);
rotate .setSchedulingBounds(new BoundingSphere(new Point3d(),

40 Double.MAX VALUE));

// A spot light
SpotLight light = new SpotLight();
light .setConcentration(45f);

45 light .setSpreadAngle((float)Math.toRadians(30));
light .setInfluencingBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));
tg2.addChild(light);

50 root.compile();

return root;
}

}

This program begins by creating a large detailed sphere of radius 15 metres that is
located 20 metres behind the origin. The creation of a detailed sphere is achieved

114

by specifying a high number of subdivisions. The repositioning of the sphere with
respect to the origin is achieved using a TransformGroup. A SpotLight is then
created with a white colour, a concentration of 45.0 and a spread angle of 30 de-
grees. The SpotLight is attached to a TransformGroup which is associated with a
MouseRotation behaviour. This setup enables the direction that the SpotLight is
shining to be controlled by the mouse. The type of renderings obtained when this
program is executed are illustated in Figure 2.34.

(a) (b)

Figure 2.34: An illustration of a highly detailed Sphere primitive illuminated by a
SpotLight with a concentration of 45.0 and a spread angle of 30 degrees.

2.7.9.4 AmbientLight

An AmbientLight is used to represent light that appears to come from all directions.
The AmbientLight class extends the Light class and consequently has the same at-
tributes including colour, influencing bounds, scopes and a flag indicating whether
the light source is on or off. Ambient reflections do not depend on the orientation
or position of a surface. Ambient light only has an ambient reflection component.
It does not have either diffuse or specular reflection components.

An AmbientLight object can be created using the following constructor:

• AmbientLight(boolean lightOn, Color3f color)

Creates a new AmbientLight object with the specified state and colour infor-
mation.

The AmbientLight class does not define any additional methods or capabilities as
all of its required functionality is defined by the Light class.

The following example demonstrates how an AmbientLight can be used to illumi-
nate an object.

0

import javax.vecmath.∗;
import javax.media.j3d.∗;
import com.sun.j3d.utils.geometry.∗;

115

5 public class AmbientLightExample extends BasicScene
{

public static void main(String args[]){new AmbientLightExample();}

public BranchGroup createContentBranch()
10 {

BranchGroup root = new BranchGroup();

// Create an yellow ambient light
AmbientLight light = new AmbientLight(new Color3f(1.0f, 1.0f, 0.0f));

15 BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0),
Double.POSITIVE INFINITY);

light .setInfluencingBounds(bounds);
root.addChild(light);

20 // Create a cyan material
Appearance appearance = new Appearance();
Material material = new Material();
material.setAmbientColor(new Color3f(0.0f, 1.0f, 1.0f));
appearance.setMaterial(material);

25

// Create a sphere of radius 40 cm
Sphere sphere = new Sphere(0.4f, appearance);
root.addChild(sphere);

30 root.compile();

return root;
}

}

The operation of this program is quite straightforward. An AmbientLight is created
and positioned at the origin (the default location). The colour of the AmbientLight

is set to yellow in the constructor. A Sphere primitive is created with a radius of
40 cm. The sphere has a Material with an ambient colour of cyan. Consequently,
the colour of the sphere under the ambient light will be green. This is illustrated in
Figure 2.35.

2.7.10 Texture Mapping

Texture mapping changes the appearance of a shape by wrapping an image around
the structure of the shape. The use of an image, or texture, in this way enables the
creation of extremely detailed content in a relatively straightforward manner. For
example, a table textured with a wood grain texture would look more realistic than
if a solid brown colour were used. Textures are applied, or mapped, to a surface
using data that relates each vertex in the geometry to a location in the texture. The
locations in the texture are specified using texture coordinates and the texture is
considered to be a rectangular array of colour values called texels.

Note: A texel is to a texture what a pixel is to a picture.

116

(a)

Figure 2.35: A sphere with a material that has an ambient colour of cyan illuminated
by yellow ambient light. This results in a sphere that appears to have a green colour.

2.7.10.1 Texture Coordinates

The position of a pixel in an image is represented using x and y values. In a similar
way, the position of a texel in a texture is represented using s and t values. These
values are known as texture coordinates. The s coordinate corresponds to the hor-
izontal axis of the texture and the t coordinate corresponds to the vertical axis of
the texture. The lower left hand corner of the texture is at (0, 0) and the upper
right hand corner of the image is at (1, 1). This coordinate system is illustrated in
Figure 2.36.

Note: If a texture image is non-square the texture coordinate still have the same
range. For example, if the texture is a 128× 256 image the top right hand corner of
the texture will have the coordinates (1, 1) and not (0.5, 1).

Texture mapping stretches the texture to make the texture locations specified by
the texture coordinates line up with the texture coordinates assigned to the vertices
of the geometry being texture mapped. Texture mapping is controlled by several
components:

• The Texture appearance component controls the texture image.

• The TextureAttributes appearance component control how the texture is
applied to the surface of the geometry that is being texture mapped.

• The texture coordinates are specified by the Geometry. If the Geometry does
not have texture coordinates, a TextureCoordGeneration appearance com-
ponent can be used to generate texture coordinates from the geometric coor-
dinates.

2.7.10.2 Texture

The base class for textures is Texture. The Texture class has two main subclasses:

• Texture2D - specifies a 2D image that is to be mapped to the exterior of a
particular geometry.

