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Chapter 1

Introduction

1.1 Introduction

This chapter introduces some basic concepts in the area of computer graphics. The
material is initially limited to a discussion of the 2D imaging and graphics function-
ality that is provided by Java. The concept of 3D content generation is subsequently
introduced using VRML. A range of practical examples are provided to illustrate the
various concepts that are discussed throughout this chapter. The material presented
here is intended to act as a basis for a more in depth discussion of 3D computer
graphics that will take place in subsequent chapters.

1.2 Java 2D Image and Graphics Support

The Java programming language from Sun Microsystems provides a high level of
support for 2D graphics. The graphics functionality provided by Java can be divided
into three main categories:

• Interpretation - reading various graphics file formats

• Manipulation - altering/processing graphical data

• Display - rendering graphics to a particular output device

There have been a number of incremental developments in relation to Java imaging
since the initial release of the Java Developers Kit (JDK).

• Java AWT Imaging - Supports basic file formats, colour spaces, drawing
capabilities and pixel level image process.

• Java 2D Imaging - Introduces more advanced support for colour spaces,
drawing and image processing operations as well as providing support for
printers.

• Java Advanced Imaging - Vastly increases the number of graphics file for-
mats supported and provides a large library of image processing operations.
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Image  
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Figure 1.1: An illustration of the format of a standard image file that consists of
separate header information and image data.

1.2.1 Image file formats

Java supports a variety of 2D image file formats through its various APIs. A file
format designed specifically for representing graphical image data. An image file
usually consists of header information and image data (either bitmap or vector).
The format of a typical image file is outlined below and illustrated in Figure 1.1.

• Header information

– Width in pixels

– Height in pixels

– Compression scheme

– Colour Palette

– Image Resolution

• Image data

– Encoded and or compressed pixel data

– Stored in a raster fashion as:

∗ Several colour intensity planes

∗ A plane of pixels with several colour components

There are a wide variety of image file formats that are available. Some of these are
listed below. It is important to note that Java does not support all of these formats
and in certain cases custom image file loaders must be developed.

• Windows Bitmap (BMP)

– Developed by Microsoft

– Supports RLE encoding

– Maximum pixel depth of 32 bits

2



• Graphics Interchange Format (GIF)

– 256 colour palette

– Uses Lemple-Zev-Welch (LZW) compression

• Joint Photographic Experts Group (JPEG)

– Supports 16.7 million colours

– Compression based on the Discrete Cosine Transform (DCT)

• Digital Imaging and Communication is Medicine (DICOM)

– Stores images from a large number of modalities

– Header contains information about the patient, exam & image data

– DICOM was developed by the American College of Radiology (ACR) and
the National Electrical Manufactures Association (NEMA)

Reference Text:

• James D. Murray and William vanRyper ”Encyclopedia of graphics file for-
mats” O’Reilly & Associates, 2nd edition (June 1996) ISBN 1-56592-161-5

1.3 Java AWT Imaging

Java AWT (Advanced Windowing Toolkit) imaging was primarily designed to fa-
cilitate the display of images in an Internet browser based environment. Using this
model the transfer of image data is based on the producer/consumer (push) model.
Image data can be loaded from the local file system as well as from the internet.
Java AWT imaging provides read only support for GIF and JPG images.

1.3.1 Graphics Support

Basic drawing is supported by the Graphics class. The types of data can be drawn
using this class are text, basic shapes and images. The Graphics class can be used
for drawing to onscreen GUI components or off-screen images. Some examples of
the methods provided by the Graphics class include:

• void setColor(Color c)

Sets the drawing colour of the associated Graphics object to the specified
colour. All subsequent drawing operations associated with the Graphics ob-
ject use this colour.

• void drawOval(int x, int y, int width, int height)

Draws an ellipse or circle with the specified dimensions at the specified (x, y)
coordinates.

• void drawRect(int x, int y, int width, int height)

Draw a rectangle with the specified dimensions at the specified (x, y) coordi-
nates.

3
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Figure 1.2: An illustration of the 2D graphics coordinates system used by Java.

• void drawString(String str, int x, int y)

Draws the specified string at the specified (x, y) coordinates. The font used for
drawing strings can be specified using the setFont() method of the Graphics
class.

• boolean drawImage(Image img, int x, int y, ImageObserver obs)

Draws the specified image at the specified (x, y) coordinates. This method re-
turn true if the specified image has completely loaded and false otherwise. The
ImageObserver argument is notified once the image data becomes available.

Note: These methods use 2D (x, y) coordinates that related to points in the 2D
Java coordinate system. This coordinate system is illustrated in Figure 1.2.

Note: In each of the methods that deal with drawing the specified (x, y) coordi-
nates indicate the location of the top left hand corner of the object being drawn.

An example of an application that uses the Graphics class is listed below. The
program draws a series of lines, using a for loop, to create a pattern.

0 import java.awt.∗;

public class GraphicsExample extends Canvas
{

public static void main(String args[]){new GraphicsExample();}
5

Frame frame = new Frame();

public GraphicsExample()
{

10 // Initialise the display frame

4



Figure 1.3: The pattern generated by the GraphicsExample application.

frame.setLayout(new BorderLayout());
setSize (320,320);
frame.add(this, BorderLayout.CENTER);
frame.pack();

15 frame.setVisible (true);
}

public void paint(Graphics g)
{

20 g.setColor(Color.BLACK);

// Draw a series of black lines
for(int i=10; i<300; i+=10)

g.drawLine(10,i,300−i,10);
25 }

}

The class defined in this program extends the Canvas class and consequently repre-
sents a graphical user interface component that can be drawn upon. A Frame object
is created in the constructor to display the Canvas and the paint() method of the
Canvas object is overwritten to draw the desired pattern. The output generated by
this program is illustrated in Figure 1.3.

1.3.2 Image Support

Bitmapped image data is represented using the Image class in the AWT imaging
model. This class is essentially a container for image data and does not provide
direct access to the pixel information. The Image class is an abstract class and
consequently, an instance of this class cannot be constructed. However, it is possible

5



to create an image from a particular source (e.g. a URL or a local file path) using
the the createImage() method of the Toolkit class. The Image class provides a
limited number of methods, for example:

• int getWidth(ImageObserver observer)

Returns the width of the image in pixels. If the image is not yet loaded then
this method returns -1. The observer argument is a reference to object waiting
for the image to be loaded.

• int getHeight(ImageObserver observer)

Operates in a similar manner to the getWidth() method with the exception
that this method returns the height of the image in pixels.

• Graphics getGraphics()

Creates a graphics context for drawing to an off-screen image. This method can
only be called for off-screen images. Note that an off-screen image is created
using the CreateImage(int w, int h) method of the Component class.

The following example demonstrates how an instance of an Image object can be
created and displayed using Java AWT imaging.

0 import java.awt.∗;

public class ImageLoadExample extends GraphicsExample
{

public static void main(String args[]){new ImageLoadExample();}
5

Image i;

public ImageLoadExample()
{

10 super();

// Load the image and resize the frame
i = Toolkit.getDefaultToolkit().createImage(”image.jpg”);
waitForImage(i);

15 int width = i.getWidth(this);
int height = i.getHeight(this);
setPreferredSize (new Dimension(width, height));
frame.pack();

}
20 public void paint(Graphics g)

{
// Paint the image on the canvas
g.drawImage(i, 0, 0, this);

}
25

// Wait for image ’i ’ to be loaded
public void waitForImage(Image i)
{

try{
30 MediaTracker tracker = new MediaTracker(this);

tracker .addImage(i,0);

6



Figure 1.4: An illustration of the image loaded using the ImageLoadExample pro-
gram.

tracker .waitForAll();
}catch(InterruptedException e){System.out.println(e);}

}
35 }

This application loads the required image data in the constructor and displays the
loaded image by overwriting the paint() method. It should be noted that this
class extends the GraphicsExample class. The output generated by this program is
illustrated in Figure 1.4.

Creating an image does not guarantee that the image will be immediately loaded
into memory. However, it is possible to wait for the required image data to be loaded
into memory using a MediaTracker object in order to ensure that the image data
is available when required.

Note: An alternative to using the MediaTracker class would be monitor the di-
mensions of the image using the getWidth() or getHeight() methods. If the image
data is not fully loaded then then these methods will return -1. When the image
data is loaded then these methods will return the relevant image dimensions.

1.3.3 Image Processing Support

It is possible to get access to the pixel data indirectly using the PixelGrabber class.
It is possible to reproduce an image from pixel data using the MemorySourceImage

class in conjunction with the createImage() method of the Toolkit class. The
following program performs the pixel level invert operation using this mechanism.

0 import java.awt.∗;
import java.awt.image.∗;

7



public class ImageProcessExample extends ImageLoadExample
{

5 public static void main(String[] args){new ImageProcessExample();}

public ImageProcessExample()
{

super();
10

i = Toolkit.getDefaultToolkit().createImage(”greatwall.jpg”);
waitForImage(i);

int width = i.getWidth(this);
15 int height = i.getHeight(this);

int [] pixels = new int[width∗height];

try{
// Grab the pixels and put them in the array called pixels

20 PixelGrabber grabber = new PixelGrabber(i,0,0,width,height,
pixels ,0,width);

grabber.grabPixels();}
catch(InterruptedException e){System.out.println(e.toString());}

25

// Process each of the pixels individually
for(int index = 0; index < width∗height; index++)
{

int pixel = pixels[index];
30 int red = (pixel & 0x00ff0000) >> 16;

int green = (pixel & 0x0000ff00) >> 8;
int blue = pixel & 0x000000ff;

red = 255 − red;
35 green = 255 − green;

blue = 255 − blue;

pixels [index] = 0xff000000|(red<<16)|(green<<8)|blue;
}

40

// Create a new image from the processed data
MemoryImageSource data = new MemoryImageSource(width, height, pixels,0,width);

i = Toolkit.getDefaultToolkit().createImage(data);

45 waitForImage(i);

setPreferredSize (new Dimension(width, height));
frame.pack();

}
50

public void paint(Graphics g)
{

g.drawImage(i, 0, 0, this);
}

8



(a) (b)

Figure 1.5: The pixel level invert operation (a) The input image and (b) an inverted
representation of the input image.

55 }

The application obtains an integer array representation of the input image using
the grabPixels() method of the PixelGrabber class. Each pixel in the image is
decomposed into its red, green and blue colour components. The invert operation
is performed on each of these colour components and the processed pixels are used
to create a new image using the createImage() method of the Toolkit class. The
output generated by this program is illustrated in Figure 1.5.

1.3.4 Defining Colours

The most basic way to represent a colour in Java is by using a single integer prim-
itive. A java integer is 32-bits wide. This is divided into a total of four colour
components: alpha, red, green and blue. Each component is allocated 8-bits of
storage. Hence each component can have 28 (256) values. The alpha component
represents opacity (the opposite of transparency). A low alpha value indicates that
the colour is transparent and a high alpha value indicates that the colour is opaque.
The format of the Java colour is illustrated in Figure 1.6.

Java also provides a class that is used to encapsulate colour information. The Color
class represents ARGB colour information specified as a either integer primitives
or float primitives. An instance of the Color class can be created using one of the
following constructors:

• Color(float r, float g, float b, float a)

Creates a colour object with the specified floating point colour components.
It should be noted that when float primitives are used the colour components
have a value in the range 0.0 - 1.0.

• Color(int r, int g, int b, int a)

Creates a colour object with the specified integer colour components. It should

9
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031

Figure 1.6: An illustration of the pixel format used by Java. The 32-bit bits of an
integer primitive are divided into four 8-bit colour components representing: alpha
or opacity, red, green and blue. The minimum value for each colour component is 0
and the maximum value for each component is 255.

be noted that when integer primitives are used the colour components have a
value in the range 0 - 255.

1.4 Java 2D

The Java 2D API enhances the graphics, text and imaging capabilities of the Ab-
stract Windowing Toolkit providing:

• Richer graphics, font and imaging support

• Enhanced colour definition

• A rendering model for printers and display devices

1.4.1 Graphics

The Graphics2D class extends the Graphics class to provide more sophisticated
control over:

• Geometry

• Coordinate transformations

• Colour management

• Text layout

The Graphics2D class also provides an anti-aliasing feature. This facilites the
generation of smoother, more visually appealing, graphics. The methods of the
Graphics2D class include:

• void setRenderingHint(RenderingHints.Key key, Object value)

Sets the value of a single preference from the rendering algorithms. Hint
categories include controls for rendering quality and overall time/quality trade-
off in the rendering process.

• void scale(double sx, double sy)

Concatenaces the current Graphics2D transform with a scaling transforma-
tion. Subsequent renderings are resized according to the specified scaling fac-
tors relative to the previous scaling.
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• void rotate(double theta)

Concatenates the current Graphics2D transform with a rotation transform.
Subsequent rendering is rotated by the specified number of radians relative to
the previous origin.

• void translate(double tx, double ty)

Concatenates the current Graphics2D transform with a translation transform.
Subsequent rendering is translated by the specified distance relative to the
previous position.

The following example illustrates how an instance of the Graphics2D class can be
accessed through the paint() method of a swing component.

0 import java.awt.∗;
import javax.swing.∗;

public class Graphics2DExample extends JPanel
{

5 public static void main(String args[]){new Graphics2DExample();}

JFrame frame = new JFrame();

public Graphics2DExample()
10 {

// Initialise the display frame
frame.getContentPane().setLayout(new BorderLayout());
frame.setSize (512,512);
frame.getContentPane().add(this, BorderLayout.CENTER);

15 frame.setVisible (true);
}

public void paint(Graphics g)
{

20 Graphics2D g2d = (Graphics2D)g;
g2d.setColor(Color.BLACK);

// Draw the pattern using a for loop
for(int i=10; i<300; i+=10)

25 g2d.drawLine(10,i,300−i,10);
}

}

This code performs the same function as the earlier example that demonstrated the
Graphics class. Consequently, the output generated by this example is similar to
the output illustrated in Figure 1.3. The differences between this example and the
earlier example are:

1. Swing graphical user interface components are used rather than AWT compo-
nents. Note that swing components are preceded by the letter ’J’.

2. The Graphics object passed to the paint method is converted to a Graphics2D

object (by casting). This enables access to the advanced graphics functionality
provided by the Graphics2D class.
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1.4.1.1 Anti-aliasing

The Graphics2D class provides support for anti-aliasing. Anti-aliasing is used to
deal with the problems associated with drawing continuous shapes (e.g. lines and
circles) using discrete pixels. There are a number of different approaches to anti-
aliasing. The anti-aliasing approach supported by the Graphics2D class is called
prefiltering. This method treats a pixel as an area, and computes the colour of the
pixel based on the overlap of the scene’s objects with the region occupied by the
pixel. The colour of the pixel is based on how much of the pixel’s area is covered
by an object. Prefiltering thus amounts to sampling the shape of the object very
densely within a pixel region. For shapes other than polygons, this can be very
computationally intensive.

Anti-aliasing can be turned on and off using the setRenderingHints() method of
the Graphics2D class. As mentioned earlier, this method expects two arguments: a
key and a value. When dealing with anti-aliasing the key must be KEY ANTIALIASING

and the value can be one of the following:

• VALUE ANTIALIAS OFF rendering is done without anti-aliasing

• VALUE ANTIALIAS ON rendering is done with anti-aliasing

• VALUE ANTIALIAS DEFAULT rendering is done with a default anti-aliasing mode
chosen by the implementation

– Note: That the default anti-aliasing mode on the Windows XP imple-
mentation of Java Standard Edition 6 is VALUE ANTIALIAS OFF

The following example demonstrates how anti-aliasing can be used in a Java2D ap-
plication:

0 import java.awt.∗;
import javax.swing.∗;

public class AntiAliasingExample extends Graphics2DExample
{

5 public static void main(String args[]){new AntiAliasingExample();}

public AntiAliasingExample()
{

setPreferredSize (new Dimension(200,200));
10 frame.pack();

}

public void paint(Graphics g)
{

15 Graphics2D g2d = (Graphics2D)g;

// Set the anti−aliasing to the default mode
g2d.setRenderingHint(RenderingHints.KEY ANTIALIASING,

RenderingHints.VALUE ANTIALIAS ON);
20

int centreX = getWidth()/2;
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int centreY = getHeight()/2;
int radMax = getWidth()/2;

25 // Draw a series of concentric circles
for(int radius=10; radius<radMax; radius+=10)
{

g2d.drawOval(centreX−radius, centreY−radius, radius∗2, radius∗2);
}

30 }
}

The program draws a series of concentric circles. The output of the program is
illustrated in Figure 1.7. Two versions of the output are illustrated. In the first
version the anti-aliasing key is set to VALUE ANTIALIAS OFF and in the second version
the anti-aliasing key is set to VALUE ANTIALIAS ON.

(a) (b)

(c) (d)

Figure 1.7: An example of anti-aliasing. A series of concentric circles drawn without
anti-aliasing (a) and zoomed version (c). The same circles drawn with anti-aliasing
(b) and zoomed version (d).

13



1.4.2 Image Support

Java 2D imaging is based on the immediate model for imaging. This makes it more
suitable for use in imaging applications. The Java 2D API provides a new image
class for the storage of bitmapped image data. This class, BufferedImage, extends
the original Image class and can be constructed as follows:

• BufferedImage(int width, int height, int imageType)

The width and height arguments give the dimensions of the image in pixels.
The imageType argument specifies the type of image to be created. There are
number of possible values for this argument:

– TYPE BYTE BINARY represents a binary image where pixel values are mapped
to either (0, 0, 0) or (255, 255, 255).

– TYPE INT ARGB represents an image with 8-bit RGBA colour components
packed into integer pixels. Note this is the default colour model.

– TYPE INT RGB represents an image with 8-bit RGB colour components
packed into integer pixels. If an alpha value is specified for a particular
pixel then it is discarded.

The BufferedImage class also provides a number of useful methods that were not
available in the original Image class:

• int getRGB(int x, int y)

Returns the value of the specified pixel using the default RGB colour model i.e.
TYPE INT ARGB. The returned value is in the form 0xAARRGGBB. This method
may throw an ArrayOutOfBoundsException if the specified coordinates are
outside the bounds of the image.

• void setRGB(int x, int y, int rgb)

Sets the value of the pixel at the specified coordinates. The default RGB colour
model is assumed and the rgb argument must be in the form 0xAARRGGBB.
This methods may throw an ArrayOutOfBoundsException if the specified
coordinates are outside the bounds of the image.

• BufferedImage getSubImage(int x, int y, int w, int h)

Returns a subimage in the form of a BuffferedImage object that represents
the region defined by the specified origin coordinates and dimensions.

Note: The BufferedImage class also provides versions of the getWidth() and
getHeight() methods that do not require an ImageObserver argument.

It is possible to create a blank instance of a BufferedImage using the constructor
outlined earlier. It is also possible to create an instance of a BufferedImage that
is initialised from an image file. This is achieved using the read() method of the
ImageIO class. The image source is specified as the argument to this method and
can be a File object, a URL object or an InputStream object. There is no need to
wait for the image data to load as this is handled automatically within the read()

method. The following example demonstrates how a BufferedImage object can be
initialised from a local file and displayed using Java2D imaging.
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0 import java.io.∗;
import javax.imageio.∗;
import javax.swing.∗;
import java.awt.∗;
import java.awt.image.∗;

5

public class BufferedImageLoadExample extends Graphics2DExample{

public static void main(String args[]){new BufferedImageLoadExample();}

10 BufferedImage b;

public BufferedImageLoadExample()
{

super();
15

try
{

// Load the image and resize the frame
b = ImageIO.read(new File(”image.jpg”));

20 int width = b.getWidth();
int height = b.getHeight();
setPreferredSize (new Dimension(width, height));
frame.pack();

}
25 catch(IOException ioe){System.out.println(ioe.toString());}

}
public void paint(Graphics g)
{

// paint the image on the JPanel
30 Graphics2D g2d = (Graphics2D)g;

g2d.drawImage(b, 0, 0, this);
}

}

The output generated by this example is the same as the output generated by the
AWT image load example illustrated in Figure 1.4.

1.4.3 Image Processing Support

It should be evident that the BufferedImage class provides direct access to pixel
data using the getRGB() and setRGB() methods. Consequently the BufferedImage
class provides a much more straightforward interface for image manipulation, and
image processing operations can be carried out without the processing overhead as-
sociated with the AWT imaging model. The following example demonstrates how
the colour to greyscale operation can be carried out using Java 2D imaging.

0 import java.io.∗;

import javax.imageio.∗;
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import javax.swing.∗;
import java.awt.∗;

5 import java.awt.image.∗;

public class BufferedImageProcessExample extends Graphics2DExample{

public static void main(String args[]){new BufferedImageProcessExample();}
10

BufferedImage b;

public BufferedImageProcessExample()
{

15 super();

try
{

b = ImageIO.read(new File(”driveway.jpg”));
20 int width = b.getWidth();

int height = b.getHeight();

for(int y=0; y<height; y++)
for(int x=0; x<width; x++)

25 {
int pixel = b.getRGB(x,y);

// Extract individual colour components
int red =(pixel & 0x00ff0000) >> 16;

30 int green = (pixel & 0x0000ff00) >> 8;
int blue = pixel & 0x000000ff;

// Perform the greyscale operation
int grey = (red + green + blue)/3;

35

// Create representation of pixel using default ARGB colour model
pixel = 0xff000000 | (grey<<16) | (grey<<8) | grey;

b.setRGB(x,y,pixel);
40 }

setPreferredSize (new Dimension(width, height));
frame.pack();

}
45 catch(IOException ioe){System.out.println(ioe.toString());}

}

public void paint(Graphics g)
{

50 Graphics2D g2d = (Graphics2D)g;
g2d.drawImage(b, 0, 0, this);

}
}
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(a) (b)

Figure 1.8: The pixel level grey-scale operation. (a) The input image and (b) a
grey-scaled representation of the input image.

The program extracts the red, green and blue colour components for each pixel and
averages them to generate a grey-scale representation of the image. The output
generated by this program is illustrated in Figure 1.8.

Exercise: Update the code to perform a mid-level threshold operation. The mid-
level threshold involves setting the output pixel to white if the grey-scale value of
the input pixel is > 127, and setting it to black of the grey-scale value of the input
pixel is ≤ 127.

1.4.4 2D Transformations

Transformations are very important in 2-D and 3-D graphics. This class represents
a 2D affine transform that performs a linear mapping from 2D coordinates to other
2D coordinates that preserves the straightness and parallelness of lines. Affine trans-
forms can be constructed using sequences of translations, scales, flips, rotations and
shears. The affine transform equation for mapping from one coordinate system to
another coordinates system is given below.




x′

y′

1


 =




m00 m01 m02

m10 m11 m12

0 0 1







x
y
1


 =




m00x + m01y + m02

m10x + m11y + m12

1


 (1.1)

1.4.4.1 Scale

A scale transformation indicates a horizontal scaling by a factor of sx and a vertical
scaling by a factor of sy. Note that a scale factor of 1.0 indicates that no scaling
takes place in the relevant direction. The coordinate transformation associated with
the scale operation is as follows:




sx 0 0
0 sy 0
0 0 1



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Example: Scale the point (2.0, 3.0) by a factor of 0.5 along the x axis and a factor
of 2.0 along the y axis.
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(1.2)
It is possible to create the affine transform that represents the scale operation
by calling the static getScaleInstance(double sx, double sy) method of the
AffineTransform class. The sx and sz arguments represent the factors by which
the coordinates are scaled along the x and y axes.

1.4.4.2 Translate

A translation transformation indicates a horizontal translation by a distance tx and
a vertical translation by a distance ty. Note that the translation distances are
measured in pixels. The coordinate transformation associated with the translate
operation is as follows:




1 0 tx
0 1 ty
0 0 1


 (1.3)

Example: The following example uses classes from Java 2D imaging to implement
a translation by 100 pixels in the positive x direction (across the screen to the left)
and 40 pixels in the positive y direction (down the screen).

0 import java.io.∗;
import javax.imageio.∗;
import java.awt.∗;
import java.awt.image.∗;
import java.awt.geom.∗;

5

public class Translate2DExample extends BufferedImageLoadExample{

public static void main(String args[]){new Translate2DExample();}

10 public void paint(Graphics g)
{

Graphics2D g2d = (Graphics2D)g;

double tx = 100.0;
15 double ty = 40.0;

// Degine the transformation matrix
double[] matrix = {1.0, 0.0,

0.0, 1.0,
20 tx, ty};

AffineTransform translateTransform = new AffineTransform(matrix);

// Set the interpolation type
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Figure 1.9: A translated version of the image illustrated in Figure 1.4. The transla-
tion moves the origin of the image by 100 pixels in the x direction and 40 pixels in
the y direction.

25 int interpolationType = AffineTransformOp.TYPE NEAREST NEIGHBOR;

AffineTransformOp translateTransformOp =
new AffineTransformOp(translateTransform,

interpolationType);
30

// Perform the transformation
BufferedImage result = translateTransformOp.filter(b, null);
g2d.drawImage(result, 0, 0, this);

}
35 }

The translation transformation is defined using a suitably constructed AffineTransform

object. The AffineTransform object is used to create an instance of a AffineTransformOp
object in conjunction with an argument that represents the type of interpolation type
to be used. Three types of interpolation are supported:

• TYPE BICUBIC

• TYPE BILINEAR

• TYPE NEAREST NEIGHBOUR

The input image is subsequently filtered using the constructed AffineTransformOp

to create a translated version of the image. Finally, the resulting image is displayed
on the JPanel. The output generated by this application is illustrated in Figure
1.9. Note that the input to this operation was the image illustrated in Figure 1.4.

1.4.4.3 Rotate

A rotation transformation indicates a rotation about the origin by a specified angle θ.
The coordinate transformation associated with the translate operation is as follows:
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


cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 (1.4)

Exercise: Update the translation example (Translate2DExamle.java) above to
implement the rotation transformation using an angle of 45 degrees.

1.5 Java Advanced Imaging

Java advanced imaging (JAI) is an extension API that provides a set of object-
orientated interfaces that support a simple, high-level programming model for image
manipulation.

• Supports a wide range of image file formats (both read and write operations)
e.g. BMP, TIFF, PNM, GIF and JPEG.

• Includes more than 80 image processing operations, most of which are native
- optimised for performance

• Compatible with a variety of image formats and data types, support remote
imaging and interoperates with the Java 2D API (immediate model for imag-
ing).

The JAI API specification was developed by a consortium which includes:

• Sun Microsystems, Inc.

• Eastman Kodak, Inc.

• The Jet Propulsion Laboratory (JPL) @ NASA

JAI is currently being used in a variety of diverse applications.

• Defence and Intelligence

• Geospatial Data Processing

• Document Image Processing

• Bioinformatics

1.6 VRML

VRML is a text based language for describing 3D content. This language was orig-
inally known as Virtual Reality Markup Language and was subsequently renamed
to Virtual Reality Modeling Language. VRML is based on the inventor file format
from Silicon Graphics Inc. (SGI) and VRML version 1.0 is actually a subset of
Inventor:

• it doesn’t include the advanced interaction and animation capabilities sup-
ported by Inventor

• facilitated implementation on a wide variety of platforms
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• Severely restricted flexibility and only facilitated the development of simple
static worlds

VRML 1.1 was intended to meet some of the shortcomings of the VRML 1.0 speci-
fication by introducing support for:

• Audio clips

• Very primitive animation

VRML 1.1 was never made public, instead attention was focused on a complete
overhaul of the language. This resulted in version 2.0 of the VRML language.
VRML 2.0 was released in 1996 and provided rich support for:

• interaction

• animation

• 3D content

1.6.1 Software

VRML content can be viewed can be viewed using a standard web browser a suitable
plug-in has been installed. The details for the VRML client used in the development
of this material are as follows:

• The Cortona VRML client from Parallel Graphics version 5.1 (release 157)

• Available as a free download from: http://www.parallelgraphics.com

This plug-in can be used in conjunction with either Mozilla Firefox or Microsoft
Internet Explorer.

1.6.2 VRML Coordinate System

VRML enables the definition of 3D content in a virtual world. VRML uses a carte-
sian coordinate system. Every point in a VRML world can be described by a set of
x, y and z coordinates.

