
2.7.12 Behaviours

Behaviours are nodes that makes changes to the scene graph in response to events,
such as user input or the passing of time. In other words, behaviours are a general
event handling mechanism for Java 3D. A behaviour indicates interest in a set of
events called the behaviour’s wakeup criterion. When an event occurs that matches
the criterion, Java 3D calls the behaviour to process the event. A bounding region
must be specified for all behaviours so that they are enabled. The bounding region
is set using the following method of the Behaviour class:

• void setSchedulingBounds(Bounds region)

Sets the bounding region for this Behaviour object to the specified value.

The remainder of this section discusses behaviours that respond to mouse event,
behaviours that render an shape at different levels of detail, behaviours that cause
a shape to always face the viewer and interpolators that change the property of a
node over time.

2.7.12.1 Mouse Behaviours

The location, orientation and scale of a single scene graph node or a group of scene
graph nodes can be controlled using a TransformGroup object. The transformation
associated with the TransformGroup is specified using a Transform3D object.

Alternatively a subclass of the abstract MouseBehavior class can be used to update
the transformation associated with a TransformGroup object. The subclasses of
MouseBehavior are:

• MouseRotate - lets the user control the rotational component of the transform
associated with a TransformGroup object using the mouse.

– Pressing the left mouse button causes the mouse events to be passed to
the MouseRotate behaviour.

• MouseTranslate - lets the user control the translational component of the
transform associated with a TransformGroup object using the mouse.

– Pressing the right mouse button causes the mouse events to be passed to
the MouseTranslate behaviour.

• MouseWheelZoom - lets the user control the scale component of the transform
associated with a TransformGroup object using the mouse wheel.

– Rotation of the wheel away from the users causes the scale to decrease
and rotation of the wheel towards the user cases the scale to increase.

• MouseZoom - lets the user control the scale component of the transform asso-
ciated with a TransformGroup object using the mouse.

– Pressing the centre mouse button causes the mouse events to be passed
to the MouseZoom behaviour.

– Note: In cases where the mouse has only two buttons, pressing the left
mouse button and the ALT key simultaneously causes the mouse events
to be passed to the MouseZoom behaviour.

143



These classes are all defined in the com.sun.j3d.utils.behaviors.mouse package.
All of the four mouse behaviours operate in the same way. The following discussion
describes how the MouseRotate behaviour operates.

An new instance of a MouseRotate object can be created using one of the following
constructors:

• MouseRotate()

Create a default MouseRotate behaviour that captures mouse events from the
Canvas3D object associated with the scene graph.

• MouseRotate(Component c)

Creates a MouseRotate behaviour that captures mouse events from the spec-
ified Component.

• MouseRotate(TransformGroup tg)

Creates a MouseRotate behaviour that captures mouse events from the Canvas3D
object associated with the scene graph and updates the specified TransformGroup

object.

If the TransformGroup object that is to be modified is not specified in the con-
structor for a MouseBehavior object then it can be specified using the following
method:

• void setTransformGroup(TransformGroup tg)

Sets the TransformGroup object updated by the MouseRotate behaviour to
the specified TransformGroup object.

The MouseRotate behaviour is an environment node and must have a bound region
associated with it so that it is enabled. A suitably constructed bounding region
object can be associated with a MouseRotate behaviour using the following method:

• void setSchedulingBounds(Bounds region)

Sets the bounding region of the MouseRotate behaviour to the specified region.

It is possible to set the rate of rotation caused by the mouse movements. This can
be achieved using the following method:

• void setFactor(double factor)

Sets the x-axis and y-axis movement multiplier to the specified value.

Once a MouseRotate behaviour has been constructed and configured it must be at-
tached to the scene graph so that it is active. A mouse behaviour is usually attached
to the TransformGroup that it updates. This is achieve by calling the addChild()

method of the TransformGroup object.

The following example demonstrates how all four mouse behaviours can be used in
conjunction with a single TransformGroup object.

144



0

import javax.media.j3d.∗;
import javax.vecmath.Point3d;

import com.sun.j3d.utils.behaviors.mouse.∗;
5 import com.sun.j3d.utils.geometry.∗;

public class MouseBehaviourExample extends BasicScene
{

public static void main(String args[]){new MouseBehaviourExample();}
10

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

15 // Create the TransformGroup that is to be updated
TransformGroup tg = new TransformGroup();
tg. setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(tg);

20 // Approximate infinite bounds
BoundingSphere infiniteBounds = new BoundingSphere(new Point3d(),

Double.POSITIVE INFINITY);

// Create the MouseRotate behaviour
25 MouseRotate rotate = new MouseRotate(tg);

rotate .setSchedulingBounds(infiniteBounds);
tg.addChild(rotate);

// Create the MouseZoom behaviour
30 MouseZoom zoom = new MouseZoom(tg);

zoom.setSchedulingBounds(infiniteBounds);
tg.addChild(zoom);

// Create the MouseWheelZoom behaviour
35 MouseWheelZoom wheelZoom = new MouseWheelZoom(tg);

wheelZoom.setSchedulingBounds(infiniteBounds);
tg.addChild(wheelZoom);

// Create the MouseTranslate behaviour
40 MouseTranslate translate = new MouseTranslate(tg);

translate .setSchedulingBounds(infiniteBounds);
tg.addChild(translate);

ColorCube colorCube = new ColorCube(0.4);
45 tg.addChild(colorCube);

return root;
}

}

This example begins by creating a TransformGroup object that is attached to the

145



root of the scene graph and allows its associated transform to be written after
the scene graph has gone live. Then the four mouse behaviours are constructed,
configured and added to the TransformGroup. Finally, a ColorCube object with
sides of 80 cm is added to the TransformGroup. The scale, orientation and locations
of this ColorCube will be controlled by different mouse events. Examples of the
various outputs of this program are illustrated in Figure 2.46

(a) (b)

(c) (d)

Figure 2.46: Examples of a shape (a) that was rotated (b), scaled (c) and translated
(d) using different mouse behaviours.

2.7.12.2 Level of Detail

A level of detail behaviour is used to control the level of detail of a shape based on
its distance from the viewer. This allows a high resolution version of the shape to
be used when the viewer is close to the shape. Then, as the viewer moves away from
the shape lower resolution version of the shape can be used.

Level of detail control is provided by the DistanceLOD class which is a subclass of
the abstract LOD class. Both of these classes are defined in the javax.media.j3d

package. The DistanceLOD behaviour controls a Switch group to control which of
its children are rendered based on the distance between the DistanceLOD node and
the viewer.