117

(0, 0)

(1, 1)

(0.5, 0.2)

t

s

(a)

Figure 2.36: An illustration of the texture coordinate system. The location of
each texel is represented by a pair of texture coordinates (s, t). The s coordinate
represents the location of the texel in the horizontal direction and the t coordinate
represents the location of the texel in the vertical direction. The origin of the texture
coordinate system is located at the bottom left hand corner of the texture.

• Texture3D - specified a 3D or volumetric texture that can be used in volume
rendering.

The most straightforward method for the generation of a Texture2D object is to use
a TextureLoader. The TextureLoader loads the texture and sets up several of its
basic properties. A TextureLoader object can be created using one of the following
constructors:

• TextureLoader(BufferedImage image)

Constructs a TextureLoader object using the specified BufferedImage and
the default format RGBA.

• TextureLoader(Image image, Component observer)

Constructs a TextureLoader object using the specified Image and the default
format RGBA.

• TextureLoader(String filename, Component observer)

Constructs a TextureLoader object that will load a texture from the specified
file location.

• TextureLoader(URL url, Component observer)

Constructs a TextureLoader object that will load a texture from the specified
URL.

118

Note: In the last three versions of the constructor listed here, an ImageObserver

object must be specified. This is required to monitor the progress of Image object
that are in the process of being loaded.

It is clear that a TextureLoader object can be used to load a texture image from a
variety of sources. The texture loader also supports the image formats supported by
the JDK i.e. GIF and JPEG. If the optional Java Advanced Imaging (JAI) package
is installed then JAI will be used to load the texture image and consequently the
loader will support BMP, FlashPix, PNG, PNM and TIFF file formats.

It is also possible to specify a series of flags in the constructor, for example:

• TextureLoader(BufferedImage image, int flags)

Constructs a TextureLoader object using the specified BufferedImage object,
the specified flag options and the default format RGBA.

The flags are used to specify options for the loader. The options that can be specified
by the flags are integers that can be OR’d together. The possible flag values are:

• GENERATE MIPMAP - Tells the TextureLoader to create the texture with mul-
tiple levels of resolution called mipmaps that are used when the texture is
viewed at a variety of scales.

• BY REFERENCE - Specifies that the ImageComponent2D object representing the
texture will access the image data by reference.

• Y UP - Indicates that the ImageComponent2D object representing the texture
will have a y-orientation of y up, meaning that the origin of the image is in the
lower left hand corner (i.e. so that the image coordinate system corresponds
to the texture coordinate system).

It is also possible to specify an image format in the constructor for a TextureLoader

object, for example:

• TextureLoader(BufferedImage image, int format)

Constructs a TextureLoader object with the specified BufferedImage and
the specified image format.

The format parameter is an advanced option that is used to specify the internal for-
mat of the image. The default format is RGBA, i.e. this is the format that is used
if the version of the constructor being used does not have a format parameter. The
RGBA format indicates that each texel has red, green, blue and alpha components.
A variety of other formats are also available, for example ALPHA, indicates that
only the transparency values of the loaded image are to be used.

Once a TextureLoader object has been created the Texture object that it represents
can be obtained using the following method:

• Texture getTexture()

Returns the relevant Texture object or null if the texture image failed to load.

119

Note: If the width or height of the image is not a power of 2 (i.e. 32, 64, 128, 256,
etc.), then the image is scaled so that its dimensions are a power of two.

The other methods provided by the TextureLoader class can be used to load an
ImageComponent2D representation of the texture image. This can be used in con-
junction with the Raster geometry and Background environment node. These meth-
ods have the following format:

• ImageComponent2D getImage()

Returns an ImageComponent2D representation of the texture image.

• ImageComponent2D getScaledImage(float xScale, float yScale)

Returns a scaled ImageComponent2D representation of the texture image that
has been scaled by the specified horizontal and vertical scale factors.

• ImageComponent2D getScaledImage(int width, int height)

Returns a scaled ImageComponent2D representation of the texture image that
has the specified dimensions.

The following program demonstrates how a texture can be applied to a simple tri-
angle:

0 import javax.media.j3d.∗;
import com.sun.j3d.utils.image.∗;

public class TextureCoordinateExample extends BasicSceneWithMouseControl
{

5 public static void main(String args[]){new TextureCoordinateExample();}

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();
10

Texture woodTexture = null;

try
{

15 // Load the wood texture from the local file syste ,
TextureLoader loader = new TextureLoader(”wood.jpg”, this);
woodTexture = loader.getTexture();

}
catch(Exception e){System.out.println(e.toString());}

20

Appearance appearance = new Appearance();
appearance.setTexture(woodTexture);

float [] coordinates = {−0.5f, −0.5f, 0.0f ,
25 0.5f , −0.5f, 0.0f ,

0.0f , 0.5f , 0.0f};

// Define the texture coordinates for the vertices
float [] texCoords = {0.0f, 0.0f ,

30 1.0f , 0.0f ,

120

0.5f , 1.0f};

// Create a geometry array from the specified coordinates
GeometryArray geometryArray = new TriangleArray(3,

35 GeometryArray.COORDINATES|GeometryArray.TEXTURE COORDINATE 2);

geometryArray.setCoordinates(0, coordinates);
geometryArray.setTextureCoordinates(0,0,texCoords);