• The x coordinate determines position left and right of the origin. A positive
x coordinate would indicate that a point is to the right of the origin.

• The y coordinate determines position above and below the origin. A positive
y coordinate would indicate that a point is above the origin.

• The z coordinate determines position in front of and behind the origin. A
positive z coordinate would indicate that a point is in front of the origin.

This coordinate system is illustrated in Figure 1.10.
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Figure 1.10: An illustration of the VRML coordinate system.

1.6.3 VRML Scene Graphs

A scene graph defines the relationship between objects contained in a virtual world.
A common definition of a scene graph is a data structure composed of nodes and
arcs.

• A node is a data element in a scene graph.

• An arc is a relationship between data elements. The arcs typically represent
a parent-child relationship.

Scene graphs are constructed in the form of a directed-acyclic graph (DAG).

• A directed graph is a graph in which the arcs have direction.

• A directed-acyclic graph is a directed graph in which there are no other cycles
i.e. beginning at any node in the graph, a path cannot be found to return to
the same node.

There is only one path from the root of a scene graph to each of its leafs.

• The path from the root of a scene graph to a specific leaf node is known as a
scene graph path and there is only one scene graph path for each leaf node.

• Each scene graph path completely specifies the state information of its leaf. In
the case of a visual object, the state information would include the location,
orientation and size of the object. Consequently, the visual attributes of each
visual object depend only on its scene graph path.

Graphic representations of a scene graph can be used for design and/or documen-
tation i.e. the scene graph can be used in the specification for the program. An
example of a scene graph is illustrated in Figure 1.11.

1.6.3.1 Nodes

A node is a component in a VRML scene graph that describes some type of function-
ality. The nodes of a VRML scene graph can be divided into two main categories:

• Leaf nodes: A scene graph node without any children. Leaf nodes typically
define content within a VRML scene. Examples of leaf nodes include:
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Figure 1.11: An example of a scene graph consisting of a ground node, three trans-
form nodes and three shape nodes.

– Shape nodes - Represent shapes that consist of nodes representing ap-
pearance and geometry

– Sound nodes - Represent sound sources and can be associated with either
WAV or MIDI files.

– Light nodes - Represent a range of different light sources including am-
bient lights, point lights and spot lights.

• Group nodes: A scene graph node with children. Group nodes have one
parent and an arbitrary number of children. Examples of group nodes include:

– Transform node - Groups a series of leaf nodes together. The transfor-
mation associated with this node affects all of the grouped leaf nodes.

– Switch node - Used to conditionally render a group of leaf nodes.

– LOD node - Used to define many different representations of a particular
object. The representation that is rendered is determined based on the
distance between the view point and the LOD node.

1.6.3.2 Fields

Each node contains a list of fields that describe its functionality. A cone is an
example of geometry node and it has two fields:

• base radius (default = 1 metre)

• height (default = 2 metres)

A field can have one of many data types:

• Single Value Fields (SF)

– SFBool - A Boolean value, either true or false
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– SFFloat - A 32-bit floating point value

– SFInt32 - A 32-bit signed integer

– SFTime - An absolute or relative time value

– SFVect2f - A 2D coordinate (u, v) often used to represent texture coor-
dinates

– SFVect3f - A 3D coordinate (x, y, z) used to represent a position in space

– SFColor - Three floating point values ranging from 0.0 to 1.0 that define
red, green and blue colour components

– SFRotation - Four floating point values. The first three values represent
a point on the rotation axis (which goes through the origin). The fourth
point represents the angle of rotation (in radians) around that axis

– SFImage - A 2D image with between one and four colour components

∗ One colour component ⇒ greyscale

∗ Four colour components ⇒ RGB + transparency

– SFString - A UTF8 string, supports the majority of international char-
acter sets

– SFNode - A container for a VRML node

• Multiple Value Fields (MF)

– MFFloat - An array of 32-bit floating point values

– MFInt32 - An array of 32-bit signed integer values

– MFVec2f - An array of 2D floating point coordinates

– MFVec3d - An array of 3D floating point coordinates

– MFColor - An array of colour values, each with three components ranging
from 0.0 to 1.0

– MFRotation - An array of values representing axes and angles of rotation.

– MFString - An array of UTF8 encoded strings

1.6.4 Shapes

A VRML node has two main properties:

• Geometry

– Defines the structure of the shape

– Can be a simple primitive (e.g. a sphere or cube) or a complex structure
consisting of many faces

• Appearance

– Material: Provides information about the colour, shininess, brightness
and transparency of the shape

– Texture: Defines an image to be stretched over the shape

The basic definition of a VRML shape node has the following format:
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0 Shape
{

exposedField SFNode appearance NULL
exposedField SFNode geometry NULL

}

1.6.4.1 Geometry

VRML provides support for several primitive types of geometry that include: Box,
Cone, Cylinder and Sphere. These primitives have the following definitions:

0 Box
{

field SFVec3f size 2 2 2
}

0 Cone
{

field SFFloat bottomRadius 1
field SFFloat height 2
field SFBool side TRUE

5 field SFBool bottom TRUE
}

0 Cylinder
{

field SFBool bottom TRUE
field SFFloat height 2
field SFFloat radius 1

5 field SFBool side TRUE
field SFBool top TRUE

}

0 Sphere
{

field SFFloat radius 1
}

An illustration of how these shapes are rendered in a VRML enabled browser is
illustrated in Figure 1.2.

1.6.4.2 Appearance

The Appearance node provides support for all information that relates to the ap-
pearance of a shape. This includes information relating to the material and the
texture that is to be applied to the geometry of the shape. The Appearance node
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Figure 1.12: Renderings of four of the primitives supported by VRML (a) box, (b)
Cone, (c) Cylinder, (d) Sphere.

has the following definition:

0 Appearance
{

exposedField SFNode material NULL
exposedField SFNode texture NULL
exposedField SFNode textureTransform NULL

5 }

The Material node provides provides information about how a shape responds to
different types of lighting e.g. ambient light and diffuse light. It can also be used to
define an emissive colour so that the shape appears to emit light. A transparency
value can also be set using the Material so that can shape can appear to be trans-
parent.

0 Material
{

exposedField SFFloat ambientIntensity 0.2
exposedField SFColor diffuseColor 0.8 0.8 0.8
exposedField SFColor emissiveColor 0 0 0

5 exposedField SFFloat shininess 0.2
exposedField SFColor specularColor 0 0 0
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exposedField SFFloat transparency 0
}

1.6.5 The VRML File Format

VRML content must be stored using a specific file format. The properties of this
file format are as follows:

• The filename ends with the .wrl suffix

• The # symbol is used to indicate the start of a line of comments

• VRML 1.0 used 7-bit ASCII encoding

• VRML 2.0 uses UTF8 encoding

– A multi-byte encoding in which each character can be encoded in as little
as one byte and as many as four bytes

– Supports the encoding of the character sets from most languages including
Japanese

• The main components of a VRML file are:

– The Header: #VRML V1.0 ascii or #VRML V2.0 utf8

– The Body: Defines the structure and function of the virtual world

Example: Create a 3D world with a cone located at the origin. The cone should
have the following properties:

• base radius = 1.2 meters

• height = 4.6 meters

• colour = red (r = 1.0, g = 0.0, b = 0.0)

This objective can be realised using the following VRML code:

0 #VRML V2.0 utf8

Shape
{

geometry Cone
5 {

bottomRadius 1.2
height 4.6

}
appearance Appearance

10 {
material Material
{

diffuseColor 1.0 0.0 0.0
}

15 }
}
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The output generated when this file is loaded into a VRML enabled browser is
illustrated in Figure 1.13.

Figure 1.13: A cone VRML cone rendering using the Cortona VRML client plug-in
for the Mozilla Firefox web browser.

1.6.6 Transformations

The Transform node represents a transformation from one 3D coordinates system
into another preserving parallelness and straightness of lines. The Transform node
can be used to implement:

• Translations - Translates the coordinates by the specified offsets in the x, y
and z directions.

• Scaling - Scales the coordinates in the x, y and z directions by the specified
ratios.

• Rotation - Rotates the coordinates about an axis, the rotation angle is mea-
sured in radians.

The general definition of a Transform node is as follows:

0 Transform
{

eventIn MFNode addChildren
eventIn MFNode removeChildren
exposedField SFVec3f center 0 0 0

5 exposedField MFNode children []
exposedField SFRotation rotation 0 0 0 0
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exposedField SFVec3f scale 1 1 1
exposedField SFRotation scaleOrientation 0 0 1 0
exposedField SFVec3f translation 0 0 0

10 field SFVec3f bboxCenter 0 0 0
field SFVec3f bboxSize −1 −1 −1

}

The following examples illustrate the operation of the different types of transforma-
tion.
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m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33







x
y
z
w


 =




m00x + m01y + m02z + m03w
m10x + m11y + m12z + m13w
m20x + m21y + m22z + m23w
m30x + m31y + m32z + m33w




(1.5)

1.6.6.1 Translation

The child of the translation is a cone with the default properties. The translation
moves the cone 4 meters above the origin and 4 meters to the right of the origin.
The output generated when this file is loaded into a VRML enabled browser is il-
lustrated in Figure 1.14.

0 #VRML V2.0 utf8

Transform
{

translation 4 4 0
5 children Shape

{
appearance Appearance
{

material Material
10 {

diffuseColor 1 0 0
}

}
geometry Cone{ }

15 }
}

1.6.6.2 Scale

As before the child of the transformation is a cone with the default properties. The
scale causes the size of the cone to change by the specified ratios in the x, y and
z directions. The output generated when this file is loaded in a VRML enabled
browser is illustrated in Figure 1.15.

0 #VRML V2.0 utf8
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Figure 1.14: A VRML cone with the default geometry translated by 4 metres in the
positive x direction and 4 metres in the positive y direction.

Figure 1.15: A VRML cone with the default geometry scaled by 0.5 in the x direction,
1.5 in the y direction and 1.0 in the z direction.

Transform
{

scale 0.5 1.5 1.0
5 children Shape

{
appearance Appearance
{

material Material
10 {

diffuseColor 0 1 0
}

30



}
geometry Cone{ }

15 }
}

1.6.6.3 Rotation

In this example the child of the transformation is a box with the default properties.
The rotation causes the box to rotate about a given axis by a given angle. The axis
is defined by the vector (0, 1, 0), i.e. the y-axis, and the angle is 0.524 radians.
This is equivalent to 30 degrees. The output generated when this file is loaded in a
VRML enabled browser is illustrated in Figure 1.16.

0 #VRML V2.0 utf8

Transform
{

rotation 0 1 0 0.524
5 children Shape

{
appearance Appearance
{

material Material
10 {

diffuseColor 0 0 1
}

}
geometry Box{ }

15 }
}

Figure 1.16: A VRML box with the default geometry rotated by 30 degrees (or
0.524) radians about the y axis.
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1.6.7 Texture Mapping

Texture mapping involves applying a 2D image to the surface of a 3D object. The
texture is scaled/streched to fit the particular surface. There are default texture
mapping rules for all VRML shapes:

• Box - put one copy of the texture on each of the six faces of the box.

• Cylinder - Wrap once around the horizontal diameter and apply circular
cutouts of the images to the top and bottom faces of the cylinder.

• Sphere - Wrap the image once around the horizontal diameter and squeeze it
to a single point at the top and bottom.

The texture is specified as a URL. This can be located either remotely on the Inter-
net or locally on the file system. The file formats supported for textures depend on
the browser being used. GIF and JPEG images are generally supported by default.
The following example shows how straightforward it is to create a 3D model of the
planet earth in VRML using texture mapping. The texture mapping process used
in this example is illustrated in Figure 1.17.

0 #VRML V2.0 utf8

Shape
{

geometry Sphere{}
5 appearance Appearance

{
material Material{}
texture ImageTexture
{

10 url ”textures/earth−low.jpg”
}

}

15 }

Figure 1.17: An illustration of the texture mapping process. The earth texture
is mapped to the sphere by wrapping it once around the horizontal diameter and
squeezing it to a single point at the top and bottom.

Mapping more than one texture to a shape with several faces is more complicated.
Take a soft drinks can for example. This has three faces: top, bottom and label, see
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Figure 1.18.

Figure 1.18: An illustration of the texture mapping process to create a soft drinks
can from a cylinder geometry. Three separate textures must be specified in order to
completely specify the appearance of the can.

It is only possible to map one texture to a particular shape, i.e. the same texture
is mapped onto each face. In order to generate the can appearance three textured
cylinders located at the same coordinates must be superimposed. The final textured
cylinder is then generated by making the unwanted faces invisible, see Figure 1.19.

Hide label

and bottom

Hide label

and top

Hide top

and bottom

Figure 1.19: The stages of texture mapping that are involved to create a soft drinks
can. Three separate cylinders must be created with the required textures. In each
case the faces that are not required must be hidden and the cylinders must be
co-located to give the final result.

The VRML code for the soft drinks can example is listed below:

0 #VRML V2.0 utf8

Group {
children [
# Can top

5 Shape {
appearance Appearance {

material Material { }
texture ImageTexture {

url ”textures/cantop.jpg”
10 }
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}
geometry Cylinder {

bottom FALSE
side FALSE

15 height 2.7
}

}
# Can bottom

Shape {
20 appearance Appearance {

material Material { }
texture ImageTexture {

url ”textures/canbot.jpg”
}

25 }
geometry Cylinder {

top FALSE
side FALSE
height 2.7

30 }
}

# Can side
Shape {

appearance Appearance {
35 material Material { }

texture ImageTexture {
url ”textures/canlabel.jpg”

}
}

40 geometry Cylinder {
top FALSE
bottom FALSE
height 2.7

}
45 }

]
}

In this example a total of three texture mapped cylinders are created. In each case
the unwanted faces are hidden in order to create the final result.

1.6.8 Creating Custom Geomtery

Previous examples all used simple predefined shapes with limited flexibility. It was
only possible to adjust the properties of the shapes and use them in conjunction
with transformations. These simple shapes do not provide the power and flexibility
required to create complex virtual worlds. Consequently, VRML provides a number
of nodes for describing custom geometry e.g.

• IndexFaceSet

• IndexLineSet
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• PointSet

• ElevationGrid

1.6.8.1 IndexedFaceSet

The IndexedFaceSet is used to define arbitrarily shaped flat surfaces. Surfaces are
defined using a set of points with explicit ordering information:

• Straight lines are drawn between consecutive points

• A line is drawn between the first and last points

• The area with this closed boundary is then filled according to the associated
appearance node

It should be noted that the coordinates of the points and the ordering information
(indices) are specified in separate lists. It is possible for many indices to reference
the same coordinate. Consequently, this is a very efficient way of defining geometry.
Two rules govern the definition of these faces:

• Rule 1: All the points of the face must be coplanar

• Rule 2: A face must be convex (see Figure 1.20)

(a) (b)

Figure 1.20: Examples of convex (a) and non-convex (b) faces. In the convex ex-
ample the interconnections between each of the vertices are all located within the
face. In the non-convex example some of the interconnections intersect with the
boundaries of the face.

It should be noted that the convexity requirement does not restrict flexibility when
creating complex geometry as a non-convex can be broken down into two or more
convex faces (see Figure 1.21).

The IndexedFaceSet node is a very powerful and flexible node. As a result it is
also a complex node with a large number of fields. A simplified representation is:
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Figure 1.21: An example of a convex face divided into two non-convex faces.

0 IndexedFaceSet
{

exposedField SFNode coord NULL
field SFBool ccw TRUE
field SFBool convex TRUE

5 field MFInt32 coordIndex []
field SFBool solid TRUE

}

One or both sides of a face can be rendered. This can be used to increase perfor-
mance by removing the need to render faces that may never be visible, i.e. those
inside a solid object. The order in which the points of a face are defined distinguishes
the inside of a face from the outside of the face. Faces can ultimately be used as the
building blocks for complex VRML models.

The IndexedLineSet node is very similar to the IndexedFaceSet node. Note that
in the case of the IndexedLineSet node, the shape is not filled. The PointSet

node defines a set of points and their associated colours and the ElevationGrid is
intended to model terrain and consists of a 2D grid and an associated height map.

Example 1: The most straightforward example of a shape generated using an
IndexedFaceSet node is a triangle, e.g. the equilateral triangle illustrated in Fig-
ure 1.22.

Such a triangle can be realised using the following VRML code:

0 #VRML V2.0 utf8

Shape
{

geometry IndexedFaceSet
5 {

coord Coordinate
{
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(0, 1, 0)

(-1, 0, 0) (1, 0, 0)

Figure 1.22: A simple equilateral triangle with vertices at (0,1,0), (-1,0,0) and (1,0,0)

point [ −1 0 0, 1 0 0, 0 1 0 ]
}

10 coordIndex [0 1 2 −1]
}

}

There are a total of three points and these correspond to the vertices of the triangle.
The three points are indexed in the relevant order and the face is then closed by
specifying an index of -1. The output obtained when this code is rendered in a
VRML enabled browser is illustrated in Figure 1.23.

Figure 1.23: A simple equilateral triangle created using an IndexedFaceSet node.

Example 2: A more complicated example of shape that can be defined using an
IndexedFaceSet node is a cube, see Figure 1.24. A cube has six faces and eight
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(-1, 1, -1) (1, 1, -1)
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(1, 1, 1)(-1, 1, 1)

(-1, -1, -1)

(1, -1, 1)(-1, -1, 1)

y

x

z

Figure 1.24: A simple cube consisting of six faces and eight vertices.

vertices. A cube can be realised using the following VRML code.

0 #VRML V2.0 utf8

Shape
{
appearance Appearance

5 {
material Material
{

diffuseColor 0 0 1
}

10 }
geometry IndexedFaceSet
{

coord Coordinate
{

15 point [ −1 −1 −1, # v0
1 −1 −1, # v1
−1 1 −1, # v2
−1 −1 1, # v3
−1 1 1, # v4

20 1 −1 1, # v5
1 1 −1, # v6
1 1 1 ] # v7

}
coordIndex [0, 3, 4, 2, −1, # left face

25 0, 1, 5, 3,−1, # bottom face
0, 2, 6, 1, −1, # back face
7, 5, 1, 6, −1, # right face
7, 6, 2, 4, −1, # top face
7, 4, 3, 5, −1] # front face

30 }
}

All eight vertices are defined in the point array and each face is subsequently created
by specifying the relevant indices into the point array. In each case the point is closed
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by specifying an index of -1. This is an efficient way to define geometry as it removes
the need to define multiple instances of the same coordinate.

Figure 1.25: A custom cube structure created using an IndexedFaceSet node.

1.6.9 Other VRML features

VRML also provides support of a series of additional advanced features that include
the following:

• Event handling i.e. support for user interaction

• Various modes of lighting

– Point lights

– Directional lights

– Spot lights

• 3D sound

• Behaviors

– Motion

– Rotation

– Morphing

• Atmospheric effects

– Fog

– Smoke
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1.7 Summary

This chapter has introduced various concepts in relation to 2D and 3D graphics.
The material dealing with 2D graphics demonstrated the graphics capabilities of
the Java programming language and is relevant to the discussion on Java 3D that
will take places in the next chapter. The use of VRML provided a straightforward
introduction to 3D graphics is particularly relevant to the material discussed in the
next chapter as Java 3D is based on VRML and many of the concepts including
scene graphs will be discussed again in more detail in relation to Java 3D.
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Chapter 2

Java 3D

Java 3D is a fully featured API. It uses the scene graph programming model to
describe the structure of 3D worlds. The scene graph model allows the programmer
to focus on the organization and functionality of the scene while Java 3D deals
with all of the underlying rendering issues. Java 3D includes many of the features
found in other popular 3D graphics APIs such as OpenGL and Direct3D. Java 3D
is considered to be a higher level alternative to these low level APIs as it allows
the programmer to focus on what to draw instead of how to draw it. Java 3D can
be used to create virtual worlds with complex geometry, lighting, texture mapping
and other features that enable the development of comprehensive, interactive scenes.
Java 3D is also compatible with a variety of output devices from a standard monitors
to advanced steroscopic visualisation systems that immerse the viewer in the virtual
world.

2.1 Software

The software that was used in the development of the course material outlined in
this chapter is as follows:

• Java SE Development Kit 6

• Java 3D 1.5.0

These packages can be downloaded from the Internet via the Sun Microsystems Java
web site (java.sun.com). Installation of both packages is straightforward and in the
case of the windows platform installation is handled automatically by an installer
application. All examples outlined in this chapter were created and deployed using
The Eclipse SDK version 3.2.1.

2.2 Basic Data Types

Java 3D supports a variety of data types to represents several different classes of
data. The classes that represent these data types are defined in the javax.vecmath

package. In the majority of cases the class name adheres to a format that includes:

• Data type

– Point
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– Vector

– Colour

• Dimension

– Two-dimensional (2D), e.g. texture coordinates, these are used in the
mapping of 2D texture to a 3D shape.

– Three-dimensional (3D), e.g. a colour with red green and blue compo-
nents.

– Four-dimensional (4D), e.g. a four element axis angle that consists of a
3D vector as well as a rotational component.

• Precision

– Byte, identified by the suffix b

– Integer, identified by the suffix i

– Float, identified by the suffix f

– Double, identified by the suffix d

2.2.1 Colours

Colours are an example of a data type defined in the javax.vecmath package. Col-
ors can be represented using three or four components and the individual colour
components can be represented using either bytes or floating point values. In the
case of byte values, the colour components range from 0 - 255 and the in the case of
floating point values, the colour components range from 0.0 - 1.0. A specific colour
can be created using one of the following constructors:

• Color3b(byte r, byte g, byte b)

Creates a colour consisting of three components that are represented using
byte values. The resulting colour consists of red, green and blue components
with values in the range 0 - 255.

• Color4f(float r, float g, float b, float a)

Creates a colour consisting of four components that are represented using float
values. The resulting colour consists of red, green and blue components as well
as an alpha component that defines opacity. All of the colour components have
a value in the range 0.0 - 1.0.

2.3 Scene Graphs

Java 3D programs use scene graphs to define the structure of 3D virtual worlds. A
scene graph is essentially a treelike data structure that is used to store, organise, and
render 3D scene information including objects, lights and sounds. A scene graph
consists of nodes which represent:

• Objects that are present in the virtual world represented by the scene graph.

• Aspects of the environment of the virtual world, for example, light or fog.
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• Groups that contain nodes that can share a common property, for example,
location.

A scene graph is usually defined graphically and then converted into code to enable
rendering. The conversion process is reasonably straightforward and the resulting
code can easily be related to the original scene graph diagram. An example of a
scene graph is illustrated in Figure 2.1.

Bed Shape

Room

Green

BedBed

Red

Room

House

Figure 2.1: An example of a scene graph that represents a house. The house has
two rooms and each room has a bed. Both of the beds have the same shape but
different appearances.

This scene graph represents a house that has two rooms. There is a bed in each of
the rooms. Both of the beds have the same shape but a different appearance. The
house, the rooms and the beds are all represented by scene graph nodes. The visual
and structural characteristics of the beds are represented using node components.
Individual nodes cannot be shared by multiple parents but node components can.
When this scene graph is implemented in Java the nodes and nodes components are
represented by objects and the relationships between the nodes and node compo-
nents are represented by references between the objects. The types of objects and
object relationships that can appear in a scene graph are illustrated in Figure 2.2.
The Java 3D scene graph is a directed acyclic graph (DAG). Connections between
nodes in a scene graph are directed. This means that they are connected using a
parent-child relationship. The connections are acyclic, which means that the parent-
child relationship can’t form loops, for example, the child of a group can’t contain
the parent of the group.
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Virtual Universe

Locale

Group

Leaf

NodeComponent

other objects

parent-child link

reference

Nodes and NodeCompoents

(elements)

Nodes and NodeCompoents

(elements)

Figure 2.2: An overview of the range of symbols that are used to create Java 3D
scene graphs.

2.3.1 SceneGraphObject

The class SceneGraphObject is the superclass for all classes that represents scene
graph elements. There are two main types of scene graph elements:

• Node - represents a scene graph Group or Leaf node.

– Group nodes are scene graph elements that can have children. Group

nodes are used to organise the scene graph and can implement function-
ality that effect the way their children appear.

– Leaf nodes are scene graph elements with no children. Leaf nodes can
represent shapes, viewpoints or environmental properties.

• NodeComponent - represents information or data that is associated with a Node

object. A single NodeComponent object can be shared between several Node
objects and may be referred to many times in a scene graph.

Note: Strictly speaking, NodeComponent objects are not part of the scene graph,
however, they can be referenced by other scene graph objects.

2.3.1.1 Group Nodes

The Group class represents a general purpose grouping node. Group nodes have one
parent and an arbitrary number of children. It is possible for a Group node to have
no children. The Group class defines functionality that enables its list of children to
be added to, removed from or enumerated. The subclasses of the Group class define
different types of grouping functionality.
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• BranchGroup acts as the root of a scene graph branch (or subgraph). The
subgraph represented by a BranchGroup can be added or removed from a
scene graph that is currently being displayed.

• OrderedGroup ensures that its children are rendered in a particular order. An
integer array of child indices is used to specify the order in which children are
rendered.

• TransformGroup incorporates a 3D transformation that is used to alter the
position, orientation and size of its children.

• Switch controls which of its children will be rendered. This group can be
used to display all children, no children or a selection of children defined by a
bitmask.

• SharedGroup allows multiple Link leaf nodes to share a subgraph that is rep-
resented by the SharedGroup object. This allows the same subgraph to appear
several times in a scene.

• ViewSpecificGroup is a group node whose children are only rendered on a
specified set of views.

2.3.1.2 Leaf Nodes

The Leaf class is an abstract class for all scene graph nodes that have no children,
i.e. leaf nodes. The subclasses of the Leaf class are used to represent various entities
that can be present within a virtual world. Leaf nodes include:

• Shape3D is used to represent graphical objects in a virtual world and consists
of a geometry and an appearance.

• ViewPlatform controls the position, orientation and scale of the viewer. The
viewer can be moved through the virtual world by updating the TransformGroup
in the scene graph hierarchy above the ViewPlatform.

• Environmental nodes:

– Background defines the background for the current scene. The back-
ground can be a solid colour or an image. The background can be drawn
as a flat image, or alternatively, it can be associated with a geometry.

– Behavior nodes make changes to the scene graph based on events such
as time passing, moving the viewer or using the mouse. For example the
MouseRotate behavior can be used to update the rotational aspect of the
transform associated with a transform group.

– Clip nodes keep objects that are far away from the viewer being drawn.

– Fog nodes simulate atmospheric effects like fog or smoke. They can be
used to increase realism in a scene by fading the appearance of objects
that are farther from the viewer.

– Light nodes are used to illuminate the scene. Types of light sources that
are supported include AmbientLight, DirectionalLight and PointLight.

– Sound nodes define sources of sound within the scene. Types of sound
sources include BackgroundSound and PointSound.
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2.3.1.3 Node Components

NodeComponent objects are used to represent information or data that is associated
with either another Node or another NodeComponent object. A Shape3D object
maintains references to two types of NodeComponent objects that define its structure
and visual appearance. These are:

• Geometry defines the geometry component information required by a Shape3D

object.

• Appearance defines all of the visual properties that can be associated with a
Shape3D object.

The Appearance node component, in turn, maintains references to several other
node components that are referred to as appearance components. These include:

• Material defines the response of a object to different types of light sources.

• Texture defines the texture image and texture mapping properties that are
used when texture mapping is enabled.

• TransparencyAttributes defines the transparency characteristics for an ob-
ject.

It is important to note that NodeComponents are not part of the scene graph but
can be referenced by the scene graph. Consequently a single NodeComponent object
can be referenced by several different scene graph nodes. An example of this is
illustrated in Figure 2.3.