An array of n monotonically increasing distance values must be specified, such that
distances[0] is associated with the highest level of detail and distances[n − 1] is

146



associated with the lowest level of detail. The index of the child of the Switch node
that is rendered is based on the distance between the DistanceLOD and the viewer
d is:

• 0, ifd ≤ distances[0]

• i, ifdistances[i− 1] < d ≤ distances[i]

• n, ifd > distance[n− 1]

A DistanceLOD behaviour is created using one of the following constructors:

• DistanceLOD(float[] distances)

Creates a DistanceLOD object with the specified list of distances that is posi-
tioned at the origin.

• DistanceLOD(float[] distances, Point3f position)

Creates a DistanceLOD object with the specified list of distances and position.

One of more Switch nodes can be associated with the DistanceLOD behaviour using
the following method:

• void addSwitch(Switch switch)

Appends the specified Switch node to the list of Switch nodes maintained by
this DistanceLOD object.

• void insertSwitch(Switch switch, int index)

Inserts the specified Switch node into the list of Switch nodes maintained by
this DistanceLOD object at the specified index.

• void setSwitch(Switch switch, int index)

Sets the Switch node in the list of Switch nodes maintained by this DistanceLOD
object at the specified index to the specified value.

The following two points should be noted regarding the usage of a DistanceLOD

behaviour:

1. The ALLOW SWITCH WRITE capability must be set for the Switch group. Oth-
erwise the child mask cannot be updated after the scene graph has gone live.

2. A bounding region must be specified for the DistanceLOD behaviour. Other-
wise it will be disabled and none of the children of the associated Switch node
will be displayed.

The following program demonstrates how a DistanceLOD behaviour can be used to
render different version of a shape based on the distance between the DistanceLOD

node and the viewer.

0

import javax.media.j3d.∗;
import javax.vecmath.∗;

import com.sun.j3d.utils.behaviors.mouse.∗;
5 import com.sun.j3d.utils.geometry.∗;

147



public class DistanceLODExample extends BasicScene
{

public static void main(String args[]){new DistanceLODExample();}
10

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

15 // Create the TransformGroup that is to be updated
TransformGroup tg = new TransformGroup();
tg. setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(tg);

20 // Approximate infinite bounds
BoundingSphere infiniteBounds = new BoundingSphere(new Point3d(),

Double.POSITIVE INFINITY);

// Create the MouseZoom behaviour
25 MouseZoom zoom = new MouseZoom(tg);

zoom.setSchedulingBounds(infiniteBounds);
tg.addChild(zoom);

// Create a Switch and enable write operations
30 Switch sg = new Switch();

sg. setCapability(Switch.ALLOW SWITCH WRITE);

// Create a red sphere
Appearance appRed = new Appearance();

35 ColoringAttributes caRed = new ColoringAttributes(
new Color3f(1.0f, 0.0f , 0.0f ),
ColoringAttributes.SHADE FLAT);

appRed.setColoringAttributes(caRed);
Sphere sphereRed = new Sphere(0.4f, appRed);

40 sg.addChild(sphereRed);

// Create a green sphere
Appearance appGreen = new Appearance();
ColoringAttributes caGreen = new ColoringAttributes(

45 new Color3f(0.0f, 1.0f , 0.0f ),
ColoringAttributes.SHADE FLAT);

appGreen.setColoringAttributes(caGreen);
Sphere sphereGreen = new Sphere(0.4f, appGreen);
sg.addChild(sphereGreen);

50

// Create a blue sphere
Appearance appBlue = new Appearance();
ColoringAttributes caBlue = new ColoringAttributes(

new Color3f(0.0f, 0.0f , 1.0f ),
55 ColoringAttributes.SHADE FLAT);

appBlue.setColoringAttributes(caBlue);
Sphere sphereBlue = new Sphere(0.4f, appBlue);
sg.addChild(sphereBlue);

148



60 // Create DistanceLOD behaviour
float [] distances = {4.0f, 8.0f};
DistanceLOD lod = new DistanceLOD(distances);
lod.setSchedulingBounds(infiniteBounds);
lod.addSwitch(sg);

65

tg.addChild(sg);
tg.addChild(lod);

return root;
70 }

}

This program begins by creating a TransformGroup object that allows its associ-
ated transform to be written to after the scene graph has gone live. A MouseZoom

behaviour is then attached to this TransformGroup. Three shapes are subsequently
attached to a Switch node which is in turn attached to the TransformGroup, these
are: red, green and blue spheres all 40 cm in diameter. A DistanceLOD behaviour is
then created, associated with the Switch group and added to the TransformGroup.
This causes:

• This first child of the Switch group (i.e. the red sphere) to be displayed if the
distance between the viewer and the DistanceLOD is ≤ 4 metres.

• The second child of the Switch group (i.e. the green sphere) to be displayed
if the distance between the viewer and the DistanceLOD is > 4 metres but ≤
8 metres.

• The third child of the Switch group (i.e. the blue sphere) to be displayed if
the distance between the viewer and the DistanceLOD is > 8 metres.

It should be noted that in this example different coloured shapes were used rather
than different resolution shapes. This done in order to highlight the operation of
the DistanceLOD behaviour. Examples of the output generated by this program are
illustrated in Figure 2.47.

2.7.12.3 Billboard

The Billboard behaviour node operates on a TransformGroup node to cause the
local +z axis of the TransformGroup to point at the viewer’s eye position. This
is done regardless of the transforms above the specified TransformGroup node in
the scene graph. Two alignment modes are supported by the Billboard behaviour,
these are:

• ROTATE ABOUT AXIS

Causes the associated TransformGroup to rotate about the specified axis.

• ROTATE ABOUNT POINT

Causes the associated TransformGroup to rotate about the specified point.

149



(a) (b) (c)

Figure 2.47: A Switch group rendering a different child based on the distance
between a DistanceLOD behaviour and the viewer. A red sphere is rendered when
the viewer is ≤ 4 metres away (a). A green sphere is rendered when the viewer is
> 4 metres away but ≤ 8 metres away (b). Finally a blue sphere is rendered if the
viewer is > 8 metres away.

Billboard behaviours are ideal for drawing screen aligned-text of for drawing roughly
symmetrical objects. A typical use might consist of a quadrilateral that contains a
tree structure. A Billboard behaviour can be created using one of the following
constructors:

• Billboard(TransformGroup tg, int mode, Point3f point)

Creates a Billboard behaviour with the specified rotation point and mode
that operates on the specified TransformGroup.

• Billboard(TransformGroup tg, int mode, Vector3f axis)

Creates a Billboard behaviour with the specified axis and mode that operates
on the specified TransformGroup.

It should be noted that the OrientatedShape3D node provides the same kind of
functionality as the Billboard behaviour, except that only a single Shape3D object
is affected. OrientatedShape3D is generally faster than Billboard and should be
used where possible.

The following example demonstrates how a Billboard behaviour can be used.