40 // Create a Shape3D object using the GeometryArray
Shape3D shape = new Shape3D(geometryArray, appearance);
root.addChild(shape);

root.compile();
45

return root;
}

}

The program begins by creating a Texture2D object that represents the wood tex-
ture stored in the file wood.jpg. This is achieved using a TextureLoader object. An
Appearance object is then created and its texture is set to be the loaded Texture2D

object. A set of coordinates are then defined that represent a simple triangle lo-
cated at the origin. A set of texture coordinates are subsequently defined. These
associate the vertices of the triangle with points in the texture image. The first
vertex is associated with the the bottom left corner of the texture image, the second
vertex is associated with the bottom right corner of the image and the third vertex is
associated with the central point at the top of the texture image. A TriangleArray

object is then created and the COORDINATE and TEXTURE COORDINATE 2 flags are set
to indicate that both coordinates and 2D texture coordinates will be specified for the
vertices of the triangle array. A Shape3D object is then created using the previously
discussed appearance and geometry. Finally, the resulting shape is added to the
root of the scene graph. A rendering of the texture mapped triangle is illustrated
in Figure 2.37.

The following example demonstrates how texture coordinates can be generated to
example texture mapping for a primitive shape.

0

import javax.media.j3d.∗;
import com.sun.j3d.utils.geometry.∗;
import com.sun.j3d.utils.image.∗;

5 public class TexturePrimitiveExample extends BasicSceneWithMouseControl
{

public static void main(String args[]){new TexturePrimitiveExample();}

public BranchGroup createContentBranch()
10 {

BranchGroup root = new BranchGroup();

121

(a) (b)

Figure 2.37: The original wood texture (a) and a triangle that has been texture
mapped using the wood texture (b).

Appearance appearance = new Appearance();

15 Texture woodTexture = null;
try
{

// Load the wood texture from the local file system
TextureLoader loader = new TextureLoader(”wood.jpg”, this);

20 woodTexture = loader.getTexture();
}
catch(Exception e){System.out.println(e.toString());}

appearance.setTexture(woodTexture);
25

// Create a Box primitive with texture coordinates
Box box = new Box(0.2f, 0.05f, 0.6f,

Box.GENERATE TEXTURE COORDS,
appearance);

30 root.addChild(box);

root.compile();

return root;
35 }

}

The operation of this example is similar to the operation of the previous example.
The wood texture is loaded and associated with the Appearance in the same way.
A Box primitive is then created with a width of 20 cm, a height of 5 cm and a
depth of 60 cm. The GENERATE TEXTURE COORDS is specified to indicate that the
Box primitive should have texture coordinates associated with its vertices. Finally,
the appearance with the associated wood texture is specified for use with the Box

primitive. A rendering of the texture mapped Box is illustrated in Figure 2.38.

122

(a) (b)

Figure 2.38: Sample renderings of the texture mapped Box primitive.

The texture image is the most important attribute of the Texture class. However,
the Texture class has a variety of other attributes that define how the texture
appears when it is viewed, for example:

• The state attribute allows the texture to be enabled or disabled.

• The boundary mode specifies how the texture appears for texture coordinates
outside the range [0, 1].

• The texture filtering mode specifies how the texture is drawn when it is larger
or smaller than its original size.

Texture mapping is enabled if all three of the following are true:

• The shape has texture coordinates

• The appearance has a texture image associated with it

• The texture is enabled

The texture is enabled using the following method:

• void setEnable(boolean state)

Sets the state of the texture to the specified value. A value of true indicates
that the texture is enabled and a value of false indicates that the texture is
disabled.

The state information for a texture can be accessed after the scene graph has gone
live provided that the relevant capabilities are enabled, these are:

• ALLOW ENABLE READ

Indicates that this Texture object allows read access to its state information
after the scene graph has gone live.

123

• ALLOW ENABLE WRITE

Indicates that this Texture object allows write access to its state information
after the scene graph has gone live.

The Texture class also defines similar capabilities for the other attributes that it
supports.

The coordinates of a texture image always have values in the range [0, 1], however,
the texture coordinates associated with the vertices of a geometry can have texture
coordinates outside this range. The boundary mode of a texture specifies how tex-
ture coordinates outside the range [0, 1] are dealt with. There are two main types
of boundary mode:

• CLAMP - clamps texture coordinate to be in the range [0, 1]. Texture boundary
texels are used for values that fall outside this range.

• WRAP - repeat the texture by wrapping texture coordinates that are outside
the range [0, 1]. Only the fractional portion of the texture coordinates will be
used here. The integer portion in discarded, e.g. 1.5 would become 0.5.

The boundary mode for the horizonal and vertical directions are specified separately
using the following methods:

• void setBoundaryModeS(int mode)

Sets the horizontal boundary mode of this Texture object to the specified
value.

• void setBoundaryModeT(int mode)

Sets the vertical boundary mode of this Texture object to the specified value.

The following example demonstrated the operation of the two different boundary
modes.