Appearance

TG

(Room)

Geomtery

(Chair)

Shape3D

(Chair)

Shape3D

(Sofa)
Geometry

(Sofa)

Figure 2.3: An example of how a single NodeComponent object can be shared by
several scene graph nodes. In this example, both Shape3D objects share the same
appearance. The relationship between the Shape3D nodes and the Appearance node
component is represented by a dashed line to indicate a reference rather than a link.
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2.3.2 VirtualUniverse, Locale and SimpleUniverse

A VirtualUniverse object is the top-level container for all scene graphs. A virtual
universe consists of a set of Locale objects, each of which represents a high-resolution
position within the virtual world. The scene graph is connected to a Locale via a
BranchGroup object that is referred to as a ”branch graph”. A utility class called
SimpleUniverse which is defined in the com.sun.j3d.utils.universe package is
usually used to manage the VirutalUniverse and Locale objects.

The SimpleUniverse class extends VirtualUniverse and can be used to set up
a minimal user environment to quickly and easily get a Java 3D program up and
running. This utility class creates all the necessary objects on the ”view” side of the
scene graph. Specifically, this class creates a Locale, a single ViewingPlatform,
and a Viewer object. The SimpleUniverse class provides all the necessary func-
tionality required to enable the development of many basic Java 3D applications.

The SimpleUniverse class manages several objects that control the rendering of a
scene:

• The VirtualUniverse and Locale objects that hold the virtual world that is
to be displayed.

• The ViewPlatform that represents the location of the viewer in the virtual
world.

• The View object that defines all the parameters required to render a 3D scene
from a single viewpoint.

• The Canvas3D object that represents where the 3D scene is to be rendered to.

The scene graph diagram for the SimpleUniverse utility class is illustrated in Figure
2.4. A branch graph represented by a BranchGroup object can be added to the
Locale of a SimpleUniverse object using the addBrachGraph() method. This is
called the “content” branch of the scene graph . The SimpleUniverse utility class
manages the “view” scene graph.

2.3.3 A Basic Scene

The following example uses the SimpleUniverse utility class to create a scene con-
taining a single shape and a single behavior. The shape is a ColorCube which is
a utility class that extends Shape3D to represent a cube structure with a different
colour on each face. The behaviour is a MouseRotate behaviour that updates the
transform associated with a TransformGroup based on mouse drag events that occur
on the Canvas3D. The scene graph for this example is illustrated in Figure 2.5.
This scene graph can be converted into Java 3D to generate the following code:

0 import javax.swing.JFrame;
import javax.vecmath.Point3d;

import java.awt.BorderLayout;
import java.awt.GraphicsConfiguration;

5
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TG

Canvas3D

Simple Universe

ViewPlatform

L

Viewer

Viewing Platform

addBranchGraph()

Figure 2.4: A simplified illustration of the scene graph diagram for the
SimpleUniverse utility class. This scene graph represents the “view” branch graph.
The “content” branch graph is added using the addBranchGraph() method.

import com.sun.j3d.utils.behaviors.mouse.MouseRotate;
import com.sun.j3d.utils.geometry.∗;
import com.sun.j3d.utils.universe.∗;
import javax.media.j3d.∗;

10

public class BasicScene extends CustomFrame
{

public static void main(String args[])
{

15 new BasicScene();
}

public Canvas3D canvas;

20 public BasicScene()
{

getContentPane().setLayout(new BorderLayout());

GraphicsConfiguration config =
25 SimpleUniverse.getPreferredConfiguration();
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Figure 2.5: The scene graph used to generate BasicScene.java. The “con-
tent” branch graph consists of a root represented by a BranchGroup object, a
TransformGroup that is modified by a MouseRotate behaviour and a ColorCube

object that connected to the TransformGroup object.

// Create a Canvas3D object and add it to the frame
canvas = new Canvas3D(config);
canvas.addMouseListener(this);

30 getContentPane().add(canvas, BorderLayout.CENTER);

// Create a SimpleUniverse object to mange the ‘‘view” branch
SimpleUniverse u = new SimpleUniverse(canvas);
u.getViewingPlatform().setNominalViewingTransform();

35

// Add the ‘‘content” branch to the SimpleUniverse
BranchGroup scene = createContentBranch();
u.addBranchGraph(scene);

40 setSize (256, 256);
setVisible (true);
}
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public BranchGroup createContentBranch()
45 {

BranchGroup root = new BranchGroup();

// Create the transform group
TransformGroup transformGroup = new TransformGroup();

50 transformGroup.setCapability(TransformGroup.ALLOW TRANSFORM READ);
transformGroup.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(transformGroup);

// Create the mouse rotate behaviour
55 MouseRotate rotate = new MouseRotate();

rotate .setTransformGroup(transformGroup);
rotate .setSchedulingBounds(new BoundingSphere(new Point3d(), 1000.0));
transformGroup.addChild(rotate);

60 // The color cube geometry
ColorCube colorCube = new ColorCube(0.3);
transformGroup.addChild(colorCube);

root.compile();
65

return root;
}

}

The operation of the program can be described as follows:

• The main class of the application extends JFrame and can be used as a con-
tainer to display the rendered scene. The layout of the JFrame is set to
BorderLayout.

• The program begins by creating a new instance of a Canvas3D object. This
will be ultimately used to display the rendered scene.

– A Canvas3D object requires an instance of a GraphicsConfiguration

object in the constructor.

– A GraphicsConfiguration object defines the characteristics of a graph-
ics destination such as a printer or a monitor.

– A suitable instance of a GraphicsConfiguration object can be found by
calling the getPreferredConfiguration() method of the SimpleUniverse
class.

• A SimpleUniverse object is created and the Canvas3D object is specified in
the constructor to indicate where the scene will ultimately be rendered.

• The nominal viewing transform is set for the viewing platform associated with
the SimpleUniverise object.

– This is achieved by calling the setNominalViewingTransform() method
of the ViewingPlatform object obtained by calling the getViewingPlatform()
method of the SimpleUniverse class.
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– The nominal viewing transform moves the ViewPlatform object back so
that the viewer can see the area around the origin (0, 0, 0).

• The “content” branch graph is then created by a calling the createContentBranch()
method.

• The “content” branch graph is then added to the Locale managed by the
SimpleUniverse utility class by calling its addBranchGraph() method.

• Finally, the dimensions of the JFrame are specified and the JFrame is displayed.

The createContentBranch() method is used to define the “content” branch graph
of the scene graph represented by the program. The operation of this method can
be described as follows:

• The method begins by creating the root of the “content” branch graph. This
is represented by a BranchGroup object.

• A TransformGroup object is then created. This is subsequently attached
to the root of the scene graph. The TransformGroup is modified using the
setCapability() method so that it can be updated when the scene graph is
being displayed.

• A MouseRotate behaviour is created. This is attached to the TransformGroup.
A reference is also created so the MouseRotate behaviour can update the
transform associated with the TransformGroup object.

• A ColorCube object with dimensions 60 cm is then created and attached to
the transform group. The default size of for a ColorCube object is 2 metres
and this instance is scaled by a factor of 0.3.

• Finally, the “content” branch graph is compiled indicating that it is ready to
be rendered.

Examples of the renderings obtained when this program is executed are illustrated
in Figure 2.6. This example demonstrates the basic principles behind creating 3D
content using the scene graph approach. This example will be built on by subsequent
examples where this example is extended and the createContentGraph() method is
overwritten to define different content and functionality. The “view” branch graph
does not change between application so there is no need to redefine it each time.

2.3.4 Updating the Scene Graph

In order to render the “content” branch of a scene graph to a Canvas3D object it
must be compiled and added to a suitably configured instance of a SimpleUniverse

object. Once this has been done the “content” branch of the scene graph is consid-
ered to be live and the ability to modify the scene graph is greatly reduced. When
a scene graph is compiled, it is converted to an optimised internal representation.
This representation of the scene graph disables any functionality that is not required
in order to optimise the scene graph for rendering.

It is possible to make some changes, for example, in the BasicScene example. The
transformation associated with the TransformGroup object can be updated by the
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(a) (b)

Figure 2.6: A ColorCube consists of six faces with different colours: red, green,
blue, yellow, purple and cyan. This illustration shows two different renderings of a
ColorCube object created using the BasicScene example.

user via the MouseRotate mouse behaviour. However, any changes that need to
be supported must be specified prior to the scene graph going live. The different
changes that can be specified are represented using capability bits, and every change
that can be specified has a corresponding capability bit.

The following methods are defined by the SceneGraphObject class:

• void setCapability(int bit)

Sets the capability indicated by the specified capability bit.

• boolean getCapability(int bit)

Returns the status of the capability indicated by the specified capability bit.

• void clearCapability(int bit)

Turns off the capability indicated by the specified capability bit.

The capability bits for a SceneGraphObject can only be changed when a scene
graph is not live. Any attempt to change the capability bits after a scene graph has
gone live will result in a RestrictedAccessException.

The default value for all read capability bits is true, i.e. by default all attributes
may be read after the scene graph has gone live. The default value for all write
capability bits is false, i.e. by default no attributes may be written after the scene
graph has gone live. If the required capability bit has not been set, then any attempt
to read or write the related property after the scene graph has gone live will result
in a CapabilityNotSetException being thrown.

In the BasicScene example the MouseRotate mouse behaviour updates the trans-
formation associated with the TransformGroup that holds the ColorCube object. In
order for this operation to be supported, the ALLOW TRANSFROM WRITE capability bit
must be set for the TransformGroup object using the setCapability() method.
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2.4 Group Nodes

Group nodes have exactly one parent and an arbitrary number of children that
are rendered in an unspecified order (or in parallel). It is possible for a group
node to have no children. If this occurs then the group node is essentially ignored.
Operations that can be carried out on group nodes include adding, removing and
enumerating the children of the group node.

The Group class is the base class for all nodes that have children. It represents a
general-purpose grouping node and defines a series of methods that include:

• void addChild(Node child)

Append the specified child to the list of children maintained by this Group

node.

• Enumeration getAllChildren()

Returns an Enumeration object containing all of the children associated with
this Group node.

• Node getChild(int index)

Returns the child at the specified index from the list of children maintained
by this Group node.

• int numChildren()

Return a integer value that represents the number of children in the list main-
tained by this Group node.

The Group class defines the following capabilities:

• ALLOW CHILDREN READ

Indicates that the Group node allows its children to be read after the scene
graph has gone live.

• ALLOW CHILDREN WRITE

Indicates that the Group node allows its children to be written to after the
scene graph has gone live.

• ALLOW CHILDREN EXTEND

Indicates that the Group node allows more children to be added after the scene
graph has gone live.

The subclasses of Group node add additional semantics. These classes are discussed
in the following text.

2.4.1 BranchGroup

A BranchGroup object serves as a pointer to the root of a scene graph branch.
BranchGroup objects are the only objects that can be attached to, or removed from,
a Locale. The following methods are defined by the Locale class to facilitate the
attachment or removal of a BranchGroup object.

• void addBranchGraph(BranchGroup branchGroup)

Attached the specified branch graph to the Locale object.
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• void removeBranchGraph(BranchGroup branchGroup)

Detach the specified branch graph from the Locale object.

The main method defined by a BranchGroup is the compile() method. This causes
the branch graph represented by the BranchGroup object to be converted to an op-
timised internal representation. Once the compile() method has been called, only
changes that have been explicitly enabled can be made to the scene graph.

The BranchGroup class defines the following capability bit:

• ALLOW DETACH

Indicates that the BranchGroup object can be detached from its parent.

2.4.2 OrderedGroup

The OrderedGroup node is a node that ensures its children are rendered in a specific
order. In addition to the list of children inherited from the base Group class, the
OrderedGroup class also maintains an integer array of child indices that indicates
the rendering order for its children.

The methods defined by the OrderedGroup class include:

• void addChild(Node child)

Appends the specified child to the OrderedGroup object and adds the index
of the child to the end of the child index order array.

• void addChild(Node child, int[] childIndexOrder)

Appends the specified child to the OrderedGroup object and sets the child
index order array to the specified array.

• int[] getChildIndexOrder()

Returns the current child index order array.

The OrderedGroup class also defines the following capability bits:

• ALLOW CHILD INDEX ORDER READ

Indicates that the child index order array can be read after the scene graph
has gone live.

• ALLOW CHILD INDEX ORDER WRITE

Indicates that the child index order array can be written to after the scene
graph has gone live.

2.4.3 TransformGroup

The TransformGroup class represents a group node that implements a 3D spatial
transformation that can position, orient and scale all of its children. The transfor-
mation is represented by a Transform3D object. An instance of the TransformGroup
can be created using one of the following constructors:

• TransformGroup()

Creates a TransformGroup object that represents the identity transform. The
resulting group has the same effect as a BranchGroup object.
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• TransformGroup(Transform3D transform)

Create a TransformGroup object that applies the transformation specified by
the transform argument.

The TransformGroup class also defines the following methods to facilitate the spec-
ification and retrieval of its associated Transform3D object.

• void setTransform(Transform3D transform)

Set the transform associated with this TransformGroup object to the specified
value.

• void getTransform(Transform3D transform)

Copy the Transform3D associated with this TransformGroup object to the
Transform3D object passed as an argument.

The Transform3D class is represented internally as a 4× 4 double-precision floating
point matrix. A Transform3D object is used to perform translations, rotations and
scaling transformation. The Transform3D object defines the following methods to
facilitate these operations:

• void setScale(double scale)

Sets the scale of the transformation to the specified value. Scale values below
1.0 cause a reduction in size and value above 1.0 cause an increase in size.

• void setTranslation(Vector3f translation)

Causes the Transform3D object to represent the specified translation.

• void setRotation(AxisAngle4f axisAngle)

Causes the Transform3D object to represent the specified rotation.

– The AxisAngle4f object passed as an argument represents an axis and
a rotational component. The axis is defined by a single point that rep-
resents a line through the origin and the angle represents the angle of
rotation and is defined in radians.

The TransformGroup class defines the following capabilities:

• ALLOW TRANSFORM READ

Indicates that the associated Transform3D object can be read after the scene
graph has gone live.

• ALLOW TRANSFORM WRITE

Indicates that the associated Transform3D object can be written to after the
scene graph has gone live.

Example: The following example uses TransformGroup objects to place three
shapes at different positions in a scene. The scene graph for the example is il-
lustrated in Figure 2.7 and the Java 3D implementation of the scene graph is listed
below:
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Figure 2.7: The scene graph for the TransformGroup example. This scene graph con-
sists of a BranchGroup that represents the root, the root BranchGroup has three chil-
dren. These children are TransformGroup objects which each have one ColorCube

child. The location of the ColorCube nodes in the renered scene is depended on the
transformation associated with the relevant TransformGroup object.

0 import javax.media.j3d.∗;
import javax.vecmath.∗;
import com.sun.j3d.utils.geometry.∗;

public class TransformGroupExample extends BasicSceneWithMouseControl{
5

public static void main(String args[]){new TransformGroupExample();}

public BranchGroup createContentBranch()
{

10 BranchGroup root = new BranchGroup();

// bottom left ColorCube
Transform3D t1 = new Transform3D();
t1. setTranslation(new Vector3f(−0.25f, −0.25f, 0.0f ));

15 TransformGroup tg1 = new TransformGroup(t1);
ColorCube c1 = new ColorCube(0.2);
tg1.addChild(c1);

// bottom right ColorCube
20 Transform3D t2 = new Transform3D();

t2. setTranslation(new Vector3f(0.25f, −0.25f, 0.0f ));
TransformGroup tg2 = new TransformGroup(t2);
ColorCube c2 = new ColorCube(0.2);
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tg2.addChild(c2);
25

// Top ColorCube
Transform3D t3 = new Transform3D();
t3. setTranslation(new Vector3f(0.0f, 0.25f , 0.0f ));
TransformGroup tg3 = new TransformGroup(t3);

30 ColorCube c3 = new ColorCube(0.2);
tg3.addChild(c3);

root.addChild(tg1);
root.addChild(tg2);

35 root.addChild(tg3);

return root;
}

}

The main class of the program extends the BasicSceneWithMouseControl class.
This is the same as the BasicScene class except three mouse behaviours have been
added to the scene graph: MouseRotate, MouseTranslate and MouseZoom. The
scene graph is implemented by overwriting the createContentBranch() method.
The operation of the overwritten createContentBranch() method can described
as follows:

• The root of the scene graph is created and represented by a BranchGroup

object.

• The first child of the root node is a TransformGroup object.

– A Transform3D object representing a translation 25 cm in the negative
x direction and 25 cm in the negative y direction is associated with the
TransformGroup object.

– The TransformGroup object has a single ColorCube child with sides 40
cm in length (2.0 metre scaled by a factor of 0.2). The ColorCube is
added to the TransformGroup using the addChild() method.

– The capabilities for the TransformGroup are left unchanged, i.e. the
ALLOW TRANSFORM READ capability is set (this is the default value for this
capability) and the ALLOW TRANSFORM WRITE capability is not set (also by
default).

• The root has two other children that represent ColorCube objects affected by
different translations:

– The second ColorCube object is translated 25 cm in the positive x direc-
tion and 25 cm in the negative y direction.

– The third ColorCube object is translated 25 cm in the positive y direction.

• Finally, the three children are added to the root and the root is returned for
compilation.

The output obtained when this scene graph is rendered is illustrated in Figure 2.8.
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Figure 2.8: A rendering of the scene graph illustated in Figure 2.7. The three 40
cm ColourCubes appear in a triangular formation with a 10 cm gap between them

2.4.4 Switch

The Switch class represents a group node that can control which of its children are
rendered. It defines a child selection value which defines the children to be rendered.
The possible values are:

• CHILD NONE

None of the children of this Switch node are to be rendered.

• CHILD ALL

All of the children of this Switch node are to be rendered.

• CHILD MASK

Only the children of this Switch node that are indicated by a binary one in a
mask are to be rendered.

If the CHILD MASK selection value is specified then the children to be rendered are
specified by a mask that is represented using a BitSet object from the java.util

package.

An instance of a Switch node can be constructed using one of the following three
constructors:

• Switch()

Creates a Switch node where the child selection value is set to CHILD NONE.

• Switch(int whichChild)

Creates a Switch node with the specified child selection value.

• Switch(int whichChild, BitSet childMask)

Creates a Switch node with the specified child selection value and child selec-
tion mask.

Once a Switch object has been created, the child selection value can be queried or
set using:
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• int getWhichChild()

Returns the current child selection value that indicates how the children of the
Switch node are to be rendered.

• void setWhichChild(int childSelectionValue)

Set the current child selection value to the specified value.

If the child selection value is set to CHILD MASK then a mask represented by a BitSet

object determines which of the children are to be rendered. The number of bits in
the mask is the same as the number of children. A bit value of 1 indicates the
corresponding child is to be rendered, whereas, a bit value of 0 indicates that the
corresponding child is not to be rendered. The mask can be queried or set using:

• BitSet getChildMask()

Returns the current child selection mask in the form of a BitSet object.

• void setChildMask(BitSet childMask)

Sets the current child selection mask to the specified value.

A BitSet object represents a vector of bits that grows if needed. A BitSet object
can be created using the following constructor:

• BitSet(int nbits)

Creates a BitSet object whose initial capacity is nbits.

The basic methods provided by the BitSet class facilitate querying and updating
the individual bits contained within a BitSet object.

• boolean get(int bitIndex)

Get the value of the bit at the specified location and return it in the form of
a Boolean value.

• void clear(int bitIndex)

Clear the bit at the specified location, i.e. set its value to false.

• void set(int bitIndex)

Set the bit at the specified location, i.e. set its value to true.

The Switch class also defines two capability bits:

• ALLOW SWITCH READ

Indicates that the Switch node can be read after the scene graph has gone
live.

• ALLOW SWITCH WRITE

Indicates that the Switch node can be written to or updated after the scene
graph has gone live.

Example: The following example uses a Switch object to control the rendering
of three child branches. In each case, the branch consists of a TransformGroup

that implements a translation. Each TransformGroup has a single child which is a
ColorCube object. The scene graph for the example is illustrated in Figure 2.9 and
the Java 3D implementation of the scene graph is listed below:
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Figure 2.9: The scene graph for the Switch example program. This is similar to
the scene graph from the TransformGroup example except that Switch node has
been placed between the BranchGroup and the three TransformGroup nodes. The
Switch node can ultimately be used to control which of the three TransformGroup

branches are rendered.

0 import javax.media.j3d.∗;
import javax.vecmath.∗;
import com.sun.j3d.utils.geometry.∗;
import java.util.BitSet;

5 public class SwitchExample extends BasicSceneWithMouseControl{

public static void main(String args[]){new SwitchExample();}

public BranchGroup createContentBranch()
10 {

BranchGroup root = new BranchGroup();

// Bottom left ColorCube
Transform3D t1 = new Transform3D();

15 t1. setTranslation(new Vector3f(−0.25f, −0.25f, 0.0f ));
TransformGroup tg1 = new TransformGroup(t1);
ColorCube c1 = new ColorCube(0.2);
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tg1.addChild(c1);

20 // Bottom right ColorCube
Transform3D t2 = new Transform3D();
t2. setTranslation(new Vector3f(0.25f, −0.25f, 0.0f ));
TransformGroup tg2 = new TransformGroup(t2);
ColorCube c2 = new ColorCube(0.2);

25 tg2.addChild(c2);

// Top ColorCube
Transform3D t3 = new Transform3D();
t3. setTranslation(new Vector3f(0.0f, 0.25f , 0.0f ));

30 TransformGroup tg3 = new TransformGroup(t3);
ColorCube c3 = new ColorCube(0.2);
tg3.addChild(c3);

// Child mask
35 BitSet bitSet = new BitSet(3);

//bitSet. set (0);
bitSet . set (1);
//bitSet. set (2);
Switch switchGroup = new Switch(Switch.CHILD MASK, bitSet);

40

switchGroup.addChild(tg1);
switchGroup.addChild(tg2);
switchGroup.addChild(tg3);

45 root.addChild(switchGroup);
return root;

}
}

The main class of this program also extends the BasicSceneWithMouseControl

class. As in the previous example, the scene graph is implemented by overwriting
the createContentBranch() method. The main differences in this version are:

• A Switch node is added between the BranchGroup node and the TransformGroup
nodes to control which of the ColorCube nodes are ultimately rendered.

• The children of the Switch node to be rendered are indicated using a BitSet

object where each bit indicates whether or not the associated child should be
displayed.

Three versions of the output obtained when this scene graph is rendered are illus-
trated in Figure 2.10.

2.4.5 SharedGroup

A SharedGroup enables a subgraph to be shared between different groups via Link

leaf nodes. The essentially allows the same content to be replicated several times
within a single scene. A SharedGroup node has a number of special properties:
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(a) (b) (c)

Figure 2.10: Three renderings of the scene graph illustrated in Figure 2.9. In each
case the BitSet object that controls which children are to be rendered has a differ-
ence configuration: (a) 011, (b) 101 and (c) 110.

• A SharedGroup may be referenced by one or more Link leaf nodes. Any
runtime changes to a node or component object in a shared subgraph affect
all graphs that refer to that subgraph.

• Only Link leaf nodes may refer to SharedGroup nodes. A SharedGroup node
cannot have parents or be attached to a Locale object.

• A shared subgraph may contain any group node, except an embedded SharedGroup

node as SharedGroup nodes cannot have parents. However, only the following
leaf nodes may appear in a shared subgraph:

– Light

– Link

– Morph

– Shape

– Sound

• An IllegalSharingException is thrown if any of the following leaf nodes
appear in a shared subgraph represented by a SharedGroup object:

– AlternateAppearance

– Background

– Behaviour

– BoundingLeaf

– Clip

– Fog

– ModelClip

– SoundScape

– ViewPlatform

The SharedGroup class defines the following capability bit:
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• ALLOW LINK READ

Indicates that this SharedGroup node allows list of Link objects that refer to
this node to be read after the scene graph has gone live.

Example: The following example uses a SharedGroup object to create multiple
instances of a single ColorCube object. The scene graph for the example is illustrated
in Figure 2.11 and the Java 3D implementation of the scene graph is listed below:

TGTGTG

ColorCube

BG

Shared

Group

Link LinkLink

Figure 2.11: The scene graph for the SharedGroup example. This builds on the pre-
vious TransformGroup example, however, instead of having three separate instance
of a ColorCube object, there is only one. This single instance is referenced three
times via a SharedGroup object using three Link objects.

0 import javax.media.j3d.∗;
import javax.vecmath.∗;
import com.sun.j3d.utils.geometry.∗;

public class SharedGroupExample extends BasicSceneWithMouseControl{
5

public static void main(String args[]){new SharedGroupExample();}
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public BranchGroup createContentBranch()
{

10 BranchGroup root = new BranchGroup();

// Shared group containing ColorCube object
SharedGroup sharedGroup = new SharedGroup();
ColorCube cube = new ColorCube(0.2);

15 sharedGroup.addChild(cube);

// Bottom left Link object
Transform3D t1 = new Transform3D();
t1. setTranslation(new Vector3f(−0.25f, −0.25f, 0.0f ));

20 TransformGroup tg1 = new TransformGroup(t1);
Link link1 = new Link();
link1 .setSharedGroup(sharedGroup);
tg1.addChild(link1);

25 // Bottom right Link object
Transform3D t2 = new Transform3D();
t2. setTranslation(new Vector3f(0.25f, −0.25f, 0.0f ));
TransformGroup tg2 = new TransformGroup(t2);
Link link2 = new Link();

30 link2 .setSharedGroup(sharedGroup);
tg2.addChild(link2);

// Top link object
Transform3D t3 = new Transform3D();

35 t3. setTranslation(new Vector3f(0.0f, 0.25f , 0.0f ));
TransformGroup tg3 = new TransformGroup(t3);
Link link3 = new Link();
link3 .setSharedGroup(sharedGroup);
tg3.addChild(link3);

40

root.addChild(tg1);
root.addChild(tg2);
root.addChild(tg3);

45 return root;
}

}

As in the previous examples, the main class of this program extends the version of the
BasicScene class with mouse support and overwrites the createContentBranch()

method. The main difference between this example and the earlier TransformGroup
example is that instead of having three separate instances of a ColorCube object,
there is only one. This is achieved by:

• Creating a SharedGroup rooted scene graph that contains a single ColorCube

object.

• Replacing the ColorCube objects in the TransformGroup example with Link

nodes.
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• Creating references to the SharedGroup object from each of the Link nodes.

The output generated by this program is the same as the output generated by the
TransformGroup example (see Figure 2.8), however, it should be noted that the level
of repetition in this program is much less than in the TransformGroup example.

2.4.6 ViewSpecificGroup

The ViewSpecificGroup node is a Group whose descendants are rendered only on
a specified set of views. It contains a list of view on which its descendants are ren-
dered. Methods are provided to add views, removes views and enumerate the list of
view maintained by this node. The list of views is initially empty. This means that
by default, the children of this group will not be rendered on any view.

The ViewSpecificGroup defines a set of methods that are used to manage its as-
sociated views. These include:

• void addView(View view)

Appends the specified View to this node’s list of views.

• Enumeration getAllViews()

Returns an enumeration containing this ViewSpecificGroup node’s list of
views.

• View getView(int index)

Retrieves the View object at the specified index from the node’s list of views.

• int numViews()

Returns the number of View objects in this node’s list of views.

• void removeView(View view)

Removes the specified View object from this node’s list of views.

The ViewSpecificGroup defines the following capability bits:

• ALLOW VIEW READ

Indicates that the ViewSpecificGroup allows its list of views to be read after
the scene graph has gone live.

• ALLOW VIEW WRITE

Indicates that the ViewSpecificGroup allows it list of views to be modified
after the scene graph has gone live.

2.5 Shapes Nodes

Geometric objects in a Java 3D scene are represented using shapes that are instances
of the Shape3D class. The Shape3D class contains a list of one or more Geometry

component object and a single Appearance component object (see Figure 2.12). The
Geometry components define the shape node’s structure. The Appearance object
specifies the appearance attributes of the Shape3D object including: colour, material
and texture.

An instance of a Shape3D object can be created using the following constructors:
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Figure 2.12: An illustration of a Shape3D object. This object maintains a single
reference to an Appearance object and can maintain multiple references to Geometry

objects.

• Shape3D()

Constructs a new Shape3D object with a null appearance and a null geometry.

• Shape3D(Geometry geometry, Appearance appearance)

Constructs a new Shape3D object with the specified appearance and geometry
components.

Several methods are defined by the Shape3D class to manage its appearance and
geometry. These include:

• void addGeometry(Geometry geometry)

Appends the specified geometry component to the list of geometry components
maintained by this Shape3D object.