0

import javax.media.j3d.∗;
import javax.vecmath.∗;

import com.sun.j3d.utils.behaviors.mouse.∗;
5 import com.sun.j3d.utils.geometry.∗;

public class BillboardExample extends BasicScene
{

public static void main(String args[]){new BillboardExample();}
10

public BranchGroup createContentBranch()
{

150



BranchGroup root = new BranchGroup();

15 // Create the TransformGroup for the MouseRotate
TransformGroup tg1 = new TransformGroup();
tg1.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(tg1);

20 tg1.addChild(new ColorCube(0.2));

// Approximate infinite bounds
BoundingSphere infiniteBounds = new BoundingSphere(new Point3d(),

Double.POSITIVE INFINITY);
25

// Create the MouseRotate behaviour
MouseRotate rotate = new MouseRotate(tg1);
rotate .setSchedulingBounds(infiniteBounds);
tg1.addChild(rotate);

30

// Create the TransformGroup for the translation
Transform3D trans = new Transform3D();
trans. setTranslation(new Vector3d(−0.5f, 0.0f, 0.0f ));
TransformGroup tg2 = new TransformGroup(trans);

35 tg2.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
tg1.addChild(tg2);

// Create the TransformGroup for use with the Billboard
TransformGroup tg3 = new TransformGroup();

40 tg3.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
tg2.addChild(tg3);

tg3.addChild(new ColorCube(0.2));

45 Billboard billboard = new Billboard(tg3,
Billboard.ROTATE ABOUT POINT,
new Point3f(0.0f, 0.0f , 0.0f ));

billboard .setSchedulingBounds(infiniteBounds);
tg3.addChild(billboard);

50

return root;
}

}

The program creates a hierarchy that consists of three TransformGroup objects.
The first TransformGroup is associated with a MouseRotate behaviour and has
a ColorCube child and a TransformGroup child. The second TransformGroup is
associated with a translation 50 cm left of the origin and has a TransformGroup

child. This final TransformGroup has a ColorCube child and is associated with a
Billboard behaviour so that its child is always orientated towards the viewer. The
types of output generated when this program is executed are illustrated in Figure
2.48.

151



(a) (b)

Figure 2.48: The initial output of the BillboardExample program (a) and an exam-
ple of the output after the scene has been rotated slightly. Note that the ColorCube
that was originally on the left is still facing towards the viewer.

2.7.12.4 Interpolators

Java 3D provides support for a range of behaviours that implement some type of
interpolation. Interpolators are used to change an attribute of a node over time.
The core interpolation functionality is defined in the abstract Interpolator base
class. The types of interpolation that are defined by the subclasses of this class
include:

• ColorInterpolator - This class defines a behaviour that modifies the ambient,
emissive, diffuse, or specular colour of its target Material object by linearly
interpolating between a pair of specified colours.

• TransparencyInterpolator - This class defines a behaviour that modifies
the transparency of its target TransparencyAttributes object by linearly
interpolating between a pair of specified transparency values.

• SwitchValueInterpolator - This class defines a behaviour that modifies the
selected child of the target Switch node by linearly interpolating between a
pair of specified child index values.

• TransformInterpolator - This is an abstract class that extends Interpolator
to provide common methods used by various transform related interpolator
subclasses.

PositionInterpolator

One example of a subclass of TransformInterpolator is PositionInterpolator.
This class defines a behaviour that modifies the translation component of its target
TransformGroup by linearly interpolating between a pair of specified positions. The
interpolated position is used to generate a translation transform along the local X-
axis of this interpolator. An instance of a PositionInterpolator can be created
using one of the following constructors:

• PositionInterpolator(Alpha alpha, TransformGroup target)

Constructs a position interpolator with a specified target, an axis-of-translation

152



set to the identity transformation, a start position of 0.0f and an end position
of 1.0f.

• PositionInterpolator(Alpha alpha, TransformGroup target,

Transform3D axisOfTransform, float start, float finish)

Constructs a position interpolator with a specified target, a specified axis-of-
translation, a specified start position and a specified end position.

Both of these constructors also require a Alpha object to be passed as an argument.
An Alpha object is a node component that provides common methods for converting
a time value into an alpha value (i.e. a value in the range 0 to 1). Some of the
attributes defined by the Alpha alpha class are as follows:

• Loop count - This is the number of times to run this Alpha. A value of -1
indicates that the Alpha loops indefinitely.

• Trigger time - This is the time in milliseconds since the start time that this
object first triggers. If the start time plus the trigger time is ≥ the current
time, then the Alpha starts running.

• Increasing alpha duration - This is the period of time during which the
Alpha object transitions from zero to one.

An instance of an Alpha object can be created using the following constructor:

• Alpha(int loopCount, long increasingAlphaDuration)

Creates an Alpha object that will loop for the specified number of durations
where each loop lasts for the specified duration in milliseconds.

The attributes of the constructed Alpha object can then be access using the relevant
accessor methods, for example the trigger time can be set or retrieved using the
following methods:

• void setTriggerTime(long time)

Sets the trigger time to the specified value, e.g. a value of 4000 would cause
the Alpha to start iterating four seconds after the application was launched.

• long getTriggerTime()

Retreves the trigger time in milliseconds associated with this alpha object.

The following example demonstrates how a PositionInterpolator can be used to
move an object from one location to another, a specified number of times, over a
specified period.

0

import javax.media.j3d.∗;
import javax.vecmath.∗;

import com.sun.j3d.utils.behaviors.mouse.∗;
5 import com.sun.j3d.utils.geometry.∗;

public class PositionInterpolatorExample extends BasicScene
{

153



public static void main(String args[]){new PositionInterpolatorExample();}
10

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

15 // Create the TransformGroup associated with the PositionInterpolator
TransformGroup tg = new TransformGroup();
tg. setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(tg);

20 // Add a ColorCube child
tg.addChild(new ColorCube(0.2));

// Create an alpha that will start after two seconds, loop four times
// where each loop lasts 1 second

25 Alpha alpha = new Alpha(4, 1000);
alpha.setTriggerTime(2000);

// A Transform that rotates the x axis onto the y axis
Transform3D transform = new Transform3D();

30 transform.setRotation(new AxisAngle4f(0.0f, 0.0f, 1.0f ,
(float)(Math.PI/2.0)));

// Create the positional interpolator to move the ColorCube
// between 0.0 and 0.5 on the y−axis

35 PositionInterpolator pi = new PositionInterpolator(alpha,
tg, transform, 0.0f , 0.5f );

pi .setSchedulingBounds(new BoundingSphere(new Point3d(),
Double.POSITIVE INFINITY));

tg.addChild(pi);
40

return root;
}

}

The program begins by creating a TransformGroup object that will ultimately be
updated by a PositionInterpolator behaviour. A ColorCube with sides 40 cm in
length is added to the TransformGroup. An Alpha is then created with a loop count
of 4, a loop duration of 1 second and a trigger time 2 seconds after the application
starts. A Transform3D is then created that transforms the x-axis onto the y-axis.
Finally, a PositionInterpolator is created that updates the TransformGroup and
moves the ColorCube from 0.0 to 0.5 along the y-axis. Examples of the output
renderings obtained from this program are illustrated in Figure 2.49.