0 import javax.media.j3d.∗;
import com.sun.j3d.utils.image.∗;

public class TextureBoundaryModeExample extends BasicSceneWithMouseControl
{

5 public static void main(String args[]){new TextureBoundaryModeExample();}

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();
10

Texture earthTexture = null;

try
{

15 // Create the texture and set it horizontal and vertical
// boundary modes
TextureLoader loader = new TextureLoader(”earth.jpg”, this);
earthTexture = loader.getTexture();
earthTexture.setBoundaryModeS(Texture.CLAMP);

124

20 earthTexture.setBoundaryModeT(Texture.WRAP);
}
catch(Exception e){System.out.println(e.toString());}

Appearance appearance = new Appearance();
25 appearance.setTexture(earthTexture);

float [] coordinates = {−0.5f, −0.5f, 0.0f ,
0.5f , −0.5f, 0.0f ,
0.5f , 0.5f , 0.0f ,

30 −0.5f, 0.5f , 0.0f};

// Specify the texture coordiantes for the vertices
float [] texCoords = {−1.0f, −1.0f,

2.0f , −1.0f,
35 2.0f , 2.0f ,

−1.0f, 2.0f};

// Create a geometry array from the specified coordinates
GeometryArray geometryArray = new QuadArray(4,

40 GeometryArray.COORDINATES|GeometryArray.TEXTURE COORDINATE 2);

geometryArray.setCoordinates(0, coordinates);
geometryArray.setTextureCoordinates(0,0,texCoords);

45 // Create a Shape3D object using the GeometryArray
Shape3D shape = new Shape3D(geometryArray, appearance);
root.addChild(shape);

root.compile();
50

return root;
}

}

This example defines a QuadArray geometry consisting of a single quadrilateral fac-
ing the viewer. The quadrilateral has sides that are one meter in length and it is
centred at the origin. The horizontal and vertical texture coordinates assigned to
the vertices of the quadrilateral are in the range [-1.0, 2.0], i.e. they extend outside
the range defined for the texture image. The horizontal boundary mode for the
texture image is set to CLAMP and the vertical boundary mode for the texture image
is set to WRAP. The output obtained when this program is executed is illustrated in
Figure 2.39.

The Texture class also defines filtering modes that specify how the resolution for
the texture image is increased or decreased during rendering. When a texture is
mapped to a piece of geometry there is rarely a one-to-one correspondence between
the pixels of the rendered geometry and the pixels of the texture image. Instead one
of the following situations occurs:

• Magnification - where a single pixel of the rendered geometry corresponds
to a small portion of a texel.

125

Figure 2.39: A rendering of a texture mapped quadrilateral where the horizontal
texture mode has been set to CLAMP and the vertical texture mode has been set to
WRAP.

• Minification - where a single pixel of the rendered geometry corresponds to
an area of the texture, i.e. several texels.

The texture filtering mode specifies the quality of the process used to magnify or
minify the texture. The better the quality the less “blocky” the texture mapped
geometry will appear. The possible the minification filter modes include:

• BASE LEVEL POINT

Selects the nearest point in the base level texture image.

• BASE LEVEL LINEAR

Performs bilinear interpolation on the four nearest texels in the base level
texture image.

• FILTER4

Applies a used defined weight function to the nearest 4× 4 texels in the base
level texture image.
Note: The weight function is set using the setFilter4Func() method of the
Texture class.

• FASTEST

Uses the fastest minification filter.

• NICEST

Uses the minification filter that generates the most visually appealing results.

The minification filter mode associated with a Texture object can be set or retrieved
using the following methods:

• void setMinFilter(int minFilter)

Sets the minification filter for this Texture object to the specified value.

126

• int getMinFilter()

Returns the minification filter value for this Texture object.

The magnification filter can also use the modes listed above. The minification filter
and the magnification filter mode associated with a Texture object cam be set or
retrieved using the following methods:

• void setMagFilter(int magFilter)

Sets the magnification filter for this Texture object to the specified value.

• int getMagFilter()

Returns the magnification filter value for this Texture object.

The following example demonstrates how a specific magnification filter mode can be
used in conjunction with a Texture object.

0

import javax.media.j3d.∗;
import com.sun.j3d.utils.geometry.∗;
import com.sun.j3d.utils.image.∗;

5 public class MagnificationFilterExample extends BasicSceneWithMouseControl
{

public static void main(String args[]){new MagnificationFilterExample();}

public BranchGroup createContentBranch()
10 {

BranchGroup root = new BranchGroup();

Appearance appearance = new Appearance();

15 Texture earthTexture = null;
try
{

// Load the texture and set its magnification filter
TextureLoader loader = new TextureLoader(”earth.jpg”, this);

20 earthTexture = loader.getTexture();
earthTexture.setMagFilter(Texture.BASE LEVEL LINEAR);

}
catch(Exception e){System.out.println(e.toString());}

25

appearance.setTexture(earthTexture);

// Use the texture in conjucntion with a sphere geometry
Sphere sphere = new Sphere(0.5f,

30 Sphere.GENERATE TEXTURE COORDS,
appearance);

root.addChild(sphere);

root.compile();
35

return root;

127

}
}

This program begins by loading a texture image that represents the surface of the
planet earth using a suitably constructed TextureLoader object. The magnification
filter mode of the loaded texture is set to BASE LEVEL LINEAR. The Texture object
is then associated with an Appearance object and the Appearance object is used
to construct a Sphere primitive which is ultimately added to the root of the scene
graph. Examples of renderings obtained with different version of this program are
illustrated in Figure 2.40.

(a) (b)

Figure 2.40: A sphere texture mapped with an image of the earth where Aus-
tralia is visual rendered using two magnification modes: BASE LEVEL POINT (a) and
BASE LEVEL LINEAR (b)

It should be noted that there are a variety of other attributes associated with the
Texture class. These other attributes are discussed in detail in the Java 3D API
specification.