• Geometry getGeometry(int index)

Retrieves the geometry component at the specified index from the list of ge-
ometry components maintained by this Shape3D object.

• void setAppearance(Appearance appearance)

Sets the appearance component of this Shape3D node.

• Appearance getAppearance()

Retrieves the appearance component of this Shape3D node.

The Shape3D class also defines a series of capability bits including:

• ALLOW APPEARANCE READ

Indicates that the Shape3D node allows read access to its appearance compo-
nent after the scene graph has gone live.

• ALLOW APPEARANCE WRITE

Indicates that the Shape3D node allows write access to its appearance compo-
nent after the scene graph has gone live.
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• ALLOW GEOMETRY READ

Indicates that the Shape3D node allows read access to its geometry components
after the scene graph has gone live.

• ALLOW GEOMETRY WRITE

Indicates that the Shape3D node allows write access to its geometry compo-
nents after the scene graph has gone live.

2.5.1 Subclasses of Shape3D

Two classes extend Shape3D to provide additional functionality. These classes are:
OrientatedShape3D and ColorCube. OrientatedShape3D is used to represent a
shape that is always oriented towards the viewer. The OrientatedShape3D class
defines three modes of orientation:

• ROTATE ABOUT AXIS

Causes the OrientatedShape3D to rotate about an axis in order to face the
viewer.

• ROTATE ABOUT POINT

Causes the OrientatedShape3D to rotate about a point to face the viewer.

• ROTATE NONE

Causes the OrientatedShape3D to be stationary. In this mode the OrientatedShape3D
object acts the same as a standard Shape3D object.

An instance of an OrientatedShape3D object can be created using the following
constructor:

• OrientatedShape3D(Geometry g, Appearance a, int mode, Point3f pt)

Constructs an OrientatedShape3D object with the specified appearance and
geometry attributes. The mode argument specifies whether the OrientedShape3D
rotates about a point or an axis, and the Point3f argument defines the point
around which the OrientatedShape3D rotates.

– Note that there is another version of this constructor that takes a Vector3f
parameter in place of the Point3f parameter. This version is used to con-
struct an OrientatedShape3D object that rotates about an axis.

The ColorCube class was discussed earlier in this chapter. It represents a cube with
sides two metres in size that has a different color on each of its six faces. An instance
of a ColorCube object can be created using the following constructor:

• ColorCube(double scale)

Constructs an instance of a ColorCube object that is scaled by the specified
value. A scale value of 1.0 results in a ColorCube object with sides two metres
in size.

Note that ColorCube is not part of the core Java 3D API, instead it is defined in
the extension com.sun.j3d.utils.geomtery package.
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2.5.2 Primitives

A series of primitive shapes are defined in the com.sun.j3d.utils.geometry pack-
age. All of these classes extend the class Primitive which is the base class for all
Java 3D primitives. The class Primitive extends the class Group and manages the
branch graph that represents the primitive shape. There are a total of four sub-
classes of primitive: Box, Cone, Cylinder and Sphere. Objects of these classes can
be created using the following constructors:

• Box()

Constructs a Box object with dimensions of 2.0 metres in the x, y and z
directions and a null appearance.

• Box(float xdim, float ydim, float zdim, Appearance app)

Constructs a Box object with the specified dimensions and appearance.

• Cone()

Constructs a Cone object with a base radius of 1.0 metres, a height of 2.0
metres and a null appearance.

• Cone(float radius, float height)

Constructs a Cone object with the specified dimensions and a null appearance.

• Cylinder()

Constructs a Cylinder object with a radius of 1.0 metre, a height of 2.0 metres
and a null appearance.

• Cylinder(float radius, float height, Appearance appearance)

Constructs a Cylinder object with the specified dimensions and appearance.

• Sphere()

Constructs a Sphere object with a radius of 1.0 metre and a null appearance.

• Sphere(float radius, Appearance appearance)

Constructs a sphere object with the specified radius and appearance.

2.6 Geometry

The geometry of a shape represents its structure. There are several different types
of geometry supported by Java 3D. Geometry is represented in Java 3D by the
abstract class Geometry. There are four subclasses of the Geometry class that can
be instantiated. These are:

• Text3D - A 3D representation of a specified text string that has an associ-
ated font as well as other characteristics that determine the structure of the
geometric representation of the string.

• Raster - Allows a 2D raster image to be attached to a 3D location. The image
is represented by a single point in the resulting scene.

• GeometryArray - Represents different types of geometry using a series of arrays
that contain positional coordinates, colours, normals and texture coordinates.
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• CompressedGeometry - Used to store geometry in a compressed format. Us-
ing compressed geometry can increase the speed of sending objects over the
network.

– Note: This class has been deprecated (as of Java 3D version 1.4) and
will not be dealt with in this course.

2.6.1 Text3D

A Text3D object is used to represent a text string in the form of 3D geometry. A
text 3D object has the following parameters:

• A font - in the form of a Font3D object describes the font characteristics of
the text string represented by the Text3D object. The characteristics include
the following:

– The font family (Helvetica, Courier, etc.)

– The font style (italic, bold, etc.)

– The font size.

∗ Note that the font size is specified in points but interpreted in metres.
Consequently specifying a 12 point font will result in characters with
a size of 12 metres. This means that the smallest possible font size is
1 meter since the size of a font is specified using an integer primitive.

– An extrusion path that determines how the two-dimensional font should
be rendered in 3D.

• A text string - that represents the text to be converted into geometry.

• A position - that determines the initial position of the Text3D object.

• An alignment - that specifies how the glyphs in the string are placed in
relation to the position parameter. The valid values are:

– ALIGN CENTER - the centre of the string is place at the point represented
by the position parameter.

– ALIGN FIRST - the first character of the string is placed at the point
represented by the position parameter.

– ALIGN LAST - the last character of the string is placed at the point rep-
resented by the position parameter.

• A path - that specifies how succeeding glyphs in the string are placed in rela-
tion to the previous glyph. The valid values are:

– PATH LEFT succeeding glyphs are placed to the left of the current glyph.

– PATH RIGHT succeeding glyphs are placed to the right of the current glyph.

– PATH UP succeeding glyphs are placed above the current glyph.

– PATH DOWN succeeding glyphs are placed below the current glyph.

• A character spacing - that defines the spacing in addition to the regular
spacing between glyphs as defined in the Font object.
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Note: Characters and Glyphs
A character is a symbol that represents an item such as a letter, a digit, or a punc-
tuation in an abstract way. For example, ‘g’ is a character. A glyph is a shape used
to render a character or a sequence of characters. In simple writing systems, such as
Latin, typically one glyph represents one character. In general, however, characters
and glyphs do not have a one-to-one correspondence. For example, the character ‘á’
(a with acute), can be represented by two glyphs: one for ’a’ and one for ‘´’. On the
other hand, the two-character string ‘fi’ can be represented by a single glyph, an ‘fi’
ligature. In complex writing systems, such as Arabic or the South and South-East
Asian writing systems, the relationship between characters and glyphs can be more
complicated and involve context-dependent selection of glyphs as well as glyph re-
ordering. A font encapsulates the collection of glyphs needed to render a selected
set of characters as well as the tables needed to map the sequences of characters to
corresponding sequences of glyphs.

The most comprehensive constructor for a Text3D object has the following format:

• Text3D(Font3D font, String str, Point3f pos, int align, int path)

Creates a Text3D object with representing the string argument, with the spec-
ified font, location, alignment and path.

Example: The following example demonstrate how a Text3D object can be created,
configured and displayed in a Java 3D application.

0 import java.awt.∗;
import javax.media.j3d.∗;
import javax.vecmath.Vector3f;

import com.sun.j3d.utils.geometry.ColorCube;
5

public class Text3DExample extends BasicSceneWithMouseControl{

public static void main(String args[]){new Text3DExample();}

10 public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

// Create the Font3D object
15 Font font2d = new Font(”Monospaced”, Font.PLAIN, 1);

Font3D font3d = new Font3D(font2d, new FontExtrusion());

// Create the Text3D object and add it to a Shape3D object
Text3D text = new Text3D(font3d, ”hello world!”);

20 text .setAlignment(Text3D.ALIGN CENTER);
text .setPath(Text3D.PATH RIGHT);
Shape3D shape = new Shape3D(text);

// Scale the Text3D object using a TransformGroup
25 Transform3D t = new Transform3D();

t . setScale (0.2);
TransformGroup tg = new TransformGroup(t);
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tg.addChild(shape);

30

root.addChild(tg);

return root;
}

35 }

The scene graph in this example consists of a BranchGroup with a single child that
is a TransformGroup. The TransformGroup represents a scaling of 20% and applies
this scale transformation to its child, which is a Text3D node.

The Text3D object has a plain monospaced font, a font size of 1 metre and the
default extrusion parameters. The default extrusion parameters indicate that the
rendered text has a thickness of 20 cm. The text represented by the Text3D object
is centre aligned and rendered from left to right. The output generated by this
program is illustrated in Figure 2.13

Figure 2.13: The output generated by the Text3D example. The string is centre
aligned and rendered from left to right.

2.6.2 Raster

The Raster class extends the Geometry class to allow a raster image to be attached
to a 3D location in a virtual world. It contains a 3D point that is defined in the local
object coordinate system of the Shape3D node that references the Raster object. It
also contains:

• A type specifier that indicates the type of image data.

• A clipping mode

• A reference to a ImageComponent2D object that represents the raster image to
be rendered.

• A reference to a DepthComponent object.
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• An integer x, y source offset.

• Image dimensions.

Example: The following example demonstrates how a Raster object can be created
and rendered in a Java 3D application.

0 import java.io.∗;
import javax.media.j3d.∗;
import javax.imageio.ImageIO;
import java.awt.image.BufferedImage;
import javax.vecmath.∗;

5

public class RasterExample extends BasicSceneWithMouseControl{

public static void main(String args[]){new RasterExample();}

10 public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

try{
15 BufferedImage b = ImageIO.read(new File(”greatwall.jpg”));

// Create the Raster object
Raster raster = new Raster(new Point3f(−0.85f, 0.65f, 0.0f),

Raster.RASTER COLOR,0,0,b.getWidth(), b.getHeight(),
20 new ImageComponent2D(ImageComponent2D.FORMAT RGBA,b),

new DepthComponentFloat(b.getWidth(), b.getHeight()));

// Use the Raster geomtry to create a Shape3D object
Shape3D shape = new Shape3D(raster);

25 root.addChild(shape);
root.compile();
}catch(Exception e){System.out.println(e.toString());}

return root;
30 }

}

This example creates a new Raster object that is attached to a Shape3D node. The
Shape3D node is the child of a BranchGroup object which represents the root of the
scene graph. The output obtained when this program is executed is illustrated in
Figure 2.14.

2.6.3 GeometryArray

The GeometryArray class is used to represent different types of geometry in the form
of points, lines and polygons (triangles or quadrilaterals). In each case, the relevant
geometry is defined using a series of arrays that contain various vertex properties,
hence the name GeometryArray. The vertex properties include: location, colour,
normals and texture coordinates. The vertex data can be associated with an instance
of GeometryArray in one of two ways:
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Figure 2.14: The output generated by the Raster example. The position of the
image has been selected so that it is located in the centre of the frame.

• By copying: This is the default mode and involves the relevant instance of
the GeometryArray class making an internal copy of the vertex properties that
are specified using the various set() methods of the GeomteryArray class.

• By reference: This mode was made available in Java 3D version 1.2 and
allows the relevant vertex data to be accessed by reference, directly from the
user’s arrays. Special methods are provided to enable the specification of ver-
tex properties by reference. These set() methods all include the word Ref.
Data that is referenced by a live or compiled GeometryArray object may only
be modified via the updateData() method, subject to the ALLOW REF DATA WRITE

capability bit being set. It is important that this rule isn’t violated as the re-
sults are undefined if any geometry is modified outside the updateData()

method.

The GeometryArray class defines a series of methods to set the different kinds of
vertex properties. Each method has several variations to allow the properties to
be set using different forms of data. Other variations allow different sections of a
vertex property array to be set, for example, individual vertex properties, a range of
vertex properties within an array or an entire vertex property array. In the case of
coordinates, the following methods can be used to set individual vertex coordinates.

• void setCoordinate(int index, double[] coordinate)

• void setCoordinate(int index, float[] coordinate)

• void setCoordinate(int index, Point3d coordinate)

• void setCoordinate(int index, Point3f coordinate)

The first two methods specify a single vertex index and a three element array that
represents the x, y and z coordinate information. The last two methods use a higher
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level point object to represent that coordinate information. A range of coordinates
to be set can also be specified using the following methods:

• void setCoordinates(int index, double[] coords, int start, int length)

• void setCoordinates(int index, float[] coords, int start, int length)

• void setCoordinates(int index, Point3d[] coords, int start, int length)

• void setCoordinates(int index, Point3f[] coords, int start, int length)

In each of these methods, the index argument specifies the starting index where
the range of coordinates is to be placed in the relevant array maintained by the
GeomteryArray object. The start and length arguments indicate where the range
is the be extracted from the list of coordinates represented by the coordinates

argument. Finally, the entire set of coordinates for a GeometryArray object can be
specified using the following methods:

• void setCoordinates(int index, double[] coordinates)

• void setCoordinates(int index, float[] coordinates)

• void setCoordinates(int index, Point3d[] coordinates)

• void setCoordinates(int index, Point3f[] coordinates)

The methods for setting colours, normals and texture coordinates are all a variation
of the coordinate methods outlined above.

It should be noted that GeometryArray is an abstract class and can not be instanti-
ated. Only subclasses of GeometryArray can be used to define geometry. In all cases
the number of vertices and the vertex format must be specified in the constructor
of the relevant subclass.

The vertex format argument is a mask indicating which components are present in
each vertex. This is specified as one or more individual flags that are bitwise ORed
together to indicate what data will be specified for each vertex. The flags include:

• COORDINATES indicates the inclusion of vertex locations. It should be noted
that this flag must always be present.

• NORMALS indicates the inclusion of per-vertex normals.

• One of the following colour flags:

– COLOR 3 indicates the inclusion of per-vertex colour information (without
alpha component).

– COLOR 4 indicates the inclusion of per-vertex colour information (with
alpha component).

• One of the following texture coordinate flags to indicate the inclusion of 2D,
3D or 4D per-vertex texture coordinates:

– TEXTURE COORDINATE 2D
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– TEXTURE COORDINATE 3D

– TEXTURE COORDINATE 4D

• BY REFERENCE to indicate that the vertex data is passed by reference rather
than by coping.

There are a range of subclasses of GeometryArray. Each subclass interprets the co-
ordinate information in a different way to represent different types of basic geometry.
These subclasses include:

• PointArray draws its array of vertices as individual points.

• LineArray draws its array of vertices as individual line segments. Each pair
of verties defines a line to be drawn.

• TriangleArray draws its array of vertices as individual triangles. Each group
of three vertices defines a triangle to be drawn.

• QuadArray draws its array of vertices as individual quadrilaterals. Each group
of four vertices defines a quadrilateral to be drawn.

• GeometryStripArray is an abstract class that is extended to allow the defini-
tion of compound geometry. It is extended by the following classes:

– LineStripArray draws its array of vertices as a set of connected lines
strips. An array of per-strip vertex counts specifies where separate strips
appear in the vertex array. For every strip in the set, each vertex, be-
ginning with the second vertex in the array, defines a line segment to be
drawn from the previous vertex to the current vertex.

– TriangleStripArray draws its array of vertices as a set of connected
triangle strips. An array of per-strip vertex counts specifies where the
separate strips appear in the vertex array. For every strip in the set, each
vertex, beginning with the third vertex in the array, defines a triangle to
be drawn using the current vertex and the two previous vertices.

– TriangleFanArray draws its array of vertices as a set of connected trian-
gle fans. An array of per-strip vertex counts specify where the separate
fans appear in the vertex array. For every strip in the set, each vertex,
beginning with the third vertex in the array defines a triangle to be drawn
using the current vertex, the previous vertex and the first vertex.

• IndexedGeometry contains separate integer arrays that index into the arrays
of positional coordinates, colours, normals, texture coordinates, and vertex
attributes. These index arrays specify how vertices are connected to form
geometry primitives. This class is extended to create indexed versions of the
primitive geometry types that were just discussed and include:

– IndexedPointArray

– IndexedLineArray

– IndexedTriangleArray

– IndexedQuadArray

– IndexedGeometryStripArray
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∗ IndexedLineStripArray

∗ IndexedTriangleStripArray

∗ IndexedTriangleFanArray

Examples of the types of geometry represented by these classes is illustrated in
Figure 2.15.
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Figure 2.15: An illustration of the seven basic types of geometry supported by the
Java 3D API

2.6.4 Defining polygons

There are two important facts that you need to be aware of when defining polygons:

1. The order of the vertices is important when defining the orientation of the
polygon.

2. Vertices of a quad must form a convex, planar polygon.

Polygons are defined with front and back faces. The orientation is used to determine
which way the polygon is facing for lighting operations. The orientation can also
be used to remove, or cull, polygons that are facing away from the viewer. The
front side of a polygon is defined to be the orientation where the vertices of the
polygon form an anticlockwise loop. The two possible orientations of a polygon are
illustrated in Figure 2.16.
The other detail is that the points of a quadrilateral must form a convex, planar
polygon. The quadrilateral must be convex or some graphics hardware may render
the quadrilateral incorrectly. The quadrilateral must be planar because a convex
quadrilateral can turn non-convex if the quadrilateral is not planar. Examples of
convex and non-convex quadrilateral are illustrated in Figure 2.17.
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Figure 2.16: Examples of front facing (a) and rear facing (b) triangles.
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Figure 2.17: Examples of convex (a) and non-convex (concave) (b) quadrilaterals.

2.6.5 Simple Geometry

It is possible to create simple geometry using the PointArray, LineArray, TriangleArray
and QuadArray classes. The following example demonstrates how these classes can
be used in conjunction with the Shape3D class to create basic 3D content. Note
that the type of object assigned to the GeometryArray reference must be updated
to indicate the type of geometry being used.

0

import javax.media.j3d.∗;

public class SimpleGeometryExample extends BasicSceneWithMouseControl
{

5 //
public static void main(String args[]){new SimpleGeometryExample();}

public BranchGroup createContentBranch()
{

10 BranchGroup root = new BranchGroup();

float [] coordinates = {−0.5f, −0.5f, 0.0f ,
0.2f , −0.4f, 0.0f ,

15 0.3f , 0.3f , 0.0f ,
−0.3f, 0.5f , 0.0f
};
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// Create a geometry array from the specified coordinates
20 GeometryArray geometryArray = new LineArray(4,

GeometryArray.COORDINATES
);

geometryArray.setCoordinates(0, coordinates);
25

// Create a Shape3D object using the GeometryArray
Shape3D shape = new Shape3D(geometryArray, null);
root.addChild(shape);

30 root.compile();

return root;
}

}

This program creates a GeometryArray object that contains only coordinates. This
GeometryArray object is subsequently used to create a Shape3D object with a null
appearance. The Shape3D object is then added to a BranchGroup that represents
the root of the scene graph. The various outputs generated by this program are
illustrated in Figure 2.18.
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(a) (b)

(c) (d)

Figure 2.18: Examples of the geometry that can be created using the four simple
geometry classes provided by Java 3D (a) A set of points defined using a PointArray

object (b) A pair of lines defined using a LineArray object (c) A triangle defined
using a TriangleArray object (d) A quadrilateral defined using a QuadArray object.
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2.6.6 Strip Geometry

Strip Geometry reduces the need to repeatedly specify the same vertices when defin-
ing continuous pieces of geometry. It is possible to create strip geometry using
instances of the LineStripArray, TriangleFanArray and TriangleStripArray

classes. The following example demonstrates how the LineStripArray class can
be used to create a line consisting of three connected segments.

0 import javax.media.j3d.∗;

public class StripGeometryExample extends BasicSceneWithMouseControl{

public static void main(String args[]){new StripGeometryExample();}
5

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

10 // Define the coordinates to be used
float [] coordinates = {−0.5f, −0.5f, 0.0f ,

0.2f , −0.4f, 0.0f ,
0.3f , 0.3f , 0.0f ,
−0.3f, 0.5f , 0.0f};

15

// Specify a single strip that used all 4 coordinates
int [] stripVertexCounts = {4};

GeometryArray geometryArray = new TriangleFanArray(4,
20 GeometryArray.COORDINATES, stripVertexCounts);

geometryArray.setCoordinates(0, coordinates);

Shape3D shape = new Shape3D(geometryArray);
25 root.addChild(shape);

root.compile();

return root;
30 }

}

This program begins by defining an array of single precision floating point coordi-
nates that represent the vertices of the line strip that is being created. An array of
vertex counts is also created. This size of this array represents the number of line
strips to be generated, and each element defines the number of vertices to be used
in the associated strip. The constructor to the LineStripArray object requires the
total number of vertices, the vertex format and the array of vertex counts. The coor-
dinates are associated with the constructed LineStripArray object and a Shape3D

object is created to represent the line strip defined by the coordinates. The output
of different versions of this program are illustrated in Figure 2.19
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(a) (b)

Figure 2.19: The same set of vertices used to create a LineStripArray (a) and a
TriangleFanArray (b)

Note that an additional argument is required in the GeometryStripArray construc-
tor to specify the number of strips and the number of vertices associated with each
strip. This is achieved using an integer array where the number of elements in the
array specifies the number of strips, and each array element specifies the number of
vertices associated with the relevant strip.

2.6.7 Creating Complex Geometry

It would be tedious to define complex geometry by specifying all of the coordinates
manually. An alternative would be to specify the attributes associated with the
geometry and then use a program to automatically generate the required vertex
coordinates. The following example demonstrates how a fully configurable cylinder
can be created using a for loop and a QuadArray geometry.

0 import javax.media.j3d.∗;

public class CylinderExample extends BasicSceneWithMouseControl{

public static void main(String args[]){new CylinderExample();}
5

private Geometry createGeometry() {

// Define the attributes for the cylinder
float radius = 0.3f;

10 float height = 1.0f;
int faces = 60;

float angle = 0.0f;
double angleIncrement = (2∗Math.PI)/faces;

15

// create an empty array of floats to hold the coordinates
float coordinates [] = new float[faces∗4∗3];

for(int f=0; f<faces; f++)
20 {

// Generate the four coordinates required for each face
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float x1 = (float)(radius∗Math.cos(angle));
float z1 = (float)(radius∗Math.sin(angle));
angle −= angleIncrement;

25 float x2 = (float)(radius∗Math.cos(angle));
float z2 = (float)(radius∗Math.sin(angle));

// Populate the coordinates array
coordinates[ f∗4∗3] = x1;

30 coordinates[ f∗4∗3+1] = −height/2.0f;
coordinates[ f∗4∗3+2] = z1;

coordinates[ f∗4∗3+3] = x2;
coordinates[ f∗4∗3+4] = −height/2.0f;

35 coordinates[ f∗4∗3+5] = z2;

coordinates[ f∗4∗3+6] = x2;
coordinates[ f∗4∗3+7] = height/2.0f;
coordinates[ f∗4∗3+8] = z2;

40

coordinates[ f∗4∗3+9] = x1;
coordinates[ f∗4∗3+10] = height/2.0f;
coordinates[ f∗4∗3+11] = z1;

}
45

QuadArray quadArray = new QuadArray(faces∗4∗3,
GeometryArray.COORDINATES);

quadArray.setCoordinates(0, coordinates);
return quadArray;

50

}

public BranchGroup createContentBranch()
{

55 BranchGroup objRoot = new BranchGroup();

// Add the cylinder to the scene graph
objRoot.addChild(new Shape3D(createGeometry()));

60 return objRoot;
}

}

The cylinder geometry is created using a for loop. Each iteration of the for loop
creates an individual face of the cylinder. The height of the cylinder is set to 1 metre
and its radius is set to 30 cm. The number of faces to be generated is set to 60 so
the resulting geometry will be smooth. The cylinder geometry is ultimately used
to create a Shape3D object with the default appearance. Renderings generated by
different versions of this program are illustrated in Figure 2.20.

Exercise: Write a program to create a sphere. The program should take inputs
that represent the of the radius and complexity of the sphere. Instances of the
TriangleFanArray and TriangleStripArray classes should be used to define the
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(a) (b)

Figure 2.20: Examples of geometry representing a cylinder that was created using
a for loop. (a) a cylinder with 6 faces and (b) a cylinder with 60 faces.

structure of the sphere geometry.

2.6.8 Indexed Geometry

In many cases the vertices in a geometric object are repeated as the boundaries of
continuous regions are represented using common vertices. A good example of this
is a simple cube. A cube has a total of eight corners, i.e. eight vertices must be
specified in order to completely define a cube. The simplest way to create a cube
using Java 3-D is to use quads to define each face of the cube. A total of six quads
are required and each quad has four vertices, i.e. a total of 24 vertices where each
vertex is used three times, see Figure 2.21.
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Figure 2.21: A simple cube consisting of six faces and eight vertices.

It is possible to avoid repeatedly defining the same vertices by using one of the
subclasses of IndexGeometryArray. Using this class all of the required vertices
are defined once and the structure of the geometry is determined by indices into
the list of vertices. In the case of the cube, the eight required vertices are defined
and stored in a float array. The structure of the geometry is then determined
by specifying the required vertices using indices into the array of coordinates. The
following example demonstrates how the cube geometry can be implemented using
a IndexedQuadArray.
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0 import javax.media.j3d.∗;

public class IndexedGeometryExample extends BasicSceneWithMouseControl{

public static void main(String args[]){new IndexedGeometryExample();}
5

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

10 // Defines the 8 vertices for the cube geometry
float [] points = {−0.5f, −0.5f, −0.5f,

0.5f , −0.5f, −0.5f,
−0.5f, 0.5f , −0.5f,
−0.5f, −0.5f, 0.5f ,

15 −0.5f, 0.5f , 0.5f ,
0.5f , −0.5f, 0.5f ,
0.5f , 0.5f , −0.5f,
0.5f , 0.5f , 0.5f};

20 // Defines the 24 indices for the cube geometry
int [] indices = {0, 3, 4, 2, // left face

0, 1, 5, 3, // bottom face
0, 2, 6, 1, // back face
7, 5, 1, 6, // right face

25 7, 6, 2, 4, // top face
7, 4, 3, 5}; // front face

IndexedQuadArray quadArray = new IndexedQuadArray(8,
GeometryArray.COORDINATES, 24);

30 quadArray.setCoordinates(0, points);
quadArray.setCoordinateIndices(0, indices);

Shape3D cube = new Shape3D(quadArray);

35 root.addChild(cube);
root.compile();

return root;
}

40 }

The program defines the eight vertices that are illustrated in Figure 2.21. It also
defines the indices that indicate how the list of vertices is to be used to generate the
six faces of the cube. An IndexedQuadArray object is then created and the vertex
count, the vertex format and the index count are all specified in the constructor.
The array of vertex coordinates and the array of indices are subsequently supplied
to the constructed IndexedQuadArray which is ultimately used to create a Shape3D

object that is then added to the root of the scene graph.

It should be noted that the use of subclasses of IndexedGeometryArray allow ge-
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Figure 2.22: A cube created using a suitably constructed IndexedQuadArray geom-
etry. The cube is rendered using the default appearance.

ometry to be defined in an efficient manner. In the case of the cube example, eight
vertices (3 × float) and 24 integer primitives were defined. In Java, float and
int primitives both require four bytes of storage. Consequently, the cube geometry
requires 24×4+3×8×4 bytes or 192 bytes. If a standard QuadArray were used then
the number of bytes required would be 24×3×4 = 288 bytes. So, in addition to sim-
plifying the definition of geometry, the use of subclasses of IndexedGeometryArray
also reduce the amount of memory required to represent geometry.

2.6.9 Loading Geometry from Files

It is possible to import shapes into a virtual world from a file. Loading data from
files facilitates the use of content created using other application, thus removing the
need to create content explicitly or using the utility classes. There are a variety of
applications that can be used to create 3D content and export it to a format that can
be understood by Java 3D. The types of files discussed in this section are Wavefront
.obj files. This is a commonly used format and many objects are available in this
format on the net.