Spline Path Interpolator

A B-spline curve is a smooth path that is defined by a series of control points and
blending functions. The origin of B-splines relates to industries such as ship building.
where a designer was required to draw a life-size curves representing, for example,
the cross-section through the hull of a ship.

154



(a) (b) (c)

Figure 2.49: An example of the output generated by the PositionInterpolator ex-
ample. The ColorCube is initially positioned at the original. Its position is then
interpolated along the positive y-axis (b) to y = 0.5 (c).

For small scale drawings draughtsmen would use French curves2. They would draw
complete curves by putting together segments formed from different parts of differ-
ent French curves. For full-scale plans this method was completely impractical and
the draftsmen would employ long thin strips of metal. These were pushed into the
required shape and secured using lead weights called ducks (see Figure 2.50). These
ducks are analogous to the control points for a B-spline.

Figure 2.50: An example of how lead weights known as ducks can be used to generate
a curved shape from a straight rod.

This is the physical basis for B-splines. The metal shape takes up a shape that
minimises its internal strain. In addition, the effect of a duck is local and the shape
of the curve is only altered in its vicinity.

A B-spline curve does not pass through its control points. It is a complete piece-
wise cubic polynomial consisting of any number of curve segments. The B-spline
formulation is defined as follows:

2French curves are a set of small, flat preformed curve sections

155



Qi(u) = UBsP (2.3)

Or alternatively in matrix notation:

Qi(u) =
[
u3 u2 u 1

] 1

6




−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0







Pi−3

Pi−2

Pi−1

Pi


 = (2.4)

where Qi is the ith B-spline segment and Pi is a set of four points in a sequence of
control points. The value for u over a single curve segment is 0 ≤ u ≤ 1. Using this
notation u represents a local parameter, locally varying over the parametric range
0 to 1 to define a single B-spline curve segment.

It is clear that a B-spline curve is a series of m− 2 curve segments that are labeled
Q3, Q4, ..., Qm defines or determined by m + 1 control points P0, P1, ..., Pm,m ≥ 3.
Each curve segment is defined by four control points and each control point influences
four and only four curve segments. An example of a B-spline curve is illustrated in
Figure 2.51.

Figure 2.51: An example of a B-spline curve with 6 control points,

Java 3D provides support for a variation on B-splines known as Kochanek-Bartels
cubic splines. These types of spline are also known as a TCB splines as they have
configurable tension, continuity and bias characteristics. Unlike B-splines, TCB
splines do go through the control points.

The RotPosScaleTCBSplinePathInterpolator class defines a behaviour that varies
the rotational, translational and scale components of its target TransformGroup

using Kochanek-Bartels cubic spline interpolation to interpolate among a series of
key frames using the value generated by a specified Alpha object. An object of this
class can be constructed as follows:

• RotPosScaleTCBSplinePathInterpolator(Alpha alpha, TransformGroup

target, Transform3D axisOfTransform, TCBKeyFrame[] keys)

Constructs a new RotPosScaleTCBSplinePathInterpolator object that varies
the rotation, translation and scale of the transformation associated with the
target TransformGroup.

The TCBKeyFrame[] argument defines a list of key points and their associated at-
tributes. A TCBKeyFrame object can be created using the following constructor:

• TCBKeyFrame(float k, int l, Point3f pos, Quat4f q, Point3f s,

float t, float c, float b)

Creates a key frame with the specified attributes:

156



– k - Defines the knot value. The first knot must have a value of 0.0. The
last knot must have a value of 1.0. An intermediate knot with index k
must have a value strictly greater than any knot with index less than k.

– l - Indicate whether to use linear (1) or spline (0) interpolation.

– pos - The position of the key frame.

– q - The rotation at the key frame.

– s - The scale at the key frame.

– t - The tension at the key frame (−1.0 < t < 1.0).

– c - The continuity at the key frame (−1.0 < c < 1.0).

– b - The bias at the key frame (−1.0 < b < 1.0).

The follow example demonstrates how a RotPosScaleTCBSplinePathInterpolator

behaviour can be used to generate a spline interpolated path along a series of control
points.

0

import javax.media.j3d.∗;
import javax.vecmath.∗;
import com.sun.j3d.utils.geometry.∗;
import com.sun.j3d.utils.behaviors.interpolators .∗;

5

public class TCBSplineExample extends BasicScene
{

public static void main(String args[]){new TCBSplineExample();}

10 public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

TransformGroup tg = new TransformGroup();
15 tg. setCapability(TransformGroup.ALLOW TRANSFORM WRITE);

root.addChild(tg);

ColorCube colorCube = new ColorCube(0.1);
tg.addChild(colorCube);

20

TCBKeyFrame[] keyFrame = new TCBKeyFrame[5];

// Create the first key frame at (0.5, 0.5)
keyFrame[0] = new TCBKeyFrame(0.0f,

25 0,
new Point3f(0.5f,0.5f ,0.0 f ),
new Quat4f(0.0f, 0.0f, 0.0f , 0.0f ),
new Point3f(1.0f, 1.0f , 1.0f ),
0.0f , 0.0f , 0.0f );

30

// Create the second key frame at (−0.5, 0.5)
keyFrame[1] = new TCBKeyFrame(0.25f,

0,
new Point3f(−0.5f,0.5f,0.0f ),

157



35 new Quat4f(0.0f, 0.0f, 0.0f , 0.0f ),
new Point3f(1.0f, 1.0f , 1.0f ),
0.0f , 0.0f , 0.0f );

40 // Create the thrid key frame at (−0.5, −0.5)
keyFrame[2] = new TCBKeyFrame(0.50f,

0,
new Point3f(−0.5f,−0.5f,0.0f),
new Quat4f(0.0f, 0.0f, 0.0f , 0.0f ),

45 new Point3f(1.0f, 1.0f , 1.0f ),
0.0f , 0.0f , 0.0f );

// Create the fourth key frame at (0.5, −0.5)
50 keyFrame[3] = new TCBKeyFrame(0.75f,

0,
new Point3f(0.5f,−0.5f,0.0f ),
new Quat4f(0.0f, 0.0f, 0.0f , 0.0f ),
new Point3f(1.0f, 1.0f , 1.0f ),