2.7.10.3 TextureAttributes

The TextureAttribute class defines a range of attributes that apply to the texture
mapping process. One of the main attributes defined in the TextureAttributes

class is the texture mode. The texture mode can have one of the following values:

• MODULATE - mixes the colour of the texture with the colour of the underlying
surface. This texture mode make it possible to use lighting with a texture.

• DECAL - applies the texture to the shape being mapped in the form of a decal.
This means that the transparency defined in the texture image is preserved.

• BLEND - blends the texture blend colour with the colour of the underlying
surface. This is an advanced mode where the blending that occurs at each
point depends on the values of the pixels in the texture image.

• REPLACE - applies the texture directly onto the object overriding the underlying
colour of the shape. This is the default texture mode. Textures applied using
this mode are not affected by light.

128

• COMBINE - combines the object colour with the texture color or texture blend
colour according to the combine operation specified by the texture combine
mode. Possible values for the combine mode include:

– COMBINE REPLACE

– COMBINE MODULATE

– COMBINE ADD

– COMBINE SUBTRACT

– COMBINE INTERPOLATE

It is possible to set and retrieve the texture mode of a TextureAttributes object
using the following methods:

• void setTextureMode(int textureMode)

Sets the texture mode of this TextureAttributes object to the specified value.

• int getTextureMode()

Returns the texture mode of this TextureAttributes object.

The following example demonstrates how the TextureAttrubtes appearance com-
ponent can be used to make a texture appear to respond to lighting.

0

import javax.media.j3d.∗;

import com.sun.j3d.utils.geometry.∗;
import com.sun.j3d.utils.image.∗;

5 import javax.vecmath.∗;

public class TextureModeExample extends BasicSceneWithMouseControl
{

public static void main(String args[]){new TextureModeExample();}
10

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

15 Appearance appearance = new Appearance();

// Create a white material
Material material = new Material();
material.setAmbientColor(new Color3f(1.0f, 1.0f, 1.0f));

20 material. setDiffuseColor(new Color3f(1.0f, 1.0f , 1.0f));
appearance.setMaterial(material);

Texture earthTexture = null;
try

25 {
// Load the earth texture
TextureLoader loader = new TextureLoader(”earth.jpg”, this);
earthTexture = loader.getTexture();

129

30 }
catch(Exception e){System.out.println(e.toString());}
appearance.setTexture(earthTexture);

// Set the texture mode to modulate
35 TextureAttributes textureAttributes = new TextureAttributes();

textureAttributes.setTextureMode(TextureAttributes.MODULATE);
appearance.setTextureAttributes(textureAttributes);

// Create a sphere primtive with texture coordinates and normals
40 Sphere sphere = new Sphere(0.5f,

Sphere.GENERATE TEXTURE COORDS|Sphere.GENERATE NORMALS,
50, appearance);

root.addChild(sphere);

45 // Create a bright white directional light
DirectionalLight light = new DirectionalLight(new Color3f(1.0f, 1.0f, 1.0f),

new Vector3f(−1.0f, −1.0f, −1.0f));
light .setInfluencingBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));
50 root.addChild(light);

// Create a dark white ambient light
AmbientLight ambientLight = new AmbientLight(new Color3f(0.2f, 0.2f, 0.2f));
ambientLight.setInfluencingBounds(new BoundingSphere(new Point3d(),

55 Double.MAX VALUE));
root.addChild(ambientLight);

root.compile();

60 return root;
}

}

The program begins by creating an Appearance object. A Material object is then
associated with the Appearance object. The ambient colour of the Material is
white (1.0, 1.0, 1.0) and the diffuse colour of the Material is also white (1.0, 1.0,
1.0). The “earth” texture is loaded using a suitably constructed TextureLoader

object. A TextureAttributes object is then created and its texture mode is set
to MODULATE. The TextureAttributes object is also associated with the previously
constructed Appearance object. The Appearance object is ultimately used in the
construction of a Sphere primitive. Two light sources are also included in the scene:
a directional light with a bright white colour (1.0, 1.0, 1.0) and an ambient light
with a dim white colour (0.2, 0.2, 0.2). Renderings generated by variation of this
program are illustrated in Figure 2.41.

It is possible to transform the texture coordinates for a piece of geometry using the a
TextureAttributes object. This is achieved by specifying a suitable Transform3D

object using the following method:

• void setTextureTransform(Transform3D transform)

Transforms the texture coordinates using the transform represented by the

130

(a) (b)

Figure 2.41: Making textures respond to lighting. A white Sphere primitive illumi-
nated by ambient and directional light sources (a). A texture applied to the same
Sphere using the MODULATE texture mode appears to respond to both light sources
(b).

specified Transfrom3D object.

The TextureAttributes class also support other attributes and these are discussed
in detail in the Java 3D API specification.

2.7.10.4 TexCoordGeneration

The TexCoordGeneration class defines all of the parameters required for automatic
texture coordinate generation and it is included as a part of an Appearance object.

Texture coordinates determine which texel in the texture map is assigned to a given
vertex. Texture coordinates are interpolated between vertices in a similar method
to the way colors are interpolated between vertices.