The interface for importing data from files consists of two classes, Loader and Scene.
A Loader is used to load 3D content from a file. Once the content has been loaded
it is represented in the form of a Scene. The Scene contains a scene graph for the
content as well as methods that enabled individual nodes within the scene to be
looked up.

The Loader interface is defined in the com.sun.j3d.loaders package. This in-
terface defines the methods used to specify the content file as well as options for
loading. The loader for .obj files is called ObjectFile and it implements the Loader
interface. An ObjectFile object can be created using the following constructor:
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• ObjectFile(int flags)

The flags parameter specifies how the data is to be created. The possible values
for this parameter are:

• RESIZE - Indicates that the loaded geometry should be resized as it is loaded
so that the object fits into the range (-1.0, -1.0, -1.0) to (1.0, 1.0, 1.0).

• REVERSE - Is used to correct content that was created with the polygons ori-
entated the wrong way.

• STRIPIFY - Tells the loader to use the Stripifier utility to improve the ren-
dering performance for the scene by combining adjacent triangles into strips.

• TRIANGULATE - Is used if the file contains complex (e.g. concave or nonplanar)
polygons that must be broken up by the Triangulator utility so they can be
rendered by Java 3D

These values can be OR’d together so that multiple flags can be specified simulta-
neously. A Loader can be used to load a file from the local system or a remote URL
using the following methods:

• Scene load(String filename)

Loads a scene from the specified file on the local system.

• Scene load(URL url)

Loads a scene from the specified URL.

The load method returns an object that implements the Scene interface. This
interface can be used to access several important pieces of scene information, the
most significant being a BranchGroup containing the scene graph created by the
loader. This branch group can be obtained by calling the following method:

• BranchGroup getSceneGroup()

This method returns the overall BranchGroup containing the scene loaded by
the loader.

The following example demonstrates how content can be loaded from a .obj file and
rendered using Java 3D.

0 import javax.media.j3d.∗;
import javax.vecmath.∗;

import com.sun.j3d.loaders.∗;
import com.sun.j3d.loaders.objectfile .∗;

5

public class LoaderExample extends BasicSceneWithMouseControlAndLights
{

public static void main(String args[]){new LoaderExample();}

10 public BranchGroup createContentBranch()
{

// Resize the scene to fit the display
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int flags = ObjectFile.RESIZE;

15 // Create a new .obj loader
ObjectFile f = new ObjectFile(flags);
Scene s = null;

try
20 {

s = f.load(”skull .obj”);
}
catch(Exception e)
{

25 System.out.println(”error :”+e.toString());
}
BranchGroup root = s.getSceneGroup();

root.compile();
30

return root;
}

}

This program begins by creating an ObjectLoader object with the RESIZE flag set
so that the loaded scene fits the display. The scene is then loaded from a local file
using the load() method of the ObjectLoader object. The BranchGroup object
representing the loaded scene is obtained using the getSceneGroup() method of
the loaded scene. The output generated by this example is illustrated in Figure 2.23

2.7 Appearance

A Shape3D node references a geometry node component that specifies what to ren-
der and an appearance node component that specifies how the geometry should a
appear. This section summarises the different appearance characteristics that can
be specified using the appearance node component.

2.7.1 The Appearance Node Component

A Shape3D object maintains a reference to an Appearance node component object
that defines how the geometry of the Shape3D object should appear in the rendered
scene. The Appearance node component doesn’t contain any appearance informa-
tion, instead, it maintains references to appearance components that hold various
different types of appearance information. There are a total of eleven appearance
components:

• Coloring attributes - defines the attributes used in colour selection and
shading. These attributes are defined using a ColoringAttributes object.

• Line attributes - defines attributes used to render lines, including the pat-
tern, width, and whether or not antialiasing is to be used. These attributes
are defined using a LineAttributes object.
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Figure 2.23: An example of the type of geometry that can be loaded into a Java 3D
program using a custom Loader.

• Point attributes - defines attributes used to render points, including the
point size and whether antialiasing is to be used. These attributes are defined
using a PointAttributes object.

• Polygon attributes - defines the attributes used to render polygons, in-
cluding culling, rasterization mode (filled, lines, or points), constant offset,
offset factor and whether back facing normals are flipped. These attributes
are defined using a PolygonAttributes object.

• Rendering attributes - defines rendering operations, including the alpha
test function and test value, the raster operation, whether vertex colours are
ignored, whether invisible objects are rendered, and whether the depth buffer
is enabled. These attributes are defined using a RenderingAttributes object.

• Transparency attributes - defines the attributes that affect transparency
mode (blended, screen-door), blending function (used in transparency and
antialiasing operations), and a blend value that defines the amount of trans-
parency to be applied. These attributes are defined using a
TransparencyAttributes object.
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• Material - defines the appearance of an object under illumination, such as the
ambient colour, diffuse colour, specular colour, emissive colour, and shininess.
These attributes are defined using a Material object.

• Texture - defines the texture image and filtering parameters used when tex-
ture mapping is enabled. These attributes are defined using a Texture object.

• Texture attributes - defines the attributes that apply to texture mapping,
such as the texture mode, texture transform, blend colour, and perspective
correction mode. These attributes are defined using a TextureAttributes

object.

• Texture coordinate generation - defines the attributes that apply to tex-
ture coordinate generation, such as whether coordinate generation is enabled,
coordinate format (2D or 3D coordinates), coordinate generation mode (object
linear, eye linear, or spherical reflection mapping), and the R, S and T coordi-
nate plane equations. These attributes are defined using a
TexCoordGeneration object.

• Texture unit state - an array that defines the texture state for each of
N separate texture units. This allows multiple textures to be applied to
a geometry. Each TextureUnitState object contains a Texture object, a
TextureAttributes object and a TexCoordGeneration object.

The Appearance class defines set() and get() methods for each of the eleven
appearance components that it can reference. For example, the set() and get()

methods for the ColoringAttributes appearance component have the following
format:

• void setColoringAttributes(ColoringAttributes coloringAttributes)

Sets the current ColoringAttributes reference to the specified object.

• ColoringAttributes getColoringAttributes()

Returns the reference to the current ColoringAttributes appearance com-
ponent.

The Appearance class also defines capability bits for each of the eleven appear-
ance components that it can reference. In the case of the ColoringAttributes

appearance component, the following capability bits are defined:

• ALLOW COLORING ATTRIBUTES READ

Indicates that the ColoringAttributes node component associated with this
Appearance object can be read after the scene graph has gone live.

• ALLOW COLOURING ATTRIBUTES WRITE

Indicates that the ColoringAttributes node component associated with this
Appearance object can be written to after the scene graph has gone live.

The set() and get() methods, and the capability bits, for the other ten appearance
components have the same format as those for the ColoringAttributes appearance
component outlined above.

The following subsections describe how these appearance components can be used
to influence the appearance of objects in a rendered scene.
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2.7.2 ColoringAttributes

The ColoringAttributes appearance component is used to set the colour and shad-
ing model for a shape if:

1. The appearance does not have a material appearance component associated
with it.

2. The appearance does a have a material appearance component associated with
it but the Material disables lighting.

The colour is set by specifying the relevant red, green and blue colour components,
either individually as float primitives, or collectively using a suitably constructed
Color3f object.

Note: If vertex colours are defined then they override the colour value associated
with the ColoringAttributes appearance component.

If vertex colours are specified in the geometry then the shading model is used to
indicate how these colours should be rendered. The shading model can be one of
the following:

• SHADE FLAT - indicates the flat shading model. This shading model does not
interpolate between vertices. Each polygon is drawn with a single colour which
is the colour at one of the vertices of the polygon1.

• SHADE GOURAUD - uses the Gouraud (smooth) shading model. This shading
model interpolates the colour at each vertex across the primitive. The prim-
itive is drawn with many different colours and the colour at each vertex is
treated individually. For lines, the colours along the line segment are interpo-
lated between the vertex colours at each end.

• FASTEST - uses the fastest method available for shading. This shading mode
maps to whatever shading model the Java 3D implementor defines as the
“fastest” shading model, which may be hardware-dependent.

• NICEST - uses the nicest (highest quality) available method for shading. This
shading mode maps to whatever shading model the Java 3D implementor
defines as the “nicest” shading model, which may be hardware dependent.

Note: In most Java 3D implementations, SHADE FLAT shading is no faster than
SHADE GOURAUD shading. Consequently, FASTEST shading and NICEST shading both
correspond to SHADE GOURAUD shading.

Note: The default value for the colour is white (1.0, 1.0, 1.0) and the default value
for the shading model is SHADE GOURAUD.

A ColoringAttributes object can be created using one of the following construc-
tors:

• ColoringAttributes()

1Note: In the example that follows, the colour of the polygon is defined by the last vertex in
the case of the flat shading model.

90



• ColoringAttributes(Color3f colour, int shadeModel)

• ColoringAttributes(float r, float g, float b, int shadeModel)

The resulting ColoringAttributes object can be associated with an Appearance

by calling the setColoringAttributes() method of the Appearance object. The
methods defined by the ColoringAttributes object include:

• void getColor(Color3f colour)

Returns the intrinsic colour of this ColoringAttributes class and stores it in
the specified Color3f object.

• void setColor(Color3f colour)

Sets the intrinsic colour of this ColoringAttributes class to specify colour.

• int getShadeModel()

Returns the shade model for this ColoringAttributes component.

• void setShadeModel(int shadeModel)

Sets the shade model for this ColoringAttributes component to the specified
value.

The ColoringAttributes class also defines a series of capability bits that can be
used to determine which capabilities are supported after the scene graph has gone
live. These are:

• ALLOW COLOR READ

Indicates that the colour information can be read after the scene graph has
gone live.

• ALLOW COLOR WRITE

Indicates that the colour information can be written to after the scene graph
has gone live.

• ALLOW SHADE MODEL READ

Indicates that the shade model can be read after the scene graph has gone
live.

• ALLOW SHADE MODEL WRITE

Indicates that the shade model can be written to after the scene graph has
gone live.

The following example provides a comprehensive demonstration of how the
ColoringAttributes appearance component can be used.

0

import javax.media.j3d.∗;

public class ColoringAttributesExample extends BasicSceneWithMouseControl
{

5 public static void main(String args[]){new ColoringAttributesExample();}

public BranchGroup createContentBranch()
{
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BranchGroup root = new BranchGroup();
10

// Define vertex colours
float [] colours = {1.0f, 0.0f , 0.0f ,

0.0f , 1.0f , 0.0f ,
0.0f , 0.0f , 1.0f};

15

// Defines vertex coordinates
float [] coordinates = {−0.8f, −0.4f, 0.0f ,

0.8f , −0.4f, 0.0f ,
0.0f , 0.4f , 0.0f};

20

GeometryArray geometryArray = new TriangleArray(3,
GeometryArray.COORDINATES|
GeometryArray.COLOR 3);

25 geometryArray.setCoordinates(0, coordinates);
geometryArray.setColors(0, colours);

// Define the colouring attributes appearance component
Appearance appearance = new Appearance();

30 ColoringAttributes ca = new ColoringAttributes(1.0f, 1.0f, 0.0f ,
ColoringAttributes.SHADE GOURAUD);

appearance.setColoringAttributes(ca);

Shape3D shape = new Shape3D(geometryArray, appearance);
35 root.addChild(shape);

root.compile();

return root;
40 }

}

The program defines a single triangular polygon. Colours are also defined for each
of the three vertices. The left vertex is assigned red, the right vertex is assigned
green and the top vertex is assigned blue. A ColoringAttributes object is con-
structed with an intrinsic colour of yellow and a flat shading model. The resulting
ColoringAttributes appearance component is associated with an Appearance ob-
ject, which is in turn associated with the Shape3D object that represents the trian-
gular geometry. Sample renderings generated by this program, and slight variations
of this program, are illustrated in Figure 2.24.

Reference:

• H. Gouraud, “Continuous shading of curved surfaces”, IEEE Transactions on
Computers 20(6) :623-628, 1971.

2.7.3 PointAttributes

The PointAttributes appearance component defines all attributes that apply to
point primitives. These are:
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(a) (b)

Figure 2.24: Examples of a simple polygon with vertex colours rendered using (a)
flat and (b) Gouraud shading. In the case of flat shading, the colour of the polygon
is determined by the colour of the last vertex to be defined.

• Size - The size of the point, in pixels. The default value for this attribute is
one pixel.

• Antialiasing - If the point size is greater than one-pixel in size then an-
tialiasing smooths the outline of the point when it is rendered. Antialiasing is
disabled by default.

An instance of a PointAttributes class can be defined as follows:

• PointAttributes(float pointSize, boolean pointAntialiasing)

Contructs a PointAttributes object with the specified point size and an-
tialiasing attributes.

• PointAttributes()

Constructs a PointAttributes object with a point size of one pixel and an-
tialiasing turned off. These are the default values for these attributes.

The PointAttributes class also defines methods to update and retrieve the at-
tributes that it contains. In addition, the PointAttributes class defines a series of
capability bits that can be used to specify whether the attributes can be updated or
retrieved after the scene graph has gone live. This following program demonstrates
how the PointAttributes appearance component can be used.

0

import javax.media.j3d.∗;

public class PointAttributesExample extends BasicSceneWithMouseControl
{

5 public static void main(String args[]){new PointAttributesExample();}

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();
10
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// Define the vertex colours
float [] colours = {1.0f, 0.0f , 0.0f ,

0.0f , 1.0f , 0.0f ,
0.0f , 0.0f , 1.0f};

15

// Define the vertex coordinates
float [] coordinates = {−0.8f, −0.4f, 0.0f ,

0.8f , −0.4f, 0.0f ,
0.0f , 0.4f , 0.0f};

20

GeometryArray geometryArray = new PointArray(3,
GeometryArray.COORDINATES|
GeometryArray.COLOR 3);

25 geometryArray.setCoordinates(0, coordinates);
geometryArray.setColors(0, colours);

// Define the point attributes appearance component
Appearance appearance = new Appearance();

30 PointAttributes pa = new PointAttributes(10.0f, true);
appearance.setPointAttributes(pa);

Shape3D shape = new Shape3D(geometryArray, appearance);
root.addChild(shape);

35

root.compile();

return root;
}

40 }

The program begins by creating a PointArray geometry where the vertex and colour
information is the same as in the ColoringAttributes example. A PointAttributes

object is constructed that represents antialiased points that are 10 pixels in size.
Renderings generated using different versions of this program are illustrated in Fig-
ure 2.25

2.7.4 LineAttributes

The LineAttributes appearance component is used to specify all of the attributes
associated with rendering lines. These include the line pattern, the line width in
pixels and whether or not antialiasing is to be used. The possible values for the line
pattern are:

• PATTERN SOLID - draws a solid line with no pattern. This is the default.

• PATTERN DASH - draws dashed lines. Ideally these will be drawn with a repeat-
ing pattern of 8 pixels on and 8 pixels off.

• PATTERN DOT - draws dotted lines. Ideally these will be drawn with a repeating
pattern of 1 pixel on and 7 pixels off.
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(a) (b)

Figure 2.25: Examples of points 10 pixels in size the were rendered with (a) and
without (b) antialiasing.

• PATTERN DASH DOT - draws dashed-dotted lines. Ideally, these will be drawn
with a repeating pattern of 7 pixels on, 4 pixels off, 1 pixel on, and 4 pixels
off.

• PATTERN USER DEFINED - draws used defined patterns. These will be discussed
below.

Note: The default values are a solid line pattern with a width of 1 pixel that is not
antialiased.

A LineAttributes object can be created using the following constructor:

• LineAttributes(float width, int pattern, boolean antialiasing)

Constructs a LineAttributes object that represents lines with the specified
width, pattern and antialiasing.

The LineAttributes class also defines the usual accessor methods to update and
retrieve its attributes. It should be noted that if the line pattern is set to
PATTERN USER DEFINED, then a pattern mask must be specified using:

• void setPatternMask(int mask)

Defines a sixteen bit mask where a 1 indicates that a pixel is drawn and a 0
indicates that a pixel is not drawn.

Capability bits are also defined to specified whether or not the attributes can be
updated or retrieved after the scene graph has gone live.

The following example demonstrates how a LineAttributes object can be used to
create a custom line style.

0

import javax.media.j3d.∗;

public class LineAttributesExample extends BasicSceneWithMouseControl
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{
5 public static void main(String args[]){new LineAttributesExample();}

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();
10

// Define the vertex colours
float [] colours = {0.0f, 1.0f , 0.0f ,

0.0f , 1.0f , 0.0f ,
0.0f , 0.0f , 1.0f ,

15 0.0f , 0.0f , 1.0f};

// Defines the vertex coordinates
float [] coordinates = {−0.8f, −0.2f, 0.0f ,

0.2f , 0.8f , 0.0f ,
20 −0.2f, −0.8f, 0.0f ,

0.8f , 0.2f , 0.0f};

GeometryArray geometryArray = new LineArray(4,
GeometryArray.COORDINATES|

25 GeometryArray.COLOR 3);

geometryArray.setCoordinates(0, coordinates);
geometryArray.setColors(0, colours);

30 // Define the line attributes appearance component
Appearance appearance = new Appearance();
LineAttributes la = new LineAttributes();
la .setLinePattern(LineAttributes.PATTERN USER DEFINED);
la .setPatternMask(0xFF00);

35 la .setLineAntialiasingEnable(true);
la .setLineWidth(5);
appearance.setLineAttributes(la);

Shape3D shape = new Shape3D(geometryArray, appearance);
40 root.addChild(shape);

root.compile();

return root;
45 }

}

This program defines two lines using a LineArray object the first line has blue
vertex colours and the second line has green vertex colours. A LineAttributes

object is created that represents a user defined line pattern with a pattern mask
of 0xFFF0. This mask represents a line with 12-bit segments followed by a 4-bit
gap. The line width is set to 5 pixels and the line is rendered using antialiasing.
Renderings generated by different versions of this program are illustrated in Figure
2.26.
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(a) (b)

Figure 2.26: Examples of lines rendered using different patterns. (a) A line with
4 pixel segments followed by a 12 pixel gap. (b) A line with 12 pixel segments
followed by a 4 pixel gap. In both cases the lines are 5 pixels wide and rendered
with antialiasing.

2.7.5 PolygonAttributes

The PolygonAttributes appearance component defines the attributes that affect
the rendering of polygons. These attributes include the following:

• Rasterization mode - defines how the polygons are drawn and can have one of
the following three values:

– POLYGON POINT - The polygon is rendered as a set of points that are
drawn at the vertices.

– POLYGON LINE - The polygon is rendered as a set of lines that are drawn
between consecutive vertices.

– POLYGON FILL - The polygon is rendered by filling the interior region
between the vertices. This is the default rasterization mode.

• Face culling - defines which polygons are culled, or discarded, before they are
converted to screen coordinates. There are three possible mode of face culling:

– CULL BACK - Culls all back facing polygons. This is the default mode for
face culling.

– CULL FRONT - Culls all front facing polygons.

– CULL NONE - Disables face culling and causes front and back facing poly-
gons to be rendered.

• Back-face normal flip - specified whether vertex normals of back-facing poly-
gons are flipped (negated) prior to lighting. The setting can be either true,
meaning back-facing normals are flipped, or false. The default value is false.

• Offset - the depth values of all pixels generated by polygon rasterization can
be offset by a value that is computed for that polygon. Two values are used
to specify the offset.
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– Offset bias - the constant polygon offset that is added to the final device
coordinate Z value for the polygon primitive.

– Offset factor - the factor to be multiplied by the slope of the polygon and
then added to the final device coordinate Z value of the polygon.

These values can be either positive or negative and the default for both of
these values is 0.0.

Note: Polygon offset is used to solve a specific problem: drawing lines on
top of polygons. The typical usage of this is in drawing a “hidden line” dis-
play. This is a form of wire-frame display in which a solid object is drawn as
lines so that the lines hidden by the foreground are removed.

The following example demonstrates two of the attributes that are defined by the
PolygonAttributes class.

0 import javax.media.j3d.∗;
import com.sun.j3d.utils.geometry.∗;

public class PolygonAttributesExample extends BasicSceneWithMouseControl
{

5 public static void main(String args[]){new PolygonAttributesExample();}

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();
10

Appearance appearance = new Appearance();

// Define the polygon attributes appearance component
PolygonAttributes pa = new PolygonAttributes();

15 pa.setPolygonMode(PolygonAttributes.POLYGON POINT);
pa.setCullFace(PolygonAttributes.CULL BACK);
appearance.setPolygonAttributes(pa);

// Create a sphere primitive with the specified appearance
20 Sphere sphere = new Sphere(0.5f, appearance);

root.addChild(sphere);

root.compile();

25 return root;
}

}

This program begins by defining a PolygonAttributes object using the default con-
structor. Accessor methods are then used to set the polygon mode to POLYGON FILL

and the cull face attribute to CULL BACK. The PolygonAttributes object is then as-
sociated with an Appearance object which is ultimately used to construct a Sphere

primitive with a radius of 50 cm. Renderings generated by different versions of this
program are illustrated in Figure 2.27.
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(a) (b) (c)

Figure 2.27: A Sphere primitive with 15 subdivisions rendered as (a) a set of points,
(b) a wire frame and (c) filled polygons. Back facing polygons in all three renderings
are culled.

2.7.6 RenderingAttributes

The RenderingAttributes class defines common rendering attributes for all prim-
itive types. The attributes defined by this class include:

• Alpha testing - This is an advanced mechanism that is used to control
rendering on a per-pixel basis. It uses the alpha value specified in RGBA
colours, a test alpha value, and a comparison function to control whether a
pixel gets drawn.

• Raster operation - This controls the per-pixel rendering operation. It spec-
ifies how the source and destination pixels are logically combined to produce
the result written to the destination raster. The source pixel is the pixel to be
rendered and the destination pixel is the pixel value that is currently stored
in the frame buffer. Raster operations include AND, OR, XOR etc.

• Ignore vertex colours - This allows an appearance to override the vertex
colours specified with the geometry for a shape. This can be useful when the
program wants to highlight the geometry by changing its colour . If lighting
is disabled then the object’s colour will come from the ColoringAttributes

appearance component, otherwise the object’s colour comes from the Material
appearance component.

• Visibility flag - This can be used to turn off the rendering of a shape without
disabling the shape’s pickability or collidability.

• Depth buffer control - This allows depth buffering, also known as Z-buffering,
to be turned on and off. The depth buffer is used to determine which objects
in a scene are rendered and which are occluded.

2.7.7 TransparencyAttributes

The TransparencyAttributes appearance component is used to specify the trans-
parency characteristics for the associated Appearance object. There are a total of
four transparency attributes.
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• The transparency mode - this specifies the method used to generate a trans-
parent rendering. There are four possible values:

– SCREEN DOOR - uses screen door transparency. This is done using an
on/off stipple pattern in which the percentage of transparent pixels is
approximately equal to the value specified by the transparency parameter.

– BLENDED - uses alpha blended transparency. The blend equation is spec-
ified by source blend function and destination blend function attributes.

– FASTEST - uses the fastest of the two blend functions.

– NICEST - uses the nicest of the two blend functions.

Note: In the Microsoft Windows XP implementation of Java 3D version
FASTEST and NICEST modes both result in BLENDED being used.

• Transparency value, the amount of transparency to be applied to this appear-
ance component object. The transparency values are in the range [0.0, 1.0],
with 0.0 being fully opaque and 1.0 being fully transparent.

• Blend function - used in blended transparency and antialiasing operations. The
source function specifies the factor that is multiplied by the source colour. This
value is added to the product of the destination blend function and destination
colour.

The default blend equation has the following format:

alphasrc × src + (1− alphasrc)× dst (2.1)

Note: The meaning of the terms src and dst is not explicitly stated in the API
documentation. However, it is clear from this equation that src relates to the object
that is being made transparent and dst relates to the background.

The possible values for both source and destination blend function are as follows:

• BLEND ZERO - the blend function is: f = 0

• BLEND ONE - the blend function is: f = 1

• BLEND SRC ALPHA - the blend function is: f = alphasrc

• BLEND ONE MINUS SRC ALPHA - the blend function is: f = 1− alphasrc

The blend functions that can only be used in conjunction with the source pixel are:

• BLEND DST COLOR - the blend function is: f = colourdst

• BLEND ONE MINUS DST COLOR - the blend function is: f = 1− colourdst

The possible values for the destination blend function are:

• BLEND SRC COLOR - the blend function is: f = coloursrc

• BLEND ONE MINUS SRC COLOR - the blend function is: f = 1− colorsrc
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Note: Where the blend function is a colour, the individual colour components or
their complements must be multiplied by either the src or dst values to give the
required output.

The following example demonstrates how the TransparencyAttributes appearance
component can be used to alter the transparency of an object.

0 import javax.media.j3d.∗;
import javax.vecmath.∗;
import com.sun.j3d.utils.geometry.∗;

public class TransparencyAttributesExample extends BasicSceneWithMouseControl
5 {

public static void main(String args[]){new TransparencyAttributesExample();}

public BranchGroup createContentBranch()
10 {

BranchGroup root = new BranchGroup();

Appearance appearance1 = new Appearance();

15 // Create the first colouring attibutes appearance component
ColoringAttributes ca1 = new ColoringAttributes(new Color3f(0.0f, 0.0f, 1.0f),

ColoringAttributes.SHADE FLAT);
appearance1.setColoringAttributes(ca1);

20 // Create the transparency appearance compoennt that represents
// a 50% blended transparency
TransparencyAttributes ta = new TransparencyAttributes();
ta.setTransparencyMode(TransparencyAttributes.BLENDED);
ta.setTransparency(0.25f);

25 appearance1.setTransparencyAttributes(ta);

// Add the first sphere to the root of the scene graph
Sphere sphere = new Sphere(0.5f, appearance1);
root.addChild(sphere);

30

Appearance appearance2 = new Appearance();

// Create the second colouring attributes appearance component
ColoringAttributes ca2 = new ColoringAttributes(new Color3f(1.0f, 0.0f, 0.0f),

35 ColoringAttributes.SHADE FLAT);
appearance2.setColoringAttributes(ca2);

Transform3D transform = new Transform3D();
transform.setTranslation(new Vector3f(−0.5f, 0.0f, −1.0f));

40 TransformGroup tg = new TransformGroup(transform);
root.addChild(tg);

// Add the second sphere to the transform group
Sphere sphere2 = new Sphere(0.5f, appearance2);

45 tg.addChild(sphere2);
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root.compile();

return root;
50 }

}

The program creates two Sphere primitives. The first sphere is positioned at the
origin and its unlit colour is set to blue using a ColoringAttributes appearance
component. A TransparencyAttributes appearance component is used to set the
transparency mode for this sphere to BLENDED with a transparency value to 50%.
The second sphere is positioned 1 metre behind and 50 cm to the left of the origin
using a TransformGroup. The unlit colour of the second sphere is set to red using
a ColoringAttributes appearance component. Renderings generated by different
versions of this program are illustrated in Figure 2.28.

(a) (b)

(c) (d)

Figure 2.28: An scene containing a opaque red sphere located behind a semitrans-
parent blue sphere. The BLENDED transparency mode is used in (a) and (c) and the
SCREEN DOOR mode is used in (b) and (d).
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2.7.8 Material

The material appearance component specifies the colour of a shape when it is ex-
posed to different types of lighting. A shape will only respond to light if:

1. The geometry of the shape has normals.

2. The appearance has a material.

3. The material enables lighting.

If any of these requirements are not met then the shape will not respond to lighting
and the colour of the shape will be determined by either:

1. The geometry of the shape, i.e. the colours assigned to vertices of the geometry.

2. The relevant ColoringAttributes appearance component.

If both of these properties are defined then the vertex colours take precedence. If
neither of these properties are specified then the colour comes from the default
ColorAttributes. This causes the shape to be rendered in white.

The Material appearance component defines the appearance of a shape under illu-
mination. These can be set in the constructor:

• Material(Color3f ambientColor, Color3f, emissiveColor,

Color3f diffuseColor, Color3f specularColor, float shininess)

Creates a new Material object with the specified colour characteristics.