55 0.0f , 0.0f , 0.0f );

// Create the final key frame at (0.0, 0.0)
keyFrame[4] = new TCBKeyFrame(1.0f,

60 0,
new Point3f(0.0f,0.0f ,0.0 f ),
new Quat4f(0.0f, 0.0f, 0.0f , 0.0f ),
new Point3f(1.0f, 1.0f , 1.0f ),
0.0f , 0.0f , 0.0f );

65

// Create an Alpha that loops indefinitely for
// a duration of 4 seconds
Alpha alpha = new Alpha(−1, 4000);

70 // Create the TCB spline path interpolator
RotPosScaleTCBSplinePathInterpolator i =

new RotPosScaleTCBSplinePathInterpolator(alpha,
tg, new Transform3D(),keyFrame);

BoundingSphere s = new BoundingSphere(new Point3d(),
75 Double.POSITIVE INFINITY);

i .setSchedulingBounds(s);
tg.addChild(i);

return root;
80 }

}

The program begins by creating a TransformGroup whose associated transforma-
tion will ultimately be controlled by a TCB spline path interpolator. The child of
the TransformGroup is a ColorCube with sides 20 cm in length.

158



A total of five key frames are defined. Each key frame has a unique position and
knot value and uses spline interpolation. None of the key frames affect the rotation
or scale of the transform group and the tension, continuity and bias are all set to 0.

A RotPosScaleTCBSplinePathInterpolator object is created using an Alpha ob-
ject that loops infinitely with a period of 4 seconds, the TransformGroup that is to
be modified, the identity transform and the array of key frames. The bounds for the
interpolator are set to approximate infinite bounds and the interpolator is added to
the scene graph. The path taken by the ColorCube under the control of the TCB
spline path interpolator is illustrated in Figure 2.52.

(a) (b)

(c) (d)

Figure 2.52: A illustration of the path taken by the ColorCube under control of the
TCB spline path interpolator.

2.7.13 Picking

Picking is essentially the opposite operation to viewing. It enables the selection
of a specific shape by projecting 2D screen coordinates into the virtual world and
identifying the shape associated with the coordinates.

The PickCanvas class is used to turn the mouse coordinates into an area of space
or a PickShape, that projects from the viewer through the mouse location into the
virtual world. The PickCanvas class extends a more general PickTool class that
defines basic picking operations.

When a pick is requested, Java 3D figures out the pickable shapes that intersect
with the PickShape. These shapes are stored in a list of PickResult objects.

159



A PickCanvas object can be created using the following constructor:

• PickCanvas(Canvas3D canvas, BranchGroup b)

Creates a PickCanvas object that monitors the specified Canvas3D object
for mouse events and uses these events to pick objects from the specified
BranchGroup rooted scene graph.

A range of methods are available for configuring the attributes of a PickCanvas

object, these include:

• void setMode(int mode)

Sets the picking detail mode for this PickCanvas object.

• void setTolerance(float tolerance)

Sets the picking tolerance. Objects within this distance in pixels to the mouse
x,y location will be picked. The default tolerance is 2.0 pixels.

If a mouse click occurs on the canvas then the list of shapes that were picked can
be obtained using the following method:

• PickResult[] pickAll()

Results an array that represents all of the nodes that intersect with the pick
location.

The following examples demonstrates how the PickCanvas and its associated classes
can be used to select objects from a 3D scene using the mouse.

0

import java.awt.event.∗;
import javax.media.j3d.∗;

import com.sun.j3d.utils.picking.∗;
5 import com.sun.j3d.utils.geometry.∗;

import javax.vecmath.∗;

public class PickExample extends BasicScene
{

10 public static void main(String args[]){new PickExample();}

PickCanvas pickCanvas;
Appearance redAppearance;
Appearance greenAppearance;

15 Shape3D rightShape;
Shape3D leftShape;

public BranchGroup createContentBranch()
{

20 BranchGroup root = new BranchGroup();

// Create and configure the PickCanvas
pickCanvas = new PickCanvas(canvas, root);
pickCanvas.setMode(PickTool.GEOMETRY);

160



25 pickCanvas.setTolerance(4.0f );

// Create a red appearance
redAppearance = new Appearance();
ColoringAttributes red = new ColoringAttributes(

30 new Color3f(1.0f, 0.0f , 0.0f ),
ColoringAttributes.SHADE FLAT);

redAppearance.setColoringAttributes(red);

// Create a green appearance
35 greenAppearance = new Appearance();

ColoringAttributes green = new ColoringAttributes(
new Color3f(0.0f, 1.0f , 0.0f ),
ColoringAttributes.SHADE FLAT);

greenAppearance.setColoringAttributes(green);
40

// Create a TransformGroup whose children will be located
// 50 cm to the left of the origin
Transform3D left = new Transform3D();
left . setTranslation(new Vector3f(−0.5f, 0.0f, 0.0f ));

45 TransformGroup leftGroup = new TransformGroup(left);
root.addChild(leftGroup);

// Add a red sphere to the left TransformGroup
Sphere leftSphere = new Sphere(0.2f, redAppearance);

50 leftShape = leftSphere.getShape();
leftShape.setCapability(Shape3D.ALLOW APPEARANCE WRITE);
leftGroup.addChild(leftSphere);

// Create a TransformGroup whose children will be located
55 // 50 cm to the right of the origin

Transform3D right = new Transform3D();
right . setTranslation(new Vector3f(0.5f, 0.0f , 0.0f ));
TransformGroup rightGroup = new TransformGroup(right);
root.addChild(rightGroup);

60

// Add a red sphere to the right TransformGroup
Sphere rightSphere = new Sphere(0.2f, redAppearance);
rightShape = rightSphere.getShape();
rightShape.setCapability(Shape3D.ALLOW APPEARANCE WRITE);

65 rightGroup.addChild(rightSphere);

return root;
}

70 public void mouseClicked(MouseEvent me)
{

// Set the colour of both spheres to red
leftShape.setAppearance(redAppearance);
rightShape.setAppearance(redAppearance);

75

// Get the picked nodes
pickCanvas.setShapeLocation(me);

161



PickResult[] results = pickCanvas.pickAll();

80 if ( results != null)
for(int r=0; r<results.length; r++)
{

// Set the colour of the picked shape to green
PickResult result = results [ r ];

85 Shape3D sphere = (Shape3D)result.getObject();
sphere.setAppearance(greenAppearance);

}
}

}

This program begins by associating a PickCanvas with the main Canvas3D of the
application. Then two red spheres with radius 20cm are created and positioned 50
cm left and right of the origin. When the mouse is clicked the colour of both of
the spheres is set to red. The list of picked nodes is obtained and the colour of
each picked shape is set to green. Examples of the renderings obtained when this
program is executed are illustrated in Figure 2.53

(a) (b) (c)

Figure 2.53: The output generated by the picking example. Intially both of the
spheres are coloured red (a). When the user clicks on the left sphere its colour
changes to green (b). Then when the user clicks on the right sphere its colour
changes to green and the colour of the left sphere changes back to red (c).