Rather than the programmer having to explicitly assign texture coordinates to a
particular piece of geometry, Java 3D can automatically generate the texture co-
ordinates to achieve texture mapping. The TexCoordGeneration class defines at-
tributes that specify the functions for automatically generating texture coordinates.
The attributes defines by the TexCoordGeneration class include:

• The texture format - defines whether the generated texture coordinates are
2D, 3D, or 4D. In the case of 2D texture coordinates this attribute has a value
of TEXTURE COORDINATE 2.

• Texture generation mode - defines how the texture coordinates are gener-
ated. The possible values for this attribute are:

– OBJECT LINEAR - texture coordinates are generated as a linear function
of the object coordinates, i.e. in the case of 2D texture coordinates the

131

(s, t) texture coordinates are obtained directly from the (x, y) vertex co-
ordinates.

– EYE LINEAR - texture coordinates are generated as a linear function in
eye coordinates. Note that this mode transforms the shapes coordinates
to the viewers coordinate system before the texture coordinates are gen-
erated.

– SPHERE MAP - texture coordinates are generated using spherical reflection
mapping in eye coordinates. This mode is used to simulate the reflected
image of a spherical environment onto a polygon.

– NORMAL MAP - texture coordinates are generated to match vertices’ nor-
mals in eye coordinates.

– REFLECTION MAP - texture coordinates are generated to match vertices’
reflection vectors in eye coordinates.

• Plane equation coefficients - defines the coefficients for the plane equa-
tions used to generate the coordinates in the OBJECT LINEAR and OBJECT EYE

texture coordinate generation modes. The coefficients define a reference plane
in either object coordinates or in eye coordinates, depending on the texture
generation mode.

The following example demonstrates how texture coordinates can be automatically
generated for a simple triangular polygon.

0 import javax.media.j3d.∗;
import com.sun.j3d.utils.image.∗;

public class TexCoordGenerationExample extends BasicSceneWithMouseControl
{

5 public static void main(String args[]){new TexCoordGenerationExample();}

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();
10

Texture woodTexture = null;

try
{

15 // Load the wood texture
TextureLoader loader = new TextureLoader(”wood.jpg”, this);
woodTexture = loader.getTexture();

}
catch(Exception e){System.out.println(e.toString());}

20

Appearance appearance = new Appearance();
appearance.setTexture(woodTexture);

// Defines 2D texture coordinates generated by a linear mapping
25 TexCoordGeneration texCoordGeneration = new TexCoordGeneration();

texCoordGeneration.setFormat(TexCoordGeneration.TEXTURE COORDINATE 2);
texCoordGeneration.setGenMode(TexCoordGeneration.OBJECT LINEAR);

132

appearance.setTexCoordGeneration(texCoordGeneration);

30 float [] coordinates = {−0.5f, −0.5f, 0.0f ,
0.5f , −0.5f, 0.0f ,
0.0f , 0.5f , 0.0f};

// Create a geometry array from the specified coordinates
35 GeometryArray geometryArray = new TriangleArray(3,

GeometryArray.COORDINATES);

geometryArray.setCoordinates(0, coordinates);

40 // Create a Shape3D object using the GeometryArray
Shape3D shape = new Shape3D(geometryArray, appearance);
root.addChild(shape);

root.compile();
45

return root;
}

}

This program begins by loading the “wood” texture using a suitably constructed
TextureLoader object. An Appearance object is then created and a TexCoordGeneration
object is associated with the Appearance object. The format of the TexCoordGeneration
object is set to TEXTURE COORD 2 and the texture coordinate generation mode is set
to OBJECT LINEAR. The vertices are specified for a TriangleArray geometry and
a Shape3D object is created using the appearance and the geometry. Finally, the
Shape3D object is added to the scene graph to be displayed. The output obtained
when this program is executed is illustrated in Figure 2.42.

2.7.10.5 Using Multiple Textures

The texture options that have been discussed so far have dealt with applying a sin-
gle texture to a surface. It is also possible to apply several layers of textures to a
surface using a process referred to as multitexturing. This is an advanced approach
to texturing that can be used to implement shadows and special kinds of lighting.

Multilayered textures are created by specifying a series of TextureUnitState objects
for each layer of texture mapping. A TextureUnitState object holds the Texture,
TextureAttributes and TextCoordGeneration objects that represent a specific
texture. A TextureUnitState object can be associated with an Appearance object
using one of the following methods:

• void setTextureUnitState(int index, TextureUnitState state)

Set the TextureUnitState object for this Appearance object at the specified
index to the specified value.

• void setTextureUnitState(TextureUnitState[] stateArray)

Set the array of TextureUnitState objects for this Appearance object to the
specified array.

133

Figure 2.42: A simple triangular geometry where the texture coordinates have been
automatically generated using a TexCoordGeneration appearance component.

It is also possible to specify several sets of texture coordinates with an instance of
GeometryArray. The mapping of the texture coordinates to a specific TextureUnitState
object is defined in the constructor for the relevant subclass of GeometryArray, for
example TriangleArray:

• TriangleArray(int vertexCount, int vertexFormat, int

texCoordSetCount, int[] texCoordSetMap)

Constructs a TriangleArray object that support multiple sets of texture co-
ordinates. The number of sets is specified by the texCoordSetCount argument
and the mapping between the individual sets of texture coordinates and the
associated TextureUnitState object is indicated in the texCoordSetMap ar-
gument.