2.7.8.1 Ambient Colour

Ambient light is the diffused light that fills a region, lighting regions that would not
otherwise be illuminated. The ambient colour of Material appearance component
indicates the response of the material to ambient light, i.e. the percentage of ambi-
ent light that is reflected.

If the ambient colour of a material is orange (1.0, 0.5, 0.0) and it is illuminated by
purple ambient light (1.0, 0.0, 1.0) then the resulting reflected colour will be red (1.0,
0.0, 0.0), i.e. the colour reflected by the material is obtained by multiplying each of
the colour components of the ambient light by the corresponding colour components
of the ambient colour of the material.

In addition to using the constructor, the ambient colour of a Material appearance
component object can also be set using either of the following methods:

• void setAmbientColor(Color3f colour)

• void setAmbientColor(float r, float g, float b)

It should be noted that once the scene graph is live these methods will throw a
CapabilityNotSetException if the ALLOW COMPONENT WRITE capability bit has not
been set using the setCapability() method.

The ambient colour of a Material component can be retrieved using:
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• void getAmbientColor(Color3f colour)

The ambient colour information is stored in the supplied Color3f object. It should
be noted that this method will throw a CapabilityNotSetException if the
ALLOW COMPONENT READ capability bit has not been set using the setCapability()

method.

Note: The default ambient colour is (0.2, 0.2, 0.2), i.e. by default the 20% of
ambient light is reflected by the material.

2.7.8.2 Emissive Colour

The emissive colour of a material is the colour of the object independent of any light
sources. It produces glowing colours that seem to emanate from within the shape
itself. An emissive colour can be used to represent a light that is turned on.

In addition to using the constructor, the emissive colour of a Material appearance
component can be set using either of the following methods:

• void setEmissiveColor(Color3f colour)

• void setEmissiveColor(float r, float g, float b)

The emissive colour of a Material appearance component can subsequently be re-
trieved using:

• void getEmissiveColor(Color3f colour)

The ALLOW COMPONENT READ and ALLOW COMPONENT WRITE capabilities must be set
if the emissive colour is to be retrieved or updated after the scene graph has gone live.

Note: The default emissive colour for a Material appearance component is (0.0,
0.0, 0.0), i.e. the material does not appear to emit any colour.

Note: Setting the emissive colour for a material only causes the associated shape
to appear to emit light. The shape does not illuminate the objects around it. In
order to achieve this a suitable light source would have to be associated with the
shape in addition to setting the emissive colour for the material.

2.7.8.3 Diffuse Colour

The diffuse colour defines the “true” colour of an object. It is the colour of the ob-
ject when lit, excluding any light being reflected due to the shininess of the object.
The diffuse colour is the colour produced by diffuse reflection, which is a term used
to describe the light that bounces off objects in random directions. The intensity
of diffuse lighting depends on the angle the light rays make with the surface of the
object. If the light hits the object directly, it creates light of maximum intensity;
the light intensity decreases as the angle increases. If the surface faces away from
the light, then the light does not add any illumination to the surface.

The diffuse colour of a Material can be updated or retrieved using the similar meth-
ods as those described for ambient and emissive colours. The required capabilities
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must also be set of the diffuse colour needs to be updated or retrieved after the scene
graph has gone live.

Note: The default diffuse colour is (1.0, 1.0, 1.0), i.e. a material has a white diffuse
colour by default.

2.7.8.4 Specular Colour

The specular colour comes from specular reflection, which is an approximation of the
way a light bounces off a shiny object. Specular colour is combined with shininess
settings to create shiny highlights on the surface of shapes. The colour of the high-
light is a combination of the specular colour and the light colour. The maximum
intensity is along the reflection of the light off the surface toward the viewer. The
intensity decreases as the reflection is directed away from the viewer.

Note: The default specular colour is white (1.0, 1.0, 1.0).

2.7.8.5 Shininess

Shininess controls the size of reflective highlights created using specular colours.
Shininess is a floating-point number in the range [1.0, 128.0], where 1.0 represents
a surface that is not shiny at all, and 128.0 represents an extremely shiny surface.
Shininess values outside this range are clamped.

Note: The default shininess value is 64.

2.7.8.6 Vertex Colours

If vertex colours are defined for the relevant geometry then they are used in place
of the specified material colour or colours. By default the vertex colours replace the
diffuse colour of the material. The relevant colour target for a Material object can
be set using:

• void setColorTarget(int colourTarget)

Indicates that the vertex colours are used in place of the specified material
colour.

The possible values for the colourTarget argument are:

• AMBIENT

Indicates that per-vertex colours replace the ambient material colour.

• EMISSIVE

Indicatest that per-vertex colours replace the emissive material colour.

• DIFFUSE

Indicates that per-vertex colours replace the diffuse material colour.

• SPECULAR

Indicates that per-vertex colours replace the specular colour.

• AMBIENT AND DIFFUSE

Indicates that per-vertex colours replace both the ambient and diffuse material
colours.
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2.7.9 Lighting

Light nodes are used to illuminate shapes in a virtual world. Java 3D supports four
basic types of lights:

• DirectionalLight - provides a simple, fast light type that simulates light
from a distant source, such as the sun.

• PointLight - a light source that radiates in all directions with a position
defined by a point.

• SpotLight - a point light source that shines in a specific direction.

• AmbientLight - simulates the diffused light that fills a region, lighting areas
that are not directly illuminated.

Each of these light nodes is a subclass of the Light class. The methods defined by
the Light class include:

• void setEnable(boolean state)

Turns the light on or off.

• boolean getEnable()

Retrieves the current state of the light.

• void setColor(Color3f color)

Sets the colour of the light to the specified value.

• void getColor(Color3f color)

Retrieves the colour of the light and stores it in the supplied Color3f object.

In order to use these methods after the scene graph has go live the following capa-
bility bits will need to be set:

• ALLOW STATE READ

Indicates that this light allows read access to its state information (i.e. whether
the light is on of off) after the scene graph has gone live.

• ALLOW STATE WRITE

Indicates that this light allows write access to its state information after the
scene graph has gone live.

• ALLOW COLOR READ

Indicates that this light allows read access to its colour information after the
scene graph has gone live.

• ALLOW COLOR WRITE

Indicates that this light allows write access to its colour information after the
scene graph has gone live.
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2.7.9.1 DirectionalLight

A DirectionalLight node defines an oriented light with an origin at infinity. It
has the same attributes as a Light node, with the addition of a directional vector to
specify the direction that the light shines in. A directional light has parallel light rays
that travel in one direction along the specified vector. Directional light contributes
to diffuse and specular reflections, which in turn depend on the orientation of an
object’s surface but not its position. A directional light does not contribute to
ambient reflections. An illustration of how directional lighting works is presented in
Figure 2.29.

Figure 2.29: A DirectionalLight represents light from a distant source a can be
thought of as a set of parallel rays originating from a specific direction.

The most comprehensive constructor for a directional light has the following format:

• DirectionalLight(boolean on, Color3f colour, Vector3f direction)

Creates a directional light source with the specified state, colour and direction.

The direction of a DirectionalLight node can also be set or retrieved using:

• void setDirection(Vector3f direction)

Sets the direction of this DirectionalLight to the specified value.

• void getDirection(Vector3f direction)

Retrieves the direction of this DirectionalLight and stores it in the supplied
Vector3f object.

If these methods are to be used after the scene graph has gone live then the following
capability bits must be set:

• ALLOW DIRECTION READ

Indicates that this light node allows read access to its direction information
after the scene graph has gone live.

• ALLOW DIRECTION WRITE

Indicates that this light node allows write access to its direction information
after the scene graph has gone live.

A bounding region must also be specified in order to indicate the region where the
light is active. The bounding region in set using the following method:
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• void setInfluencingBounds(Bounds region)

Sets the light’s influencing bounds to the specified region.

The following example demonstrates how a DirectionalLight can be used to illu-
minate an object.

0 import javax.media.j3d.∗;
import javax.vecmath.∗;
import com.sun.j3d.utils.geometry.∗;

public class DirectionalLightExample extends BasicScene
5 {

public static void main(String args[]){new DirectionalLightExample();}

public BranchGroup createContentBranch()
{

10 BranchGroup root = new BranchGroup();

Appearance appearance = new Appearance();

// Create a material with a red diffuse colour
15 Material material = new Material();

material. setDiffuseColor(new Color3f(1.0f, 0.0f , 0.0f ));
appearance.setMaterial(material);

Sphere sphere = new Sphere(0.5f,
20 Sphere.GENERATE NORMALS,

100,
appearance);

root.addChild(sphere);
25

// Create a directional light with a bright white colour
DirectionalLight light = new DirectionalLight(new Color3f(1.0f, 1.0f, 1.0f ),

new Vector3f(−1.0f, −1.0f, −1.0f));
light .setInfluencingBounds(new BoundingSphere(new Point3d(),

30 Double.MAX VALUE));
root.addChild(light);

root.compile();

35 return root;
}

}

This program creates a Sphere primitive located at the origin. The sphere has a
radius of 50 cm and a red diffuse colour. The colour of the sphere is specified using
a Material object which is ultimately associated with the Appearance object that
is used to construct the sphere. A directional light is also constructed and attached
to the scene. The colour of this light is bright white and it shines in the direction
(-1.0, -1.0, -1.0). The output generated when this program is executed is illustrated
in Figure 2.30.
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Figure 2.30: An example of a red sphere illuminated by white directional light
shining in the direction (-1.0f, -1.0f, -1.0f).

2.7.9.2 PointLight

The PointLight class represents an attenuated light source that is located at a fixed
point in space and radiates light equally in all directions away from the light source.
A PointLight class has the same attributes as the Light class, with the addition
of location and attenuation parameters.

A PointLight contributes to diffuse and specular reflections , which in turn depend
on the orientation and position of a surface. A PointLight does not contribute to
ambient reflections.

A PointLight is attenuated by multiplying the contribution of the light by an
attenuation factor. The attenuation factor causes the brightness of the PointLight

to decrease as the distance from the light source increases. The attenuation factor
for a PointLight contains three values:

• Constant attenuation

• Linear attenuation

• Quadratic attenuation

A PointLight is attenuated by the reciprocal of the sum of:

• The constant attenuation factor.

• The linear attenuation factor times the distance between the light and the
vertex being illuminated.

• The quadratic attenuation factor times the square of the distance between the
light and the vertex.

By default, the constant attenuation value is 1.0 and the other two values are 0.0.
The results in no attenuation being applied to the light source. The brightness of
a PointLight source at a specific distance from the light source can be calculated
using the following equation:

brightness =
intensity

const + lin× dist + quad× dist2
(2.2)
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Figure 2.31: A PointLight represents light from a specific location. The light rays
associated with the point light source all emanate from this point.

An illustration of how a point light source operates is presented in Figure 2.31.
The most comprehensive constructor for a point light has the following format:

• PointLight(boolean on, Color3f colour, Point3f position,

Point3f attenuation)

Creates a point light source with the specified state, colour, position and at-
tenuation.

The position and the attenuation of a PointLight can be updated or retrieved using:

• void setAttenuation(Point3f attenuation)

Sets the attenuation attributes of this light source. The x coordinate of the
point represents the constant attenuation factor, the y coordinate represents
the linear attenuation factor and the z coordinate represents the quadratic
attenuation factor.

• void getAttenuation(Point3f attenuation)

Retrieves the attenuation attributes for this light source and stores them in
the supplied Point3f object using the method described above.

• void setPosition(Point3f position)

Sets the position of this point light source.

• void getPosition(Point3f position)

Retrieves the position of this point light source and stores it in the supplied
Point3f object.

If these methods are to be used after the scene graph has gone live, then the following
capability bits must be set:

• ALLOW ATTENUATION READ

Indicates that this point light allows read access to its attenuation information
after the scene graph has gone live.

• ALLOW ATTENUATION WRITE

Indicates that this point light allows write access to its attenuation information
after the scene graph has gone live.
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• ALLOW POSITION READ

Indicates that this point light allows read access to its position information
after the scene graph has gone live.

• ALLOW POSITION WRITE

Indicates that this points light allows write access to it position information
after the scene graph has gone live.

The following example demonstrates how a PointLight can be used to illuminate
a pair of objects.

0 import javax.media.j3d.∗;
import javax.vecmath.∗;
import com.sun.j3d.utils.geometry.∗;

public class PointLightExample extends BasicSceneWithMouseControl
5 {

public static void main(String args[]){new PointLightExample();}

public BranchGroup createContentBranch()
{

10 BranchGroup root = new BranchGroup();

Transform3D transform1 = new Transform3D();
transform1.setTranslation(new Vector3f(−0.5f, 0.0f, −0.5f));
TransformGroup tg1 = new TransformGroup(transform1);

15 root.addChild(tg1);

// Red appearance
Appearance appearance1 = new Appearance();
Material material1 = new Material();

20 material1.setDiffuseColor(new Color3f(1.0f, 0.0f , 0.0f ));
appearance1.setMaterial(material1);

Sphere sphere1 = new Sphere(0.4f,
Sphere.GENERATE NORMALS,

25 100,appearance1);
tg1.addChild(sphere1);

Transform3D transform2 = new Transform3D();
transform2.setTranslation(new Vector3f(0.5f, 0.0f , −0.5f));

30 TransformGroup tg2 = new TransformGroup(transform2);
root.addChild(tg2);

// Blue appearance
Appearance appearance2 = new Appearance();

35 Material material2 = new Material();
material2.setDiffuseColor(new Color3f(0.0f, 0.0f , 1.0f ));
appearance2.setMaterial(material2);

Sphere sphere2 = new Sphere(0.4f,
40 Sphere.GENERATE NORMALS,

100,appearance2);
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tg2.addChild(sphere2);

PointLight light = new PointLight();
45 light .setInfluencingBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));
root.addChild(light);

root.compile();
50

return root;
}

}

This program creates two spheres of radius 40 cm and positions them 50 cm behind
the origin. The sphere with the red material is moved 50 cm in the negative x
direction and the sphere with the blue material is moved 50 cm in the positive x
direction. A single point light with the default parameters, white colour (1.0, 1.0,
1.0) and no attenuation, is placed at the origin in order to illuminate the two spheres.
The output generated when this program is executed is illustrated in Figure 2.32.

Figure 2.32: An examples of two spheres located left and right of the origin illumi-
nated by a PointLight that is located at the origin.

2.7.9.3 SpotLight

The SpotLight class specifies an attenuated light source located at a fixed point
in space that radiates light in a specified direction. The SpotLight class extends
PointLight to include this additional functionality. A SpotLight node has the
same attributes as a PointLight node, with the addition of the following:

• Direction - The axis of the cone of light. The default direction is (0.0, 0.0,
-1.0), i.e. into the screen. The direction of the spotlight is only significant
when the spread angle is not π radians (the default value for this attribute).

• Spread angle - The angle in radians between the direction axis and a ray along
the edge of the cone of light.

– Note that the angle of the cone at the apex is twice this angle.
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– The range of values for the spread angle is [0.0, π
2
] radians, with a special

value of π radians.

– Spread angle values lower than 0 are clamped to 0 and values greater
than π

2
are clamped to π

2
.

• Concentration - Specifies how quickly the light intensity attenuates as a func-
tion of the angle of radiation as measured from the direction of radiation. The
light’s intensity is highest at the centre of the cone and is attenuated towards
the edges of the cone by the cosine of the angle between the direction of the
light and the direction from the light to the object being lit, raised to the power
of the spot concentration exponent. The higher the concentration value, the
more focused the light source. The range of values is [0.0, 128.0]. The default
concentration is 0.0, which provides uniform light distribution.

A SpotLight contributes to diffuse and specular reflections, which depend on the
orientation and position of an object’s surface. A SpotLight does not contribute to
ambient reflections. An illustration of the spread angle and the concentration for a
SpotLight node are illustrated in Figure 2.33.
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Figure 2.33: An illustration of two of the main attributes associated with a spot
light. The spread angle (a) and the concentration (b).

The most comprehensive constructor for a SpotLight has the following format:

• SpotLight(boolean on, Color3f color, Point3f position, Point3f

attenuation, Vector3f dir, float spreadAngle, float conc)

Creates a new instance of a SpotLight object with the specified attributes.

The SpotLight class also defines methods to set or retrieve its various attributes:

• void setConcentration(float concentration)

Sets the concentration for this SpotLight object.

• float getConcentration()

Retrieves the concentration for this SpotLight object.
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• void setDirection(Vector3f direction)

Sets the direction for this SpotLight object to the specified vector.

• void getDirection(Vector3f direction)

Retrieves the direction for this SpotLight and stores it in the specified vector.

• void setSpreadAngle(float spreadAngle)

Sets the spread angle for this SpotLight object. The minimum spread angle
is 0 radians and the maximum spread angle is π

2
radians.

• float getSpreadAngle()

Retrieves the spread angle for this SpotLight object.

Note: If you are more comfortable specifying angles in degrees then the following
method may be useful:

• double Math.toDegrees(double radians)

Converts the specified angle from radians to degrees.

• double Math.toRadians(double degrees)

Converts the specified angle from degrees to radians.

The SpotLight class also defines a series of capability bits that can be used to enable
access to its attributes after the scene graph has gone live, these include:

• ALLOW CONCENTRATION READ

Indicates that this SpotLight allows read access to its concentration informa-
tion after the scene graph has gone live.

• ALLOW CONCENTRATION WRITE

Indicates that this SpotLight object allows write access to its concentration
information after the scene graph has gone live.

• ALLOW DIRECTION READ

Indicates that this SpotLight object allows read access to its direction infor-
mation after the scene graph has gone live.

• ALLOW DIRECTION WRITE

Indicates that this SpotLight object allow write access to its direction infor-
mation after the scene graph has gone live.

• ALLOW SPREAD ANGLE READ

Indicates that this SpotLight object allows read access to its spread angle
information after the scene graph has gone live.

• ALLOW SPREAD ANGLE WRITE

Indicates that this SpotLight object allows write access to its spread angle
information after the scene graph has gone live.

The following example demonstrates how a SpotLight can be used to illuminate an
object.
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0 import javax.media.j3d.∗;
import javax.vecmath.∗;
import java.lang.∗;

import com.sun.j3d.utils.behaviors.mouse.MouseRotate;
5 import com.sun.j3d.utils.geometry.∗;

public class SpotLightExample extends BasicScene
{

public static void main(String args[]){new SpotLightExample();}
10

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

15 Transform3D transform1 = new Transform3D();
transform1.setTranslation(new Vector3f(0.0f, 0.0f , −20.0f));
TransformGroup tg1 = new TransformGroup(transform1);
root.addChild(tg1);

20 // Red appearance
Appearance appearance1 = new Appearance();
Material material1 = new Material();
material1.setDiffuseColor(new Color3f(1.0f, 0.0f , 0.0f ));
appearance1.setMaterial(material1);

25

// A detailed sphere with a large radius
Sphere sphere1 = new Sphere(15.0f, Primitive.GENERATE NORMALS,

500, appearance1);
tg1.addChild(sphere1);

30

TransformGroup tg2 = new TransformGroup();
tg2.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(tg2);

35 // A mouse rotate behaviour to control the direction of the light
MouseRotate rotate = new MouseRotate();
rotate .setTransformGroup(tg2);
tg2.addChild(rotate);
rotate .setSchedulingBounds(new BoundingSphere(new Point3d(),

40 Double.MAX VALUE));

// A spot light
SpotLight light = new SpotLight();
light .setConcentration(45f);

45 light .setSpreadAngle((float)Math.toRadians(30));
light .setInfluencingBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));
tg2.addChild(light);

50 root.compile();

return root;
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}
}

This program begins by creating a large detailed sphere of radius 15 metres that is
located 20 metres behind the origin. The creation of a detailed sphere is achieved
by specifying a high number of subdivisions. The repositioning of the sphere with
respect to the origin is achieved using a TransformGroup. A SpotLight is then
created with a white colour, a concentration of 45.0 and a spread angle of 30 de-
grees. The SpotLight is attached to a TransformGroup which is associated with a
MouseRotation behaviour. This setup enables the direction that the SpotLight is
shining to be controlled by the mouse. The type of renderings obtained when this
program is executed are illustated in Figure 2.34.

(a) (b)

Figure 2.34: An illustration of a highly detailed Sphere primitive illuminated by a
SpotLight with a concentration of 45.0 and a spread angle of 30 degrees.

2.7.9.4 AmbientLight

An AmbientLight is used to represent light that appears to come from all directions.
The AmbientLight class extends the Light class and consequently has the same at-
tributes including colour, influencing bounds, scopes and a flag indicating whether
the light source is on or off. Ambient reflections do not depend on the orientation
or position of a surface. Ambient light only has an ambient reflection component.
It does not have either diffuse or specular reflection components.

An AmbientLight object can be created using the following constructor:

• AmbientLight(boolean lightOn, Color3f color)

Creates a new AmbientLight object with the specified state and colour infor-
mation.

The AmbientLight class does not define any additional methods or capabilities as
all of its required functionality is defined by the Light class.

The following example demonstrates how an AmbientLight can be used to illumi-
nate an object.
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0

import javax.vecmath.∗;
import javax.media.j3d.∗;
import com.sun.j3d.utils.geometry.∗;

5 public class AmbientLightExample extends BasicScene
{

public static void main(String args[]){new AmbientLightExample();}

public BranchGroup createContentBranch()
10 {

BranchGroup root = new BranchGroup();

// Create an yellow ambient light
AmbientLight light = new AmbientLight(new Color3f(1.0f, 1.0f, 0.0f));

15 BoundingSphere bounds = new BoundingSphere(new Point3d(0.0, 0.0, 0.0),
Double.POSITIVE INFINITY);

light .setInfluencingBounds(bounds);
root.addChild(light);

20 // Create a cyan material
Appearance appearance = new Appearance();
Material material = new Material();
material.setAmbientColor(new Color3f(0.0f, 1.0f, 1.0f ));
appearance.setMaterial(material);

25

// Create a sphere of radius 40 cm
Sphere sphere = new Sphere(0.4f, appearance);
root.addChild(sphere);

30 root.compile();

return root;
}

}

The operation of this program is quite straightforward. An AmbientLight is created
and positioned at the origin (the default location). The colour of the AmbientLight

is set to yellow in the constructor. A Sphere primitive is created with a radius of
40 cm. The sphere has a Material with an ambient colour of cyan. Consequently,
the colour of the sphere under the ambient light will be green. This is illustrated in
Figure 2.35.

2.7.10 Texture Mapping

Texture mapping changes the appearance of a shape by wrapping an image around
the structure of the shape. The use of an image, or texture, in this way enables the
creation of extremely detailed content in a relatively straightforward manner. For
example, a table textured with a wood grain texture would look more realistic than
if a solid brown colour were used. Textures are applied, or mapped, to a surface
using data that relates each vertex in the geometry to a location in the texture. The
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(a)

Figure 2.35: A sphere with a material that has an ambient colour of cyan illuminated
by yellow ambient light. This results in a sphere that appears to have a green colour.

locations in the texture are specified using texture coordinates and the texture is
considered to be a rectangular array of colour values called texels.

Note: A texel is to a texture what a pixel is to a picture.

2.7.10.1 Texture Coordinates

The position of a pixel in an image is represented using x and y values. In a similar
way, the position of a texel in a texture is represented using s and t values. These
values are known as texture coordinates. The s coordinate corresponds to the hor-
izontal axis of the texture and the t coordinate corresponds to the vertical axis of
the texture. The lower left hand corner of the texture is at (0, 0) and the upper
right hand corner of the image is at (1, 1). This coordinate system is illustrated in
Figure 2.36.

Note: If a texture image is non-square the texture coordinate still have the same
range. For example, if the texture is a 128× 256 image the top right hand corner of
the texture will have the coordinates (1, 1) and not (0.5, 1).

Texture mapping stretches the texture to make the texture locations specified by
the texture coordinates line up with the texture coordinates assigned to the vertices
of the geometry being texture mapped. Texture mapping is controlled by several
components:

• The Texture appearance component controls the texture image.

• The TextureAttributes appearance component control how the texture is
applied to the surface of the geometry that is being texture mapped.

• The texture coordinates are specified by the Geometry. If the Geometry does
not have texture coordinates, a TextureCoordGeneration appearance com-
ponent can be used to generate texture coordinates from the geometric coor-
dinates.
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Figure 2.36: An illustration of the texture coordinate system. The location of
each texel is represented by a pair of texture coordinates (s, t). The s coordinate
represents the location of the texel in the horizontal direction and the t coordinate
represents the location of the texel in the vertical direction. The origin of the texture
coordinate system is located at the bottom left hand corner of the texture.

2.7.10.2 Texture

The base class for textures is Texture. The Texture class has two main subclasses:

• Texture2D - specifies a 2D image that is to be mapped to the exterior of a
particular geometry.

• Texture3D - specified a 3D or volumetric texture that can be used in volume
rendering.

The most straightforward method for the generation of a Texture2D object is to use
a TextureLoader. The TextureLoader loads the texture and sets up several of its
basic properties. A TextureLoader object can be created using one of the following
constructors:

• TextureLoader(BufferedImage image)

Constructs a TextureLoader object using the specified BufferedImage and
the default format RGBA.

• TextureLoader(Image image, Component observer)

Constructs a TextureLoader object using the specified Image and the default
format RGBA.
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• TextureLoader(String filename, Component observer)

Constructs a TextureLoader object that will load a texture from the specified
file location.

• TextureLoader(URL url, Component observer)

Constructs a TextureLoader object that will load a texture from the specified
URL.

Note: In the last three versions of the constructor listed here, an ImageObserver

object must be specified. This is required to monitor the progress of Image object
that are in the process of being loaded.

It is clear that a TextureLoader object can be used to load a texture image from a
variety of sources. The texture loader also supports the image formats supported by
the JDK i.e. GIF and JPEG. If the optional Java Advanced Imaging (JAI) package
is installed then JAI will be used to load the texture image and consequently the
loader will support BMP, FlashPix, PNG, PNM and TIFF file formats.

It is also possible to specify a series of flags in the constructor, for example:

• TextureLoader(BufferedImage image, int flags)

Constructs a TextureLoader object using the specified BufferedImage object,
the specified flag options and the default format RGBA.

The flags are used to specify options for the loader. The options that can be specified
by the flags are integers that can be OR’d together. The possible flag values are:

• GENERATE MIPMAP - Tells the TextureLoader to create the texture with mul-
tiple levels of resolution called mipmaps that are used when the texture is
viewed at a variety of scales.

• BY REFERENCE - Specifies that the ImageComponent2D object representing the
texture will access the image data by reference.

• Y UP - Indicates that the ImageComponent2D object representing the texture
will have a y-orientation of y up, meaning that the origin of the image is in the
lower left hand corner (i.e. so that the image coordinate system corresponds
to the texture coordinate system).

It is also possible to specify an image format in the constructor for a TextureLoader

object, for example:

• TextureLoader(BufferedImage image, int format)

Constructs a TextureLoader object with the specified BufferedImage and
the specified image format.

The format parameter is an advanced option that is used to specify the internal for-
mat of the image. The default format is RGBA, i.e. this is the format that is used
if the version of the constructor being used does not have a format parameter. The
RGBA format indicates that each texel has red, green, blue and alpha components.
A variety of other formats are also available, for example ALPHA, indicates that
only the transparency values of the loaded image are to be used.

Once a TextureLoader object has been created the Texture object that it represents
can be obtained using the following method:
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• Texture getTexture()

Returns the relevant Texture object or null if the texture image failed to load.

Note: If the width or height of the image is not a power of 2 (i.e. 32, 64, 128, 256,
etc.), then the image is scaled so that its dimensions are a power of two.

The other methods provided by the TextureLoader class can be used to load an
ImageComponent2D representation of the texture image. This can be used in con-
junction with the Raster geometry and Background environment node. These meth-
ods have the following format:

• ImageComponent2D getImage()

Returns an ImageComponent2D representation of the texture image.

• ImageComponent2D getScaledImage(float xScale, float yScale)

Returns a scaled ImageComponent2D representation of the texture image that
has been scaled by the specified horizontal and vertical scale factors.

• ImageComponent2D getScaledImage(int width, int height)

Returns a scaled ImageComponent2D representation of the texture image that
has the specified dimensions.