2.8 Summary

This chapter has provided a detailed discussion of the Java 3D API. The concept of
scene graphs forms the basis for the organisation of content in a 3D scene. The scene
graph can contain group nodes, leaf nodes and node components. Relationships and
references can be created to link the various scene graph elements in order to create
a coherent structure.

The group nodes in the scene graph allow other nodes to be grouped together. In
some cases the group nodes implemented some kind of functionality, for example
conditional rendering of the groups children, or implementing a specified transfor-
mation that is applied to all the children of the group.

162



The main visible content that can be contained in a scene graph is represented by a
Shape3D object. A Shape3D object is essentially a container for an appearance and
one or possibly more geometries.

The Appearance node component defines a series of attributes that indicate how a
shape appears in the rendered scene. These attributes define things like how the
shape appears when there is no light, how different types of light affect the appear-
ance of the shape, whether the shape is to be rendered using points, lines or polygons
and whether texture mapping is to be used in conjunction with the shape.

The Geometry node component essentially defines the structure of the shape. At
the most basic level the geometry can be a set of point, lines or polygons. Several
different approaches to polygon definition are also available to optimise the way that
geometry can be defined. These include fan and strip arrays of triangles. Indexed
arrays of vertices can also be used to reduce the amount of repetition that occurs
when defining adjoining polygons.

A series of environment nodes are also defined. These nodes are used to determine
different aspects of the environment. For example, they can be used to define a
background image or fog in order to add realism to a scene. A series of behaviours
are also defined. These enable the scene to react to various situations, for example
mouse events or the passage of time.

It is evident from the material discussed in this chapter that Java 3D is a compre-
hensive, fully featured, 3D graphics API that allow the programmer to develop 3D
content at a high level, i.e. it allows the developer to focus on what to render and
not how it is rendered.

163



Chapter 3

Surface Extraction

Modern medical imaging modalities typically generate 3D volumetric data that rep-
resents the characteristics at each point in the scanned region. Example of medical
imaging modalities that generate volumetric data include:

• Computed Tomography (CT)

• Magnetic Resonance Imaging (MRI)

• Single Photon Emission Computed Tomography (SPECT)

• Positron Emission Tomography (PET)

Examples of images obtained from an abdominal CT study of a patient are illus-
trated in Figure 3.1.

~
3

0
0

 s
li

ce
s

(e
a

ch
 5

1
2

 x
 5

1
2

 p
ix

e
ls

)

A CTC data set in  

its original format

Voxel data

Figure 3.1: A series of slices obtained from an abdominal CT study of a patient. Al-
though the data is obtained as a series of slices it essentially represents a volumetric
data set consisting of voxels.

The images in this figure are represented as 2D slices. However, they actually
represent thin volumetric regions with a thickness of approximately 1.5 mm. Conse-
quently, the series of images represents a volumetric data set consisting of individual
voxels. In the case of CT, the value of a voxel represents the density at a particular
point in the scanned region.

If the volumetric data contains continuous isosurfaces, then these surfaces can be
explicitly extracted and converted into a polygonal mesh. The resulting mesh can
be rendered using the methods outlined in the previous chapter. The techniques
used to extract an isosurface from a volumetric data sets is known as the marching
cubes algorithm and was originally reported by Lorenson and Cline in 1987.

164



• Lorensen, W. E. & Cline, H. E. (1987), ‘Marching cubes: A high resolution
3D surface construction algorithm’, Computer Graphics 41(4), 163-169.

This chapter will provide an overview of the standard marching cubes algorithm.
A series of enhancements are then introduced that enhance the operation of the
standard algorithm. The marching cubes algorithm is described in relation to a
specific area of medical imaging known as virtual endoscopy (specifically virtual
colonoscopy).

3.1 The Standard Marching Cubes Algorithm

The marching cubes algorithm (MCA) is used to extract a surface represented by
an isosurface value (diso) from a volumetric data set. The value of diso is dependent
on the surface being extracted and in the case of the colon surface diso has a value
of -800 HU1.

The MCA begins by thresholding the data set, assigning a 1 to voxels ≥ diso (inside
the isosurface) and a 0 to voxels < diso (outside the isosurface). The isosurface
associated with the colonic mucosa cannot be uniquely identified using a simple
threshold operation due to the the number of gas/soft tissue interfaces that are
present in a CTC data set (i.e. those due to the lung bases, the small intestine, the
stomach and the exterior of the patient). In this case, segmentation information is
used in conjunction with the isosurface value to identify the region associated with
the colon surface.

A cubic mask of size 2 × 2 × 2 is then passed through the volume and at each
mask location the configuration of the eight underlying voxels is examined and the
relevant surface patches are generated. This process is illustrated in Figure 3.2.

Original 2 x 2 x 2 

voxel neighbourhood

Associated MCA 

neighbourhood

configuration

Resulting mesh 

representation

Figure 3.2: An illustration of the marching cubes isosurface generation process.
Each 2 × 2 × 2 voxel neighbourhood is examined and the surface patch associated
with the neighbourhood configuration is generated and added to the output mesh.
In this example, the original eight voxels in the input volume are replaced by a
single triangle in the output mesh. Note that the corner sphere in the central image
indicates the presence of a voxel located inside the isosurface i.e. the shaded voxel
in the original 2× 2× 2 volume.

1The units of CT attenuation are named after the inventor of the CT technique, G. N.
Hounsfield. The CT attenuation of a material is related to its density.

165



There are 256 (28) possible configurations of eight binary voxels and although possi-
ble, the task of manually specifying the surface patches associated with each config-
uration is both tedious and prone to error. Lorensen & Cline observed that this task
could be greatly simplified by considering all rotations and complementary cases for
each configuration.

Using this approach, the number of possible configurations is reduced from 256 down
to just 15, as illustrated in Figure 3.3. This significant reduction in the number of
configurations makes the task of manually specifying surface patches associated with
particular voxel configurations much more manageable and a lot less prone to error.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 3.3: The 15 possible configurations of eight binary voxels arranged in a cubic
formation. Voxels located inside the isosurface are indicated by cube corners with
spheres and voxels outside the isosurface are indicated by cube corners without
spheres. The relevant surface patches (highlighted using red) have been inserted as
documented in the original marching cubes algorithm specification.