The texture coordinate associated with a particular TextureUnitState object can
be specified using the following method:

• void setTextureCoordinates(int texCoordSet, int index,

TexCoord2f[] texCoords)

Sets the texture coordinates associated with the vertices starting at the spec-
ified index in the specified texture coordinate set for this GeometryArray ob-
ject.

2.7.11 Environment Nodes

Java 3D provides a range of environment nodes that affect the affect the environment
of a virtual world. Environment nodes can be used to control lighting, sound and
the background of a scene.

134

2.7.11.1 Bounding Regions

Environment nodes typically affect the a particular region of a virtual world. For
example, lights shine on shapes and sounds create audible content. Light and sound
sources should not affect the entire virtual universe. Consequently, Java 3D re-
quires bounding regions to be specified for environment nodes to define the region
where they are active. There are two main types of bounding region and they are
constructed as follows:

• BoundingBox(Point3d lower, Point3d upper)

Creates a new BoundingBox object within the specified bounds.

• BoundingSphere(Point3d centre, double radius)

Creates a new BoundingSphere object at the specified location with the spec-
ified radius.

If a bounding region is not specified for a particular environment node then it is
considered to be inactive.

If a environment node is required to be active throughout the entire virtual universe
then it is possible to approximate infinite bounds by creating a BoundingSphere

with a radius of Double.MAX VALUE.

2.7.11.2 Background

The Background environment node defines a solid background colour and a back-
ground image that are used to fill the window at the beginning of each new frame.
The Background environment node also allows background geometry to be specified.

A Background environment node that represents a colour can be created using the
following constructor:

• Background(Color3f backgroundColour)

Creates a new Background environment node with the specified colour.

Alternatively, a background environment node that represents a image can be cre-
ated:

• Background(ImageComponent2D backgroundImage)

Creates a new Background environment node using the specified image.

An ImageComponent2D object representing an image resource can be obtained by
calling the getImage() method of a suitably constructed TextureLoader object.

The following example demonstrates how a background image can be created and
added to a 3D scene.

0

import javax.media.j3d.∗;

import com.sun.j3d.utils.geometry.∗;
import com.sun.j3d.utils.image.∗;

135

5 import javax.vecmath.∗;

public class BackgroundImageExample extends
BasicSceneWithMouseControlAndLights

{
10 public static void main(String args[]){new BackgroundImageExample();}

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();
15

ImageComponent2D starImage = null;
try
{

// Load the stars image
20 TextureLoader loader = new TextureLoader(”stars.gif”, this);

starImage = loader.getImage();
}
catch(Exception e){System.out.println(e.toString());}

25 // Create a background node from the stars image
Background bg = new Background(starImage);
bg.setApplicationBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));
root.addChild(bg);

30

Appearance appearance = new Appearance();

Material material = new Material();
appearance.setMaterial(material);

35

Texture earthTexture = null;
try
{

// Load the earth texture
40 TextureLoader loader = new TextureLoader(”earth.jpg”, this);

earthTexture = loader.getTexture();
}
catch(Exception e){System.out.println(e.toString());}
appearance.setTexture(earthTexture);

45

// Allow the texture to respond to lighting
TextureAttributes textureAttributes = new TextureAttributes();
textureAttributes.setTextureMode(TextureAttributes.MODULATE);
appearance.setTextureAttributes(textureAttributes);

50

// Create a details sphere and map the earth texture
Sphere sphere = new Sphere(0.5f,

Sphere.GENERATE TEXTURE COORDS|Sphere.GENERATE NORMALS,
100, appearance);

55 root.addChild(sphere);

root.compile();

136

return root;
60 }

}

This program is an modified version of the TextureModeExample.java example
that was discussed earlier. The main difference here is that a Background environ-
ment node is added to the scene. This is achieved by loading the required back-
ground image using a suitably constructed TextureLoader object and then calling
the getImage() method to obtain a ImageComponent2D object that represents the
loaded image. This image is subsequently used to construct a Background object.
The application bounds for the Background environment node are set to the max-
imum value and the Background is added to the root of the scene graph. The
rendering obtained when this program is executed is illustrated in Figure 2.43

Figure 2.43: A texture mapped sphere representing the planet earth and a back-
ground image representing a backdrop of stars.

It is also possible to use a geometry rather than a flat image the create a back-
ground. This involves rendering a texture mapped Sphere at an infinite distance.
The normals of the sphere must be flipped inwards so that the texture is applied to
the interior of the Sphere.

The following example demonstrates how a background geometry can be specified
for a scene.

0

import javax.media.j3d.∗;

import com.sun.j3d.utils.behaviors.mouse.MouseRotate;
import com.sun.j3d.utils.geometry.∗;

5 import com.sun.j3d.utils.image.∗;
import javax.vecmath.∗;

public class BackgroundGeometryExample extends

137

BasicSceneWithMouseControlAndLights
10 {

public static void main(String args[]){new BackgroundGeometryExample();}

public BranchGroup createContentBranch()
{

15 BranchGroup root = new BranchGroup();

Texture starTexture = null;
try
{

20 // Load the stars texture
TextureLoader loader = new TextureLoader(”stars.gif”, this);
starTexture = loader.getTexture();

}
catch(Exception e){System.out.println(e.toString());}

25

// Create a backgound node with maximum bounds
Background background = new Background();
background.setApplicationBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));
30

BranchGroup backgroundGroup = new BranchGroup();