The following program demonstrates how a texture can be applied to a simple tri-
angle:

0 import javax.media.j3d.∗;
import com.sun.j3d.utils.image.∗;

public class TextureCoordinateExample extends BasicSceneWithMouseControl
{

5 public static void main(String args[]){new TextureCoordinateExample();}

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();
10

Texture woodTexture = null;

try
{

15 // Load the wood texture from the local file syste ,
TextureLoader loader = new TextureLoader(”wood.jpg”, this);
woodTexture = loader.getTexture();

}
catch(Exception e){System.out.println(e.toString());}

20

Appearance appearance = new Appearance();
appearance.setTexture(woodTexture);

float [] coordinates = {−0.5f, −0.5f, 0.0f ,
25 0.5f , −0.5f, 0.0f ,

0.0f , 0.5f , 0.0f};
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// Define the texture coordinates for the vertices
float [] texCoords = {0.0f, 0.0f ,

30 1.0f , 0.0f ,
0.5f , 1.0f};

// Create a geometry array from the specified coordinates
GeometryArray geometryArray = new TriangleArray(3,

35 GeometryArray.COORDINATES|GeometryArray.TEXTURE COORDINATE 2);

geometryArray.setCoordinates(0, coordinates);
geometryArray.setTextureCoordinates(0,0,texCoords);

40 // Create a Shape3D object using the GeometryArray
Shape3D shape = new Shape3D(geometryArray, appearance);
root.addChild(shape);

root.compile();
45

return root;
}

}

The program begins by creating a Texture2D object that represents the wood tex-
ture stored in the file wood.jpg. This is achieved using a TextureLoader object. An
Appearance object is then created and its texture is set to be the loaded Texture2D

object. A set of coordinates are then defined that represent a simple triangle lo-
cated at the origin. A set of texture coordinates are subsequently defined. These
associate the vertices of the triangle with points in the texture image. The first
vertex is associated with the the bottom left corner of the texture image, the second
vertex is associated with the bottom right corner of the image and the third vertex is
associated with the central point at the top of the texture image. A TriangleArray

object is then created and the COORDINATE and TEXTURE COORDINATE 2 flags are set
to indicate that both coordinates and 2D texture coordinates will be specified for the
vertices of the triangle array. A Shape3D object is then created using the previously
discussed appearance and geometry. Finally, the resulting shape is added to the
root of the scene graph. A rendering of the texture mapped triangle is illustrated
in Figure 2.37.

The following example demonstrates how texture coordinates can be generated to
example texture mapping for a primitive shape.

0

import javax.media.j3d.∗;
import com.sun.j3d.utils.geometry.∗;
import com.sun.j3d.utils.image.∗;

5 public class TexturePrimitiveExample extends BasicSceneWithMouseControl
{

public static void main(String args[]){new TexturePrimitiveExample();}

public BranchGroup createContentBranch()
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(a) (b)

Figure 2.37: The original wood texture (a) and a triangle that has been texture
mapped using the wood texture (b).

10 {
BranchGroup root = new BranchGroup();

Appearance appearance = new Appearance();

15 Texture woodTexture = null;
try
{

// Load the wood texture from the local file system
TextureLoader loader = new TextureLoader(”wood.jpg”, this);

20 woodTexture = loader.getTexture();
}
catch(Exception e){System.out.println(e.toString());}

appearance.setTexture(woodTexture);
25

// Create a Box primitive with texture coordinates
Box box = new Box(0.2f, 0.05f, 0.6f,

Box.GENERATE TEXTURE COORDS,
appearance);

30 root.addChild(box);

root.compile();

return root;
35 }

}

The operation of this example is similar to the operation of the previous example.
The wood texture is loaded and associated with the Appearance in the same way.
A Box primitive is then created with a width of 20 cm, a height of 5 cm and a
depth of 60 cm. The GENERATE TEXTURE COORDS is specified to indicate that the
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Box primitive should have texture coordinates associated with its vertices. Finally,
the appearance with the associated wood texture is specified for use with the Box

primitive. A rendering of the texture mapped Box is illustrated in Figure 2.38.

(a) (b)

Figure 2.38: Sample renderings of the texture mapped Box primitive.

The texture image is the most important attribute of the Texture class. However,
the Texture class has a variety of other attributes that define how the texture
appears when it is viewed, for example:

• The state attribute allows the texture to be enabled or disabled.

• The boundary mode specifies how the texture appears for texture coordinates
outside the range [0, 1].

• The texture filtering mode specifies how the texture is drawn when it is larger
or smaller than its original size.

Texture mapping is enabled if all three of the following are true:

• The shape has texture coordinates

• The appearance has a texture image associated with it

• The texture is enabled

The texture is enabled using the following method:

• void setEnable(boolean state)

Sets the state of the texture to the specified value. A value of true indicates
that the texture is enabled and a value of false indicates that the texture is
disabled.

The state information for a texture can be accessed after the scene graph has gone
live provided that the relevant capabilities are enabled, these are:
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• ALLOW ENABLE READ

Indicates that this Texture object allows read access to its state information
after the scene graph has gone live.

• ALLOW ENABLE WRITE

Indicates that this Texture object allows write access to its state information
after the scene graph has gone live.

The Texture class also defines similar capabilities for the other attributes that it
supports.

The coordinates of a texture image always have values in the range [0, 1], however,
the texture coordinates associated with the vertices of a geometry can have texture
coordinates outside this range. The boundary mode of a texture specifies how tex-
ture coordinates outside the range [0, 1] are dealt with. There are two main types
of boundary mode:

• CLAMP - clamps texture coordinate to be in the range [0, 1]. Texture boundary
texels are used for values that fall outside this range.

• WRAP - repeat the texture by wrapping texture coordinates that are outside
the range [0, 1]. Only the fractional portion of the texture coordinates will be
used here. The integer portion in discarded, e.g. 1.5 would become 0.5.

The boundary mode for the horizonal and vertical directions are specified separately
using the following methods:

• void setBoundaryModeS(int mode)

Sets the horizontal boundary mode of this Texture object to the specified
value.

• void setBoundaryModeT(int mode)

Sets the vertical boundary mode of this Texture object to the specified value.

The following example demonstrated the operation of the two different boundary
modes.

0 import javax.media.j3d.∗;
import com.sun.j3d.utils.image.∗;

public class TextureBoundaryModeExample extends BasicSceneWithMouseControl
{

5 public static void main(String args[]){new TextureBoundaryModeExample();}

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();
10

Texture earthTexture = null;

try
{

15 // Create the texture and set it horizontal and vertical
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// boundary modes
TextureLoader loader = new TextureLoader(”earth.jpg”, this);
earthTexture = loader.getTexture();
earthTexture.setBoundaryModeS(Texture.CLAMP);

20 earthTexture.setBoundaryModeT(Texture.WRAP);
}
catch(Exception e){System.out.println(e.toString());}

Appearance appearance = new Appearance();
25 appearance.setTexture(earthTexture);

float [] coordinates = {−0.5f, −0.5f, 0.0f ,
0.5f , −0.5f, 0.0f ,
0.5f , 0.5f , 0.0f ,

30 −0.5f, 0.5f , 0.0f};

// Specify the texture coordiantes for the vertices
float [] texCoords = {−1.0f, −1.0f,

2.0f , −1.0f,
35 2.0f , 2.0f ,

−1.0f, 2.0f};

// Create a geometry array from the specified coordinates
GeometryArray geometryArray = new QuadArray(4,

40 GeometryArray.COORDINATES|GeometryArray.TEXTURE COORDINATE 2);

geometryArray.setCoordinates(0, coordinates);
geometryArray.setTextureCoordinates(0,0,texCoords);

45 // Create a Shape3D object using the GeometryArray
Shape3D shape = new Shape3D(geometryArray, appearance);
root.addChild(shape);

root.compile();
50

return root;
}

}

This example defines a QuadArray geometry consisting of a single quadrilateral fac-
ing the viewer. The quadrilateral has sides that are one meter in length and it is
centred at the origin. The horizontal and vertical texture coordinates assigned to
the vertices of the quadrilateral are in the range [-1.0, 2.0], i.e. they extend outside
the range defined for the texture image. The horizontal boundary mode for the
texture image is set to CLAMP and the vertical boundary mode for the texture image
is set to WRAP. The output obtained when this program is executed is illustrated in
Figure 2.39.

The Texture class also defines filtering modes that specify how the resolution for
the texture image is increased or decreased during rendering. When a texture is
mapped to a piece of geometry there is rarely a one-to-one correspondence between
the pixels of the rendered geometry and the pixels of the texture image. Instead one
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Figure 2.39: A rendering of a texture mapped quadrilateral where the horizontal
texture mode has been set to CLAMP and the vertical texture mode has been set to
WRAP.

of the following situations occurs:

• Magnification - where a single pixel of the rendered geometry corresponds
to a small portion of a texel.

• Minification - where a single pixel of the rendered geometry corresponds to
an area of the texture, i.e. several texels.

The texture filtering mode specifies the quality of the process used to magnify or
minify the texture. The better the quality the less “blocky” the texture mapped
geometry will appear. The possible the minification filter modes include:

• BASE LEVEL POINT

Selects the nearest point in the base level texture image.

• BASE LEVEL LINEAR

Performs bilinear interpolation on the four nearest texels in the base level
texture image.

• FILTER4

Applies a used defined weight function to the nearest 4× 4 texels in the base
level texture image.
Note: The weight function is set using the setFilter4Func() method of the
Texture class.

• FASTEST

Uses the fastest minification filter.

• NICEST

Uses the minification filter that generates the most visually appealing results.

The minification filter mode associated with a Texture object can be set or retrieved
using the following methods:
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• void setMinFilter(int minFilter)

Sets the minification filter for this Texture object to the specified value.

• int getMinFilter()

Returns the minification filter value for this Texture object.

The magnification filter can also use the modes listed above. The minification filter
and the magnification filter mode associated with a Texture object can be set or
retrieved using the following methods:

• void setMagFilter(int magFilter)

Sets the magnification filter for this Texture object to the specified value.

• int getMagFilter()

Returns the magnification filter value for this Texture object.

The following example demonstrates how a specific magnification filter mode can be
used in conjunction with a Texture object.

0

import javax.media.j3d.∗;
import com.sun.j3d.utils.geometry.∗;
import com.sun.j3d.utils.image.∗;

5 public class MagnificationFilterExample extends BasicSceneWithMouseControl
{

public static void main(String args[]){new MagnificationFilterExample();}

public BranchGroup createContentBranch()
10 {

BranchGroup root = new BranchGroup();

Appearance appearance = new Appearance();

15 Texture earthTexture = null;
try
{

// Load the texture and set its magnification filter
TextureLoader loader = new TextureLoader(”earth.jpg”, this);

20 earthTexture = loader.getTexture();
earthTexture.setMagFilter(Texture.BASE LEVEL LINEAR);

}
catch(Exception e){System.out.println(e.toString());}

25

appearance.setTexture(earthTexture);

// Use the texture in conjucntion with a sphere geometry
Sphere sphere = new Sphere(0.5f,

30 Sphere.GENERATE TEXTURE COORDS,
appearance);

root.addChild(sphere);
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root.compile();
35

return root;
}

}

This program begins by loading a texture image that represents the surface of the
planet earth using a suitably constructed TextureLoader object. The magnification
filter mode of the loaded texture is set to BASE LEVEL LINEAR. The Texture object
is then associated with an Appearance object and the Appearance object is used
to construct a Sphere primitive which is ultimately added to the root of the scene
graph. Examples of renderings obtained with different version of this program are
illustrated in Figure 2.40.

(a) (b)

Figure 2.40: A sphere texture mapped with an image of the earth where Aus-
tralia is visual rendered using two magnification modes: BASE LEVEL POINT (a) and
BASE LEVEL LINEAR (b)

It should be noted that there are a variety of other attributes associated with the
Texture class. These other attributes are discussed in detail in the Java 3D API
specification.

2.7.10.3 TextureAttributes

The TextureAttribute class defines a range of attributes that apply to the texture
mapping process. One of the main attributes defined in the TextureAttributes

class is the texture mode. The texture mode can have one of the following values:

• MODULATE - mixes the colour of the texture with the colour of the underlying
surface. This texture mode make it possible to use lighting with a texture.

• DECAL - applies the texture to the shape being mapped in the form of a decal.
This means that the transparency defined in the texture image is preserved.

• BLEND - blends the texture blend colour with the colour of the underlying
surface. This is an advanced mode where the blending that occurs at each
point depends on the values of the pixels in the texture image.
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• REPLACE - applies the texture directly onto the object overriding the underlying
colour of the shape. This is the default texture mode. Textures applied using
this mode are not affected by light.

• COMBINE - combines the object colour with the texture color or texture blend
colour according to the combine operation specified by the texture combine
mode. Possible values for the combine mode include:

– COMBINE REPLACE

– COMBINE MODULATE

– COMBINE ADD

– COMBINE SUBTRACT

– COMBINE INTERPOLATE

It is possible to set and retrieve the texture mode of a TextureAttributes object
using the following methods:

• void setTextureMode(int textureMode)

Sets the texture mode of this TextureAttributes object to the specified value.

• int getTextureMode()

Returns the texture mode of this TextureAttributes object.

The following example demonstrates how the TextureAttrubtes appearance com-
ponent can be used to make a texture appear to respond to lighting.

0

import javax.media.j3d.∗;

import com.sun.j3d.utils.geometry.∗;
import com.sun.j3d.utils.image.∗;

5 import javax.vecmath.∗;

public class TextureModeExample extends BasicSceneWithMouseControl
{

public static void main(String args[]){new TextureModeExample();}
10

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

15 Appearance appearance = new Appearance();

// Create a white material
Material material = new Material();
material.setAmbientColor(new Color3f(1.0f, 1.0f, 1.0f ));

20 material. setDiffuseColor(new Color3f(1.0f, 1.0f , 1.0f ));
appearance.setMaterial(material);

Texture earthTexture = null;
try

25 {
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// Load the earth texture
TextureLoader loader = new TextureLoader(”earth.jpg”, this);
earthTexture = loader.getTexture();

30 }
catch(Exception e){System.out.println(e.toString());}
appearance.setTexture(earthTexture);

// Set the texture mode to modulate
35 TextureAttributes textureAttributes = new TextureAttributes();

textureAttributes.setTextureMode(TextureAttributes.MODULATE);
appearance.setTextureAttributes(textureAttributes);

// Create a sphere primtive with texture coordinates and normals
40 Sphere sphere = new Sphere(0.5f,

Sphere.GENERATE TEXTURE COORDS|Sphere.GENERATE NORMALS,
50, appearance);

root.addChild(sphere);

45 // Create a bright white directional light
DirectionalLight light = new DirectionalLight(new Color3f(1.0f, 1.0f, 1.0f ),

new Vector3f(−1.0f, −1.0f, −1.0f));
light .setInfluencingBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));
50 root.addChild(light);

// Create a dark white ambient light
AmbientLight ambientLight = new AmbientLight(new Color3f(0.2f, 0.2f, 0.2f));
ambientLight.setInfluencingBounds(new BoundingSphere(new Point3d(),

55 Double.MAX VALUE));
root.addChild(ambientLight);

root.compile();

60 return root;
}

}

The program begins by creating an Appearance object. A Material object is then
associated with the Appearance object. The ambient colour of the Material is
white (1.0, 1.0, 1.0) and the diffuse colour of the Material is also white (1.0, 1.0,
1.0). The “earth” texture is loaded using a suitably constructed TextureLoader

object. A TextureAttributes object is then created and its texture mode is set
to MODULATE. The TextureAttributes object is also associated with the previously
constructed Appearance object. The Appearance object is ultimately used in the
construction of a Sphere primitive. Two light sources are also included in the scene:
a directional light with a bright white colour (1.0, 1.0, 1.0) and an ambient light
with a dim white colour (0.2, 0.2, 0.2). Renderings generated by variation of this
program are illustrated in Figure 2.41.

It is possible to transform the texture coordinates for a piece of geometry using the a
TextureAttributes object. This is achieved by specifying a suitable Transform3D
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(a) (b)

Figure 2.41: Making textures respond to lighting. A white Sphere primitive illumi-
nated by ambient and directional light sources (a). A texture applied to the same
Sphere using the MODULATE texture mode appears to respond to both light sources
(b).

object using the following method:

• void setTextureTransform(Transform3D transform)

Transforms the texture coordinates using the transform represented by the
specified Transfrom3D object.

The TextureAttributes class also support other attributes and these are discussed
in detail in the Java 3D API specification.

2.7.10.4 TexCoordGeneration

The TexCoordGeneration class defines all of the parameters required for automatic
texture coordinate generation and it is included as a part of an Appearance object.

Texture coordinates determine which texel in the texture map is assigned to a given
vertex. Texture coordinates are interpolated between vertices in a similar method
to the way colors are interpolated between vertices.

Rather than the programmer having to explicitly assign texture coordinates to a
particular piece of geometry, Java 3D can automatically generate the texture co-
ordinates to achieve texture mapping. The TexCoordGeneration class defines at-
tributes that specify the functions for automatically generating texture coordinates.
The attributes defines by the TexCoordGeneration class include:

• The texture format - defines whether the generated texture coordinates are
2D, 3D, or 4D. In the case of 2D texture coordinates this attribute has a value
of TEXTURE COORDINATE 2.

• Texture generation mode - defines how the texture coordinates are gener-
ated. The possible values for this attribute are:
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– OBJECT LINEAR - texture coordinates are generated as a linear function
of the object coordinates, i.e. in the case of 2D texture coordinates the
(s, t) texture coordinates are obtained directly from the (x, y) vertex co-
ordinates.

– EYE LINEAR - texture coordinates are generated as a linear function in
eye coordinates. Note that this mode transforms the shapes coordinates
to the viewers coordinate system before the texture coordinates are gen-
erated.

– SPHERE MAP - texture coordinates are generated using spherical reflection
mapping in eye coordinates. This mode is used to simulate the reflected
image of a spherical environment onto a polygon.

– NORMAL MAP - texture coordinates are generated to match vertices’ nor-
mals in eye coordinates.

– REFLECTION MAP - texture coordinates are generated to match vertices’
reflection vectors in eye coordinates.

• Plane equation coefficients - defines the coefficients for the plane equa-
tions used to generate the coordinates in the OBJECT LINEAR and OBJECT EYE

texture coordinate generation modes. The coefficients define a reference plane
in either object coordinates or in eye coordinates, depending on the texture
generation mode.

The following example demonstrates how texture coordinates can be automatically
generated for a simple triangular polygon.

0 import javax.media.j3d.∗;
import com.sun.j3d.utils.image.∗;

public class TexCoordGenerationExample extends BasicSceneWithMouseControl
{

5 public static void main(String args[]){new TexCoordGenerationExample();}

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();
10

Texture woodTexture = null;

try
{

15 // Load the wood texture
TextureLoader loader = new TextureLoader(”wood.jpg”, this);
woodTexture = loader.getTexture();

}
catch(Exception e){System.out.println(e.toString());}

20

Appearance appearance = new Appearance();
appearance.setTexture(woodTexture);

// Defines 2D texture coordinates generated by a linear mapping
25 TexCoordGeneration texCoordGeneration = new TexCoordGeneration();
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texCoordGeneration.setFormat(TexCoordGeneration.TEXTURE COORDINATE 2);
texCoordGeneration.setGenMode(TexCoordGeneration.OBJECT LINEAR);
appearance.setTexCoordGeneration(texCoordGeneration);

30 float [] coordinates = {−0.5f, −0.5f, 0.0f ,
0.5f , −0.5f, 0.0f ,
0.0f , 0.5f , 0.0f};

// Create a geometry array from the specified coordinates
35 GeometryArray geometryArray = new TriangleArray(3,

GeometryArray.COORDINATES);

geometryArray.setCoordinates(0, coordinates);

40 // Create a Shape3D object using the GeometryArray
Shape3D shape = new Shape3D(geometryArray, appearance);
root.addChild(shape);

root.compile();
45

return root;
}

}

This program begins by loading the “wood” texture using a suitably constructed
TextureLoader object. An Appearance object is then created and a TexCoordGeneration
object is associated with the Appearance object. The format of the TexCoordGeneration
object is set to TEXTURE COORD 2 and the texture coordinate generation mode is set
to OBJECT LINEAR. The vertices are specified for a TriangleArray geometry and
a Shape3D object is created using the appearance and the geometry. Finally, the
Shape3D object is added to the scene graph to be displayed. The output obtained
when this program is executed is illustrated in Figure 2.42.

2.7.10.5 Using Multiple Textures

The texture options that have been discussed so far have dealt with applying a sin-
gle texture to a surface. It is also possible to apply several layers of textures to a
surface using a process referred to as multitexturing. This is an advanced approach
to texturing that can be used to implement shadows and special kinds of lighting.

Multilayered textures are created by specifying a series of TextureUnitState objects
for each layer of texture mapping. A TextureUnitState object holds the Texture,
TextureAttributes and TextCoordGeneration objects that represent a specific
texture. A TextureUnitState object can be associated with an Appearance object
using one of the following methods:

• void setTextureUnitState(int index, TextureUnitState state)

Set the TextureUnitState object for this Appearance object at the specified
index to the specified value.

• void setTextureUnitState(TextureUnitState[] stateArray)

Set the array of TextureUnitState objects for this Appearance object to the

134



Figure 2.42: A simple triangular geometry where the texture coordinates have been
automatically generated using a TexCoordGeneration appearance component.

specified array.

It is also possible to specify several sets of texture coordinates with an instance of
GeometryArray. The mapping of the texture coordinates to a specific TextureUnitState
object is defined in the constructor for the relevant subclass of GeometryArray, for
example TriangleArray:

• TriangleArray(int vertexCount, int vertexFormat, int

texCoordSetCount, int[] texCoordSetMap)

Constructs a TriangleArray object that support multiple sets of texture co-
ordinates. The number of sets is specified by the texCoordSetCount argument
and the mapping between the individual sets of texture coordinates and the
associated TextureUnitState object is indicated in the texCoordSetMap ar-
gument.

The texture coordinate associated with a particular TextureUnitState object can
be specified using the following method:

• void setTextureCoordinates(int texCoordSet, int index,

TexCoord2f[] texCoords)

Sets the texture coordinates associated with the vertices starting at the spec-
ified index in the specified texture coordinate set for this GeometryArray ob-
ject.
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2.7.11 Environment Nodes

Java 3D provides a range of environment nodes that affect the affect the environment
of a virtual world. Environment nodes can be used to control lighting, sound and
the background of a scene.

2.7.11.1 Bounding Regions

Environment nodes typically affect the a particular region of a virtual world. For
example, lights shine on shapes and sounds create audible content. Light and sound
sources should not affect the entire virtual universe. Consequently, Java 3D re-
quires bounding regions to be specified for environment nodes to define the region
where they are active. There are two main types of bounding region and they are
constructed as follows:

• BoundingBox(Point3d lower, Point3d upper)

Creates a new BoundingBox object within the specified bounds.

• BoundingSphere(Point3d centre, double radius)

Creates a new BoundingSphere object at the specified location with the spec-
ified radius.

If a bounding region is not specified for a particular environment node then it is
considered to be inactive.

If a environment node is required to be active throughout the entire virtual universe
then it is possible to approximate infinite bounds by creating a BoundingSphere

with a radius of Double.MAX VALUE.

2.7.11.2 Background

The Background environment node defines a solid background colour and a back-
ground image that are used to fill the window at the beginning of each new frame.
The Background environment node also allows background geometry to be specified.

A Background environment node that represents a colour can be created using the
following constructor:

• Background(Color3f backgroundColour)

Creates a new Background environment node with the specified colour.

Alternatively, a background environment node that represents a image can be cre-
ated:

• Background(ImageComponent2D backgroundImage)

Creates a new Background environment node using the specified image.

An ImageComponent2D object representing an image resource can be obtained by
calling the getImage() method of a suitably constructed TextureLoader object.

The following example demonstrates how a background image can be created and
added to a 3D scene.
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0

import javax.media.j3d.∗;

import com.sun.j3d.utils.geometry.∗;
import com.sun.j3d.utils.image.∗;

5 import javax.vecmath.∗;

public class BackgroundImageExample extends
BasicSceneWithMouseControlAndLights

{
10 public static void main(String args[]){new BackgroundImageExample();}

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();
15

ImageComponent2D starImage = null;
try
{

// Load the stars image
20 TextureLoader loader = new TextureLoader(”stars.gif”, this);

starImage = loader.getImage();
}
catch(Exception e){System.out.println(e.toString());}

25 // Create a background node from the stars image
Background bg = new Background(starImage);
bg.setApplicationBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));
root.addChild(bg);

30

Appearance appearance = new Appearance();

Material material = new Material();
appearance.setMaterial(material);

35

Texture earthTexture = null;
try
{

// Load the earth texture
40 TextureLoader loader = new TextureLoader(”earth.jpg”, this);

earthTexture = loader.getTexture();
}
catch(Exception e){System.out.println(e.toString());}
appearance.setTexture(earthTexture);

45

// Allow the texture to respond to lighting
TextureAttributes textureAttributes = new TextureAttributes();
textureAttributes.setTextureMode(TextureAttributes.MODULATE);
appearance.setTextureAttributes(textureAttributes);

50

// Create a details sphere and map the earth texture
Sphere sphere = new Sphere(0.5f,
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Sphere.GENERATE TEXTURE COORDS|Sphere.GENERATE NORMALS,
100, appearance);

55 root.addChild(sphere);

root.compile();

return root;
60 }

}

This program is a modified version of the TextureModeExample.java example that
was discussed earlier. The main difference here is that a Background environ-
ment node is added to the scene. This is achieved by loading the required back-
ground image using a suitably constructed TextureLoader object and then calling
the getImage() method to obtain a ImageComponent2D object that represents the
loaded image. This image is subsequently used to construct a Background object.
The application bounds for the Background environment node are set to the max-
imum value and the Background is added to the root of the scene graph. The
rendering obtained when this program is executed is illustrated in Figure 2.43

Figure 2.43: A texture mapped sphere representing the planet earth and a back-
ground image representing a backdrop of stars.

It is also possible to use a geometry rather than a flat image the create a back-
ground. This involves rendering a texture mapped Sphere at an infinite distance.
The normals of the sphere must be flipped inwards so that the texture is applied to
the interior of the Sphere.

The following example demonstrates how a background geometry can be specified
for a scene.

0

import javax.media.j3d.∗;

import com.sun.j3d.utils.behaviors.mouse.MouseRotate;
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import com.sun.j3d.utils.geometry.∗;
5 import com.sun.j3d.utils.image.∗;

import javax.vecmath.∗;

public class BackgroundGeometryExample extends
BasicSceneWithMouseControlAndLights

10 {
public static void main(String args[]){new BackgroundGeometryExample();}

public BranchGroup createContentBranch()
{

15 BranchGroup root = new BranchGroup();

Texture starTexture = null;
try
{

20 // Load the stars texture
TextureLoader loader = new TextureLoader(”stars.gif”, this);
starTexture = loader.getTexture();

}
catch(Exception e){System.out.println(e.toString());}

25

// Create a backgound node with maximum bounds
Background background = new Background();
background.setApplicationBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));
30

BranchGroup backgroundGroup = new BranchGroup();

// Set the texture for the background appearance
Appearance backgroundAppearance = new Appearance();

35 backgroundAppearance.setTexture(starTexture);

// Create a detailed sphere with normal pointing inwards
Sphere backgroundSphere = new Sphere(0.5f,

Sphere.GENERATE TEXTURE COORDS|
40 Sphere.GENERATE NORMALS INWARD,

100, backgroundAppearance);
backgroundGroup.addChild(backgroundSphere);
background.setGeometry(backgroundGroup);
root.addChild(background);

45

// Create the earth sphere
Appearance earthAppearance = new Appearance();

Material earthMaterial = new Material();
50 earthAppearance.setMaterial(earthMaterial);

Texture earthTexture = null;
try
{

55 TextureLoader loader = new TextureLoader(”earth.jpg”, this);
earthTexture = loader.getTexture();
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}
catch(Exception e){System.out.println(e.toString());}
earthAppearance.setTexture(earthTexture);

60

Sphere earthSphere = new Sphere(0.5f,
Sphere.GENERATE TEXTURE COORDS|
Sphere.GENERATE NORMALS,
100, earthAppearance);

65 root.addChild(earthSphere);

root.compile();

return root;
70 }

}

The main difference between this example and the previous background example
is that a background geometry is used rather than at flat background. The back-
ground geometry is represented by a BranchGroup with a single Sphere child. The
Sphere generates normals that are projected inwards so that the texture is mapped
to the inside of the sphere rather than the outside. The BranchGroup represent-
ing the background geometry is associated with a Background object using the
setGeometry() method and the Background object is ultimately added to the root
of the scene graph using the addChild() method. The output obtained when this
program is executed is illustrated in Figure 2.44.