Once the relevant surface patches have been specified for the 15 base configurations,
the original 256 configurations are regenerated by applying a series of rotations to
the original 15 configurations and their complements. In each case the associated
list of vertices (i.e. surface patches) and their complements are also rotated.

The resulting information is used to populate a 256 element lookup table associating
voxel configurations with edge lists (i.e. lists of vertices that are positioned relative
to the local origin of the cube). The lookup table index is generated based on the
voxel configuration. This process is illustrated in Figure 3.4.

By default a vertex will lie midway between the two complementary valued voxels

166



v8

v1

v5

v4

v2

v6

v3

v7

e11

e7

e6

e10

e1

e4

256  

element 

LUT
10110001

0xB1

v8 v7 v6 v5 v4 v3 v2 v1LUT index = [e4, e7, e11, 

 e1, e7, e4, 

 e1, e6, e7, 

 e1, e10, e6]

Vertex list =

=> inside the iso-surface (>= diso), assigned a 1

=> outside the iso-surface (< diso), assigned a 0

(a)

Figure 3.4: A sample voxel configuration where v1, v5, v6 & v8 are inside the iso-
surface and all other voxels are outside. A LUT index of 0xB1 is generated which
results in the specified edge list. Note that the order of the edges is important as it
defines the front face for the associated triangle in Java 3D.

(va & vb) that led to its creation. This is demonstrated in general by all of the ver-
tices associated with each of the 15 cases illustrated in Figure 3.3 and in particular,
by the vertex resulting from v1 & v2 in Figure 3.4.

In order to fit the extracted surface more accurately to the actual isosurface identified
by diso, each vertex must be interpolated between va & vb based on the relationship
between their densities da & db and the isosurface density diso. This is achieved by
calculating the normalised distance (δiso) between the voxel that is closest to the
origin (either va or vb) and the isosurface (see Equation 3.1).

δiso =
diso − da

db − da

(3.1)

The value for δiso represents the intersection location relative to the reference voxel
in terms of the intervoxel spacing (see Figure 3.5).

va vb

-1000 HU 0 HU

δiso

(0.2)

(a)

va vb

-600 HU -1000 HU

δiso

(0.5)

(b)

va vb

-1000 HU -750 HU

δiso

(0.8)

(c)

Figure 3.5: The calculation of δiso at three sample boundaries. In each case, the
value of δiso is calculated using linear interpolation and the density at the point
represented by diso is -800 HU, i.e. the isosurface density diso.

The closest voxel to the origin is used as the reference point va to ensure δiso has a
positive value and to standardise the interpolation process throughout the surface
extraction algorithm. The δiso value can then be used to calculate an interpolated
vertex location that is more representative of the actual isosurface. Assuming that
va is the closest voxel to the origin, the interpolated vertex location (xi, yi, zi) located
between va and vb is calculated using:

167



xi = xa + δiso(xb − xa)

yi = ya + δiso(yb − ya) (3.2)

zi = za + δiso(zb − za)

where (xa, ya, za) and (xb, yb, zb) are the locations of va and vb respectively.

The final stage of the MCA involves generating unit normals for each vertex in the
extracted isosurface. The normals are used to facilitate surface shading (Gouraud
shading in the case of Java 3D). Normals are calculated at each voxel in the original
data set using a 3-D gradient operator. The three masks for the gradient operator
proposed by Lorensen and Cline are illustrated in Figure 3.6. The resulting gradient
magnitude in each direction is divided by the overall gradient magnitude to yield
the unit normal.

-1 1

(a)

-1

1

(b)

1

-1

(c)

Figure 3.6: The three masks (a, b & c) that are used by (lorensen1987a) to calculate
the edge magnitudes in the x, y & z directions respectively. Note that the scaling
factors are omitted as the implementation discussed here is intended for use with
isotropic data.

The normals of the two voxels (e.g. va & vb as above) associated with a particular
vertex must be interpolated in order to give an approximation of the normal value
at the vertex location (ai, bi, ci). As with the vertex locations, the normals are
interpolated using δiso from Equation 3.1 as follows:

ai = (1− δiso)aa + δisoab

bi = (1− δiso)ba + δisobb (3.3)

ci = (1− δiso)ca + δisocb

Where (aa, ba, ca) and (ab, bb, cb) are the normals associated with voxels va and vb

respectively. The effect of vertex and normal interpolation on the quality of the
extracted surface is illustrated in Figure 3.7.

This completes the basic description of the standard MCA. The vertices and their
associated normals can now be rendered using conventional 3-D graphics techniques.

168



(a) (b)

Figure 3.7: An illustration of an isosurface model for the colonic mucosa before (a)
and after (b) the use of vertex and normal interpolation.

The standard MCA is only suitable for display purposes. In order to use the MCA
in virtual colonoscopy, a number of modifications and enhancements are required.
These modifications, which are summarised below, are dealt with in the remainder
of this chapter.

1. The standard MCA does not generate airtight surfaces. In certain cases holes
may be inadvertently introduced into the generated mesh. The standard MCA
must be updated so that such surface discontinuities do not occur.

2. The standard MCA uses a very basic method to generate normals. A more
accurate normal generation technique is proposed as normals will be used for
surface analysis as well as surface visualisation.

3. The mesh generated by the standard MCA is wasteful of memory as it contains
a vast amount of repeated information. A more streamlined alternative is
used to reduce the amount of memory required to store vertex coordinates
and associated information (e.g. normals, colours, etc.).

4. In the streamlined mesh, mentioned in 3. above, a vertex is no longer repre-
sented by an (x, y, z) coordinate. Instead, it is represented by a unique index
into a list of common coordinates. A neighbour list is generated for each ver-
tex index that identifies all of the directly connected neighbouring vertices.
This is extremely useful for region growing in a triangular mesh and crucial in
identifying the surface of the mesh with polyp-like properties.

3.2 Topology Errors (Holes)

Upon visual inspection of the output generated by the standard MCA, it is clear
that topology errors (or holes) are present in the generated surface, see Figure 3.10
(a). These holes are due to ambiguous cases resulting from mismatches between the

169



surface patches of adjoining cubes. An example of an ambiguous case is illustrated
in Figure 3.8.

Voxel inside iso-surface

Voxel outside iso-surface

Front-facing triangle

Back-facing triangle

Configuration 6
Complement of 

Configuration 3

Figure 3.8: An example of the ambiguous case that results when the complement of
configuration 3 (Figure 3.3 (d)) occurs next to configuration 6 (Figure 3.3 (g)). A
hole is evident at the interface between these two cubes.

The ambiguous cases that result in unwanted holes are a direct result of the use
of complementary cases in the standard MCA to reduce the number of core cube
configurations that must be specified. By disregarding complementary cases and
using only rotation to identify equivalent cube configurations the number of core
configurations increases from 15 to 23. The eight additional cases and their associ-
ated surface patches are illustrated in Figure 3.9.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: The eight additional configurations of eight binary voxels arranged in
a cubic formation. These extra configurations remove the need to generate com-
plementary cases and as a result, solve the topology problem associated with the
original MCA.