// Set the texture for the background appearance
Appearance backgroundAppearance = new Appearance();

35 backgroundAppearance.setTexture(starTexture);

// Create a detailed sphere with normal pointing inwards
Sphere backgroundSphere = new Sphere(0.5f,

Sphere.GENERATE TEXTURE COORDS|
40 Sphere.GENERATE NORMALS INWARD,

100, backgroundAppearance);
backgroundGroup.addChild(backgroundSphere);
background.setGeometry(backgroundGroup);
root.addChild(background);

45

// Create the earth sphere
Appearance earthAppearance = new Appearance();

Material earthMaterial = new Material();
50 earthAppearance.setMaterial(earthMaterial);

Texture earthTexture = null;
try
{

55 TextureLoader loader = new TextureLoader(”earth.jpg”, this);
earthTexture = loader.getTexture();

}
catch(Exception e){System.out.println(e.toString());}
earthAppearance.setTexture(earthTexture);

60

Sphere earthSphere = new Sphere(0.5f,

138

Sphere.GENERATE TEXTURE COORDS|
Sphere.GENERATE NORMALS,
100, earthAppearance);

65 root.addChild(earthSphere);

root.compile();

return root;
70 }

}

The main difference between this example and the previous background example
is that a background geometry is used rather than at flat background. The back-
ground geometry is represented by a BranchGroup with a single Sphere child. The
Sphere generates normals that are projected inwards so that the texture is mapped
to the inside of the sphere rather than the outside. The BranchGroup represent-
ing the background geometry is associated with a Background object using the
setGeometry() method and the Background object is ultimately added to the root
of the scene graph using the addChild() method. The output obtained when this
program is executed is illustrated in Figure 2.44.

Figure 2.44: A scene where the background is represented by a spherical geometry
rendered at infinity. The normals of the sphere point inwards so that the background
texture is mapped to the interior of the sphere rather than the exterior.

2.7.11.3 Fog

The Fog environment node simulates the way that object appear to fade into the
background when viewed from a distance. Fog is a useful feature and can be used
to add a great deal of realism to a scene. The effect caused by fog is sometimes
called “depth cueing” because it gives the brain a visual cue as to the depth of an
object in the scene. Fog is implemented in Java 3D by blending the fog colour with
the colour of the scene objects based on their distance from the viewer. Java 3D
provides support for two types of Fog environment nodes:

139

• LinearFog - has a constant density, so the level of obscurity generated by the
fog increases linearly as the viewer moves away from the object being viewed.

• ExponentialFog - the fog density increases exponentially so that the level
of obscurity increases exponentially as the view moves away from the object
being viewed.

LinearFog has three main attributes:

• Colour - defines the colour of the fog.

• Front distance - anything closer to the viewer than the front distance is not
affected by the fog.

• Back distance - anything further away from the view than the back distance
is completely obscured by the fog.

A LinearFog object can be created using the following constructor:

• LinearFog(Color3f colour, double frontDistance, double backDistance)

Creates a LinearFog object with the specified colour, front distance and back
distance.

It should be noted that the influencing bounds for a Fog node must be set, otherwise
the Fog node will be considered to be disabled.

The following example demonstrates how a Fog node can be used to obscure an
object in a scene.

0 import javax.media.j3d.∗;
import javax.vecmath.∗;

import com.sun.j3d.utils.behaviors.mouse.∗;
import com.sun.j3d.utils.geometry.∗;

5

public class LinearFogExample extends BasicScene{

public static void main(String args[]){new LinearFogExample();}

10 public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

// Define a backgound with a constant mid grey colour
15 Background background = new Background(new Color3f(0.5f, 0.5f, 0.5f));

background.setApplicationBounds(new BoundingSphere(new Point3d(),
Double.MAX VALUE));

root.addChild(background);

20 // Define a linear fog node with the same colour as the background
LinearFog linearFog = new LinearFog(new Color3f(0.5f, 0.5f, 0.5f), 1.0, 10.0);
linearFog.setInfluencingBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));

140

root.addChild(linearFog);
25

TransformGroup tg = new TransformGroup();
tg. setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(tg);

30 // Include support for mouse zoom
MouseZoom zoom = new MouseZoom();
zoom.setTransformGroup(tg);
tg.addChild(zoom);
zoom.setSchedulingBounds(new BoundingSphere(new Point3d(),

35 Double.MAX VALUE));

// Include support for mouse rotate
MouseRotate rotate = new MouseRotate();
rotate .setTransformGroup(tg);

40 tg.addChild(rotate);
rotate .setSchedulingBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));

ColorCube colorCube = new ColorCube(0.4f);
45 tg.addChild(colorCube);

return root;
}

}

This example begins by creating a background with a constant colour of mid grey
(0.5, 0.5, 0.5). A LinearFog environment node of the same colour is then created
and added to the root of the scene. The front distance for the LinearFog node is
1 metre and the back distance is 10 metres. This means that objects less than one
metre away from the viewer are not affected by the fog and objects greater than 10
metres away from the viewer are completely obscured by the fog. MouseZoom and
MouseRotate behaviours are added to the scene in order to demonstrate the effects
of the fog. Examples of the types of renderings that are obtained when this program
is executed are illustrated in Figure 2.45.

(a) (b) (c)

Figure 2.45: Examples of a ColorCube viewed from different distances in the pres-
ence of LinearFog.

141