170



Altering the standard MCA to include these eight extra cases removes the necessity
to generate complementary cases and thus results in the generation of airtight sur-
faces that do not contain unwanted holes. The result of using the revised algorithm
is presented in Figure 3.10 (b) where the solitary hole that is evident at the top of
Figure 3.10 (a) is no longer present.

(a) (b)

Figure 3.10: An isosurface extracted using the 15 core neighbourhood configurations
of the standard marching cubes algorithm (a) and the extended 23 neighbourhood
configurations of the modified algorithm (b). Note that the standard approach
creates an unwanted hole, indicated by a red circle, whereas the extended approach
results in an airtight isosurface.

3.3 Improved Normal Calculation

The edge detector that is used for normal generation by the standard MCA (see
Figure 3.6) is very basic and provides only a rough estimation of 3-D edge direction.
Vertex normals are usually only used for visualisation purposes i.e. to enable shading
so that surfaces generate a more realistic response to lighting. In the enhanced MCA
a more accurate estimation of 3-D edge direction is required. The Zucker-Hummel
edge operator was selected for this task due to its inherent smoothing effect.

• Zucker, S. W. & Hummel, R. A. (1981), ‘A three-dimensional edge operator’,
IEEE Transactions on Pattern Analysis and Machine Intelligence 3(3), 324-
331.

The use of this edge operator gives a more global indication of the normal at each
vertex location. The three masks for the 3-D Zucker-Hummel operator are illustrated
in Figure 3.11.

171



-mc

-mb

-mc

-mb

-ma

-mb

-mc

-mb

-mc

mc

mb

mc

mb

ma

mb

mc

mb

mc

(a)

-mc

-mb

-mc

mb

-ma

-mb

-mc

-mb

-mc

mc

mb

mc

mb

ma

mb

mc

mb

mc

(b)

mc mb mc

-mc -mb -mc

mb

-mb

ma

-ma -mb

mb

-mc -mb -mc

mc mb mc

(c)

Figure 3.11: The three 26-neighbour masks representing the Zucker-Hummel edge
operator where ma = 1.0, mb =

√
2

2
& mc =

√
3

3
.

3.4 Mesh Representation

The mesh generated by the standard MCA consists of a disjoined set of triangu-
lar patches where there is a high degree of vertex repetition. This representation,
although suitable for visualisation purposes, is not ideal for analysis. It is also ex-
tremely wasteful of memory due to the high degree of vertex repetition.

An alternative mesh representation involves storing each vertex in an array structure
where a particular vertex can be present only once. Using this approach, triangles
that represent the mesh are specified as indices into the vertex array and not as
actual vertex locations. An array of unit normals is generated and populated in the
same manner.

This approach to mesh storage has the potential to significantly reduce the amount
of memory required to store a fully characterised isosurface representation of the
colonic mucosa. A simple example illustrating the difference between the standard
mesh and the indexed mesh is presented in Figure 3.12.

v1

v3v2

v4 v5

vi = (xi, yi, zi)

mesh = (v1, v2, v3; v1,v4,v5; v1,v3,v5; 

v1,v2,v3; v2,v3,v5; v3,v4,v5)

#values = 54

(a)

v1

v3v2

v4 v5

vi = i

mesh = (v1, v2, v3; v1,v4,v5; v1,v3,v5; 

v1,v2,v3; v2,v3,v5; v3,v4,v5)

#values = 18 + 5x3 = 33

1 (x1, y1, z1)

2 (x2, y2, z2)

3 (x3, y3, z3)

4 (x4, y4, z4)

5 (x5, y5, z5)

Vertex

Table

(b)

Figure 3.12: An illustration of how indexing can be used to reduce the amount of
data required to specify a mesh structure. A pyramid consists of five vertices and
six triangles. The unoptimised representation yields 54 values (a) and the optimised
alternative yields only 33 (b). Note that in Java the data type for vertex (float) and
index (int) both require four bytes of storage space.

172



The indexing process requires a modification to the standard MCA. As each vertex
is encountered it is assigned an index and stored in the vertex list. This index is
then used to represent the relevant vertex coordinates (i.e. an Integer primitive (four
bytes) is used to reference three floating point primitives (12 bytes)).

If a vertex that was already assigned an index is encountered then that index is
used. Conversely, a new index is generated if a new vertex is encountered. Only
vertices associated with the same slice or two adjacent slices can be shared. As a
result, only two slices need to be resident in memory at any one time. Noting that
in the context of the marching cubes algorithm a slice is actually two voxels thick.

3.5 Neighbour Identification

The final modification to the standard MCA involves identifying all of the directly
connected neighbouring vertices within the mesh. This step is required to facilitate
the automatic detection of polyps from the isosurface representation of the colon
surafce.
As each triangle, consisting of vertices e0, e1 and e2, is identified, its vertex relation-
ships are added to an array structure where: e0 is associated with e1 & e2 (i.e. two
vertex pairs (e0, e1) and (e0, e2)), e1 is associated with e0 & e2 and e2 is associated
with e0 & e1. A vertex pair is only added to the array structure if this vertex pair
is not already present.

An example illustrating the neighbour identification process is illustrated in Fig-
ure 3.13. Representing the vertex neighbours in this way reduces the task of neigh-
bourhood identification from an extensive mesh search to a simple table lookup
i.e. by specifying the index of one vertex the indices of all of the neighbouring ver-
tices are returned.

v0

v7

v1

v2
v3

v6

v8

v0

v11

v10

v4 v5

v9

1 0, 2, 4, 8, 9

2 0, 1, 3, 4

3 2, 4, 5, 6

4 1, 2, 3, 5, 9, 10

11 5, 6, 10, 12

v12

Neighbour List

neighbours[4] = {1, 2, 3, 5, 9, 10}

Figure 3.13: The neighbour indexing process: The neighbouring vertices for each
mesh vertex are stored in a list to streamline the process of searching for vertex
neighbours.

173



3.6 Summary

This chapter provided a complete description of the marching cubes algorithm. The
use of this approach to extract an isosurface enables the indirect rendering of vol-
umetric data using conventional surface rendering techniques, i.e. those described
in the previous chapter. The implementation of the marching cubes algorithm de-
scribed in this chapter deals with some of the issues associated with the standard
marching cubes algorithm e.g. fixing topology errors and improving the normal cal-
culation stage. It has also been demonstrated that the use of indexed geometry can
be used to reduce the amount of memory required to store the extracted polygonal
mesh structure.

174