Figure 2.44: A scene where the background is represented by a spherical geometry
rendered at infinity. The normals of the sphere point inwards so that the background
texture is mapped to the interior of the sphere rather than the exterior.

2.7.11.3 Fog

The Fog environment node simulates the way that objects appear to fade into the
background when viewed from a distance. Fog is a useful feature and can be used
to add a great deal of realism to a scene. The effect caused by fog is sometimes
called “depth cueing” because it gives the brain a visual cue as to the depth of an
object in the scene. Fog is implemented in Java 3D by blending the fog colour with
the colour of the scene objects based on their distance from the viewer. Java 3D
provides support for two types of Fog environment nodes:

140



• LinearFog - has a constant density, so the level of obscurity generated by the
fog increases linearly as the viewer moves away from the object being viewed.

• ExponentialFog - the fog density increases exponentially so that the level
of obscurity increases exponentially as the view moves away from the object
being viewed.

LinearFog has three main attributes:

• Colour - defines the colour of the fog.

• Front distance - anything closer to the viewer than the front distance is not
affected by the fog.

• Back distance - anything further away from the view than the back distance
is completely obscured by the fog.

A LinearFog object can be created using the following constructor:

• LinearFog(Color3f colour, double frontDistance, double backDistance)

Creates a LinearFog object with the specified colour, front distance and back
distance.

It should be noted that the influencing bounds for a Fog node must be set, otherwise
the Fog node will be considered to be disabled.

The following example demonstrates how a Fog node can be used to obscure an
object in a scene.

0 import javax.media.j3d.∗;
import javax.vecmath.∗;

import com.sun.j3d.utils.behaviors.mouse.∗;
import com.sun.j3d.utils.geometry.∗;

5

public class LinearFogExample extends BasicScene{

public static void main(String args[]){new LinearFogExample();}

10 public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

// Define a backgound with a constant mid grey colour
15 Background background = new Background(new Color3f(0.5f, 0.5f, 0.5f));

background.setApplicationBounds(new BoundingSphere(new Point3d(),
Double.MAX VALUE));

root.addChild(background);

20 // Define a linear fog node with the same colour as the background
LinearFog linearFog = new LinearFog(new Color3f(0.5f, 0.5f, 0.5f), 1.0, 10.0);
linearFog.setInfluencingBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));
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root.addChild(linearFog);
25

TransformGroup tg = new TransformGroup();
tg. setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(tg);

30 // Include support for mouse zoom
MouseZoom zoom = new MouseZoom();
zoom.setTransformGroup(tg);
tg.addChild(zoom);
zoom.setSchedulingBounds(new BoundingSphere(new Point3d(),

35 Double.MAX VALUE));

// Include support for mouse rotate
MouseRotate rotate = new MouseRotate();
rotate .setTransformGroup(tg);

40 tg.addChild(rotate);
rotate .setSchedulingBounds(new BoundingSphere(new Point3d(),

Double.MAX VALUE));

ColorCube colorCube = new ColorCube(0.4f);
45 tg.addChild(colorCube);

return root;
}

}

This example begins by creating a background with a constant colour of mid grey
(0.5, 0.5, 0.5). A LinearFog environment node of the same colour is then created
and added to the root of the scene. The front distance for the LinearFog node is
1 metre and the back distance is 10 metres. This means that objects less than one
metre away from the viewer are not affected by the fog and objects greater than 10
metres away from the viewer are completely obscured by the fog. MouseZoom and
MouseRotate behaviours are added to the scene in order to demonstrate the effects
of the fog. Examples of the types of renderings that are obtained when this program
is executed are illustrated in Figure 2.45.

(a) (b) (c)

Figure 2.45: Examples of a ColorCube viewed from different distances in the pres-
ence of LinearFog.
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2.7.12 Behaviours

Behaviours are nodes that makes changes to the scene graph in response to events,
such as user input or the passing of time. In other words, behaviours are a general
event handling mechanism for Java 3D. A behaviour indicates interest in a set of
events called the behaviour’s wakeup criterion. When an event occurs that matches
the criterion, Java 3D calls the behaviour to process the event. A bounding region
must be specified for all behaviours so that they are enabled. The bounding region
is set using the following method of the Behaviour class:

• void setSchedulingBounds(Bounds region)

Sets the bounding region for this Behaviour object to the specified value.

The remainder of this section discusses behaviours that respond to mouse event,
behaviours that render an shape at different levels of detail, behaviours that cause
a shape to always face the viewer and interpolators that change the property of a
node over time.

2.7.12.1 Mouse Behaviours

The location, orientation and scale of a single scene graph node or a group of scene
graph nodes can be controlled using a TransformGroup object. The transformation
associated with the TransformGroup is specified using a Transform3D object.

Alternatively a subclass of the abstract MouseBehavior class can be used to update
the transformation associated with a TransformGroup object. The subclasses of
MouseBehavior are:

• MouseRotate - lets the user control the rotational component of the transform
associated with a TransformGroup object using the mouse.

– Pressing the left mouse button causes the mouse events to be passed to
the MouseRotate behaviour.

• MouseTranslate - lets the user control the translational component of the
transform associated with a TransformGroup object using the mouse.

– Pressing the right mouse button causes the mouse events to be passed to
the MouseTranslate behaviour.

• MouseWheelZoom - lets the user control the scale component of the transform
associated with a TransformGroup object using the mouse wheel.

– Rotation of the wheel away from the users causes the scale to decrease
and rotation of the wheel towards the user cases the scale to increase.

• MouseZoom - lets the user control the scale component of the transform asso-
ciated with a TransformGroup object using the mouse.

– Pressing the centre mouse button causes the mouse events to be passed
to the MouseZoom behaviour.

– Note: In cases where the mouse has only two buttons, pressing the left
mouse button and the ALT key simultaneously causes the mouse events
to be passed to the MouseZoom behaviour.
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These classes are all defined in the com.sun.j3d.utils.behaviors.mouse package.
All of the four mouse behaviours operate in the same way. The following discussion
describes how the MouseRotate behaviour operates.

An new instance of a MouseRotate object can be created using one of the following
constructors:

• MouseRotate()

Create a default MouseRotate behaviour that captures mouse events from the
Canvas3D object associated with the scene graph.

• MouseRotate(Component c)

Creates a MouseRotate behaviour that captures mouse events from the spec-
ified Component.

• MouseRotate(TransformGroup tg)

Creates a MouseRotate behaviour that captures mouse events from the Canvas3D
object associated with the scene graph and updates the specified TransformGroup

object.

If the TransformGroup object that is to be modified is not specified in the con-
structor for a MouseBehavior object then it can be specified using the following
method:

• void setTransformGroup(TransformGroup tg)

Sets the TransformGroup object updated by the MouseRotate behaviour to
the specified TransformGroup object.

The MouseRotate behaviour is an environment node and must have a bounding
region associated with it so that it is enabled. A suitably constructed bounding
region object can be associated with a MouseRotate behaviour using the following
method:

• void setSchedulingBounds(Bounds region)

Sets the bounding region of the MouseRotate behaviour to the specified region.

It is possible to set the rate of rotation caused by the mouse movements. This can
be achieved using the following method:

• void setFactor(double factor)

Sets the x-axis and y-axis movement multiplier to the specified value.

Once a MouseRotate behaviour has been constructed and configured it must be at-
tached to the scene graph so that it is active. A mouse behaviour is usually attached
to the TransformGroup that it updates. This is achieve by calling the addChild()

method of the TransformGroup object.

The following example demonstrates how all four mouse behaviours can be used in
conjunction with a single TransformGroup object.
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0

import javax.media.j3d.∗;
import javax.vecmath.Point3d;

import com.sun.j3d.utils.behaviors.mouse.∗;
5 import com.sun.j3d.utils.geometry.∗;

public class MouseBehaviourExample extends BasicScene
{

public static void main(String args[]){new MouseBehaviourExample();}
10

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

15 // Create the TransformGroup that is to be updated
TransformGroup tg = new TransformGroup();
tg. setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(tg);

20 // Approximate infinite bounds
BoundingSphere infiniteBounds = new BoundingSphere(new Point3d(),

Double.POSITIVE INFINITY);

// Create the MouseRotate behaviour
25 MouseRotate rotate = new MouseRotate(tg);

rotate .setSchedulingBounds(infiniteBounds);
tg.addChild(rotate);

// Create the MouseZoom behaviour
30 MouseZoom zoom = new MouseZoom(tg);

zoom.setSchedulingBounds(infiniteBounds);
tg.addChild(zoom);

// Create the MouseWheelZoom behaviour
35 MouseWheelZoom wheelZoom = new MouseWheelZoom(tg);

wheelZoom.setSchedulingBounds(infiniteBounds);
tg.addChild(wheelZoom);

// Create the MouseTranslate behaviour
40 MouseTranslate translate = new MouseTranslate(tg);

translate .setSchedulingBounds(infiniteBounds);
tg.addChild(translate);

ColorCube colorCube = new ColorCube(0.4);
45 tg.addChild(colorCube);

return root;
}

}

This example begins by creating a TransformGroup object that is attached to the
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root of the scene graph and allows its associated transform to be written after
the scene graph has gone live. Then the four mouse behaviours are constructed,
configured and added to the TransformGroup. Finally, a ColorCube object with
sides of 80 cm is added to the TransformGroup. The scale, orientation and locations
of this ColorCube will be controlled by different mouse events. Examples of the
various outputs of this program are illustrated in Figure 2.46

(a) (b)

(c) (d)

Figure 2.46: Examples of a shape (a) that was rotated (b), scaled (c) and translated
(d) using different mouse behaviours.

2.7.12.2 Level of Detail

A level of detail behaviour is used to control the level of detail of a shape based on
its distance from the viewer. This allows a high resolution version of the shape to
be used when the viewer is close to the shape. Then, as the viewer moves away from
the shape lower resolution version of the shape can be used.

Level of detail control is provided by the DistanceLOD class which is a subclass of
the abstract LOD class. Both of these classes are defined in the javax.media.j3d

package. The DistanceLOD behaviour controls a Switch group to control which of
its children are rendered based on the distance between the DistanceLOD node and
the viewer.

An array of n monotonically increasing distance values must be specified, such that
distances[0] is associated with the highest level of detail and distances[n − 1] is
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associated with the lowest level of detail. The index of the child of the Switch node
that is rendered is based on the distance between the DistanceLOD and the viewer
d is:

• 0, ifd ≤ distances[0]

• i, ifdistances[i− 1] < d ≤ distances[i]

• n, ifd > distance[n− 1]

A DistanceLOD behaviour is created using one of the following constructors:

• DistanceLOD(float[] distances)

Creates a DistanceLOD object with the specified list of distances that is posi-
tioned at the origin.

• DistanceLOD(float[] distances, Point3f position)

Creates a DistanceLOD object with the specified list of distances and position.

One of more Switch nodes can be associated with the DistanceLOD behaviour using
the following method:

• void addSwitch(Switch switch)

Appends the specified Switch node to the list of Switch nodes maintained by
this DistanceLOD object.

• void insertSwitch(Switch switch, int index)

Inserts the specified Switch node into the list of Switch nodes maintained by
this DistanceLOD object at the specified index.

• void setSwitch(Switch switch, int index)

Sets the Switch node in the list of Switch nodes maintained by this DistanceLOD
object at the specified index to the specified value.

The following two points should be noted regarding the usage of a DistanceLOD

behaviour:

1. The ALLOW SWITCH WRITE capability must be set for the Switch group. Oth-
erwise the child mask cannot be updated after the scene graph has gone live.

2. A bounding region must be specified for the DistanceLOD behaviour. Other-
wise it will be disabled and none of the children of the associated Switch node
will be displayed.

The following program demonstrates how a DistanceLOD behaviour can be used to
render different version of a shape based on the distance between the DistanceLOD

node and the viewer.

0

import javax.media.j3d.∗;
import javax.vecmath.∗;

import com.sun.j3d.utils.behaviors.mouse.∗;
5 import com.sun.j3d.utils.geometry.∗;
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public class DistanceLODExample extends BasicScene
{

public static void main(String args[]){new DistanceLODExample();}
10

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

15 // Create the TransformGroup that is to be updated
TransformGroup tg = new TransformGroup();
tg. setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(tg);

20 // Approximate infinite bounds
BoundingSphere infiniteBounds = new BoundingSphere(new Point3d(),

Double.POSITIVE INFINITY);

// Create the MouseZoom behaviour
25 MouseZoom zoom = new MouseZoom(tg);

zoom.setSchedulingBounds(infiniteBounds);
tg.addChild(zoom);

// Create a Switch and enable write operations
30 Switch sg = new Switch();

sg. setCapability(Switch.ALLOW SWITCH WRITE);

// Create a red sphere
Appearance appRed = new Appearance();

35 ColoringAttributes caRed = new ColoringAttributes(
new Color3f(1.0f, 0.0f , 0.0f ),
ColoringAttributes.SHADE FLAT);

appRed.setColoringAttributes(caRed);
Sphere sphereRed = new Sphere(0.4f, appRed);

40 sg.addChild(sphereRed);

// Create a green sphere
Appearance appGreen = new Appearance();
ColoringAttributes caGreen = new ColoringAttributes(

45 new Color3f(0.0f, 1.0f , 0.0f ),
ColoringAttributes.SHADE FLAT);

appGreen.setColoringAttributes(caGreen);
Sphere sphereGreen = new Sphere(0.4f, appGreen);
sg.addChild(sphereGreen);

50

// Create a blue sphere
Appearance appBlue = new Appearance();
ColoringAttributes caBlue = new ColoringAttributes(

new Color3f(0.0f, 0.0f , 1.0f ),
55 ColoringAttributes.SHADE FLAT);

appBlue.setColoringAttributes(caBlue);
Sphere sphereBlue = new Sphere(0.4f, appBlue);
sg.addChild(sphereBlue);
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60 // Create DistanceLOD behaviour
float [] distances = {4.0f, 8.0f};
DistanceLOD lod = new DistanceLOD(distances);
lod.setSchedulingBounds(infiniteBounds);
lod.addSwitch(sg);

65

tg.addChild(sg);
tg.addChild(lod);

return root;
70 }

}

This program begins by creating a TransformGroup object that allows its associ-
ated transform to be written to after the scene graph has gone live. A MouseZoom

behaviour is then attached to this TransformGroup. Three shapes are subsequently
attached to a Switch node which is in turn attached to the TransformGroup, these
are: red, green and blue spheres all 40 cm in diameter. A DistanceLOD behaviour is
then created, associated with the Switch group and added to the TransformGroup.
This causes:

• This first child of the Switch group (i.e. the red sphere) to be displayed if the
distance between the viewer and the DistanceLOD is ≤ 4 metres.

• The second child of the Switch group (i.e. the green sphere) to be displayed
if the distance between the viewer and the DistanceLOD is > 4 metres but ≤
8 metres.

• The third child of the Switch group (i.e. the blue sphere) to be displayed if
the distance between the viewer and the DistanceLOD is > 8 metres.

It should be noted that in this example different coloured shapes were used rather
than different resolution shapes. This is done in order to highlight the operation of
the DistanceLOD behaviour. Examples of the output generated by this program are
illustrated in Figure 2.47.

2.7.12.3 Billboard

The Billboard behaviour node operates on a TransformGroup node to cause the
local +z axis of the TransformGroup to point at the viewer’s eye position. This
is done regardless of the transforms above the specified TransformGroup node in
the scene graph. Two alignment modes are supported by the Billboard behaviour,
these are:

• ROTATE ABOUT AXIS

Causes the associated TransformGroup to rotate about the specified axis.

• ROTATE ABOUNT POINT

Causes the associated TransformGroup to rotate about the specified point.
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(a) (b) (c)

Figure 2.47: A Switch group rendering a different child based on the distance
between a DistanceLOD behaviour and the viewer. A red sphere is rendered when
the viewer is ≤ 4 metres away (a). A green sphere is rendered when the viewer is
> 4 metres away but ≤ 8 metres away (b). Finally a blue sphere is rendered if the
viewer is > 8 metres away.

Billboard behaviours are ideal for drawing screen aligned-text or for drawing
roughly symmetrical objects. A typical use might consist of a quadrilateral that
contains a tree structure. A Billboard behaviour can be created using one of the
following constructors:

• Billboard(TransformGroup tg, int mode, Point3f point)

Creates a Billboard behaviour with the specified rotation point and mode
that operates on the specified TransformGroup.

• Billboard(TransformGroup tg, int mode, Vector3f axis)

Creates a Billboard behaviour with the specified axis and mode that operates
on the specified TransformGroup.

It should be noted that the OrientatedShape3D node provides the same kind of
functionality as the Billboard behaviour, except that only a single Shape3D object
is affected. OrientatedShape3D is generally faster than Billboard and should be
used where possible.

The following example demonstrates how a Billboard behaviour can be used.

0

import javax.media.j3d.∗;
import javax.vecmath.∗;

import com.sun.j3d.utils.behaviors.mouse.∗;
5 import com.sun.j3d.utils.geometry.∗;

public class BillboardExample extends BasicScene
{

public static void main(String args[]){new BillboardExample();}
10

public BranchGroup createContentBranch()
{
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BranchGroup root = new BranchGroup();

15 // Create the TransformGroup for the MouseRotate
TransformGroup tg1 = new TransformGroup();
tg1.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(tg1);

20 tg1.addChild(new ColorCube(0.2));

// Approximate infinite bounds
BoundingSphere infiniteBounds = new BoundingSphere(new Point3d(),

Double.POSITIVE INFINITY);
25

// Create the MouseRotate behaviour
MouseRotate rotate = new MouseRotate(tg1);
rotate .setSchedulingBounds(infiniteBounds);
tg1.addChild(rotate);

30

// Create the TransformGroup for the translation
Transform3D trans = new Transform3D();
trans. setTranslation(new Vector3d(−0.5f, 0.0f, 0.0f ));
TransformGroup tg2 = new TransformGroup(trans);

35 tg2.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
tg1.addChild(tg2);

// Create the TransformGroup for use with the Billboard
TransformGroup tg3 = new TransformGroup();

40 tg3.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
tg2.addChild(tg3);

tg3.addChild(new ColorCube(0.2));

45 Billboard billboard = new Billboard(tg3,
Billboard.ROTATE ABOUT POINT,
new Point3f(0.0f, 0.0f , 0.0f ));

billboard .setSchedulingBounds(infiniteBounds);
tg3.addChild(billboard);

50

return root;
}

}

The program creates a hierarchy that consists of three TransformGroup objects.
The first TransformGroup is associated with a MouseRotate behaviour and has
a ColorCube child and a TransformGroup child. The second TransformGroup is
associated with a translation 50 cm left of the origin and has a TransformGroup

child. This final TransformGroup has a ColorCube child and is associated with a
Billboard behaviour so that its child is always orientated towards the viewer. The
types of output generated when this program is executed are illustrated in Figure
2.48.
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(a) (b)

Figure 2.48: The initial output of the BillboardExample program (a) and an exam-
ple of the output after the scene has been rotated slightly. Note that the ColorCube
that was originally on the left is still facing towards the viewer.

2.7.12.4 Interpolators

Java 3D provides support for a range of behaviours that implement some type of
interpolation. Interpolators are used to change an attribute of a node over time.
The core interpolation functionality is defined in the abstract Interpolator base
class. The types of interpolation that are defined by the subclasses of this class
include:

• ColorInterpolator - This class defines a behaviour that modifies the ambient,
emissive, diffuse, or specular colour of its target Material object by linearly
interpolating between a pair of specified colours.

• TransparencyInterpolator - This class defines a behaviour that modifies
the transparency of its target TransparencyAttributes object by linearly
interpolating between a pair of specified transparency values.

• SwitchValueInterpolator - This class defines a behaviour that modifies the
selected child of the target Switch node by linearly interpolating between a
pair of specified child index values.

• TransformInterpolator - This is an abstract class that extends Interpolator
to provide common methods used by various transform related interpolator
subclasses.

PositionInterpolator

One example of a subclass of TransformInterpolator is PositionInterpolator.
This class defines a behaviour that modifies the translation component of its target
TransformGroup by linearly interpolating between a pair of specified positions. The
interpolated position is used to generate a translation transform along the local X-
axis of this interpolator. An instance of a PositionInterpolator can be created
using one of the following constructors:

• PositionInterpolator(Alpha alpha, TransformGroup target)

Constructs a position interpolator with a specified target, an axis-of-translation
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set to the identity transformation, a start position of 0.0f and an end position
of 1.0f.

• PositionInterpolator(Alpha alpha, TransformGroup target,

Transform3D axisOfTransform, float start, float finish)

Constructs a position interpolator with a specified target, a specified axis-of-
translation, a specified start position and a specified end position.

Both of these constructors also require a Alpha object to be passed as an argument.
An Alpha object is a node component that provides common methods for converting
a time value into an alpha value (i.e. a value in the range 0 to 1). Some of the
attributes defined by the Alpha alpha class are as follows:

• Loop count - This is the number of times to run this Alpha. A value of -1
indicates that the Alpha loops indefinitely.

• Trigger time - This is the time in milliseconds since the start time that this
object first triggers. If the start time plus the trigger time is ≥ the current
time, then the Alpha starts running.

• Increasing alpha duration - This is the period of time during which the
Alpha object transitions from zero to one.

An instance of an Alpha object can be created using the following constructor:

• Alpha(int loopCount, long increasingAlphaDuration)

Creates an Alpha object that will loop for the specified number of durations
where each loop lasts for the specified duration in milliseconds.

The attributes of the constructed Alpha object can then be access using the relevant
accessor methods, for example the trigger time can be set or retrieved using the
following methods:

• void setTriggerTime(long time)

Sets the trigger time to the specified value, e.g. a value of 4000 would cause
the Alpha to start iterating four seconds after the application was launched.

• long getTriggerTime()

Retreves the trigger time in milliseconds associated with this alpha object.

The following example demonstrates how a PositionInterpolator can be used to
move an object from one location to another, a specified number of times, over a
specified period.

0

import javax.media.j3d.∗;
import javax.vecmath.∗;

import com.sun.j3d.utils.behaviors.mouse.∗;
5 import com.sun.j3d.utils.geometry.∗;

public class PositionInterpolatorExample extends BasicScene
{
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public static void main(String args[]){new PositionInterpolatorExample();}
10

public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

15 // Create the TransformGroup associated with the PositionInterpolator
TransformGroup tg = new TransformGroup();
tg. setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
root.addChild(tg);

20 // Add a ColorCube child
tg.addChild(new ColorCube(0.2));

// Create an alpha that will start after two seconds, loop four times
// where each loop lasts 1 second

25 Alpha alpha = new Alpha(4, 1000);
alpha.setTriggerTime(2000);

// A Transform that rotates the x axis onto the y axis
Transform3D transform = new Transform3D();

30 transform.setRotation(new AxisAngle4f(0.0f, 0.0f, 1.0f ,
(float)(Math.PI/2.0)));

// Create the positional interpolator to move the ColorCube
// between 0.0 and 0.5 on the y−axis

35 PositionInterpolator pi = new PositionInterpolator(alpha,
tg, transform, 0.0f , 0.5f );

pi .setSchedulingBounds(new BoundingSphere(new Point3d(),
Double.POSITIVE INFINITY));

tg.addChild(pi);
40

return root;
}

}

The program begins by creating a TransformGroup object that will ultimately be
updated by a PositionInterpolator behaviour. A ColorCube with sides 40 cm in
length is added to the TransformGroup. An Alpha is then created with a loop count
of 4, a loop duration of 1 second and a trigger time 2 seconds after the application
starts. A Transform3D is then created that transforms the x-axis onto the y-axis.
Finally, a PositionInterpolator is created that updates the TransformGroup and
moves the ColorCube from 0.0 to 0.5 along the y-axis. Examples of the output
renderings obtained from this program are illustrated in Figure 2.49.

Spline Path Interpolator

A B-spline curve is a smooth path that is defined by a series of control points and
blending functions. The origin of B-splines relates to industries such as ship building.
where a designer was required to draw a life-size curves representing, for example,
the cross-section through the hull of a ship.
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(a) (b) (c)

Figure 2.49: An example of the output generated by the PositionInterpolator ex-
ample. The ColorCube is initially positioned at the original. Its position is then
interpolated along the positive y-axis (b) to y = 0.5 (c).

For small scale drawings draughtsmen would use French curves2. They would draw
complete curves by putting together segments formed from different parts of differ-
ent French curves. For full-scale plans this method was completely impractical and
the draftsmen would employ long thin strips of metal. These were pushed into the
required shape and secured using lead weights called ducks (see Figure 2.50). These
ducks are analogous to the control points for a B-spline.

Figure 2.50: An example of how lead weights known as ducks can be used to generate
a curved shape from a straight rod.

This is the physical basis for B-splines. The metal shape takes up a shape that
minimises its internal strain. In addition, the effect of a duck is local and the shape
of the curve is only altered in its vicinity.

A B-spline curve does not pass through its control points. It is a complete piece-
wise cubic polynomial consisting of any number of curve segments. The B-spline
formulation is defined as follows:

2French curves are a set of small, flat preformed curve sections
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Qi(u) = UBsP (2.3)

Or alternatively in matrix notation:

Qi(u) =
[
u3 u2 u 1

] 1

6




−1 3 −3 1
3 −6 3 0
−3 0 3 0
1 4 1 0







Pi−3

Pi−2

Pi−1

Pi


 (2.4)

where Qi is the ith B-spline segment and Pi is a set of four points in a sequence of
control points. The value for u over a single curve segment is 0 ≤ u ≤ 1. Using this
notation u represents a local parameter, locally varying over the parametric range
0 to 1 to define a single B-spline curve segment.

It is clear that a B-spline curve is a series of m− 2 curve segments that are labeled
Q3, Q4, ..., Qm defines or determined by m + 1 control points P0, P1, ..., Pm,m ≥ 3.
Each curve segment is defined by four control points and each control point influences
four and only four curve segments. An example of a B-spline curve is illustrated in
Figure 2.51.

Figure 2.51: An example of a B-spline curve with 6 control points,

Java 3D provides support for a variation on B-splines known as Kochanek-Bartels
cubic splines. These types of spline are also known as a TCB splines as they have
configurable tension, continuity and bias characteristics. Unlike B-splines, TCB
splines do go through the control points.

The RotPosScaleTCBSplinePathInterpolator class defines a behaviour that varies
the rotational, translational and scale components of its target TransformGroup

using Kochanek-Bartels cubic spline interpolation to interpolate among a series of
key frames using the value generated by a specified Alpha object. An object of this
class can be constructed as follows:

• RotPosScaleTCBSplinePathInterpolator(Alpha alpha, TransformGroup

target, Transform3D axisOfTransform, TCBKeyFrame[] keys)

Constructs a new RotPosScaleTCBSplinePathInterpolator object that varies
the rotation, translation and scale of the transformation associated with the
target TransformGroup.

The TCBKeyFrame[] argument defines a list of key points and their associated at-
tributes. A TCBKeyFrame object can be created using the following constructor:

• TCBKeyFrame(float k, int l, Point3f pos, Quat4f q, Point3f s,

float t, float c, float b)

Creates a key frame with the specified attributes:
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– k - Defines the knot value. The first knot must have a value of 0.0. The
last knot must have a value of 1.0. An intermediate knot with index k
must have a value strictly greater than any knot with index less than k.

– l - Indicate whether to use linear (1) or spline (0) interpolation.

– pos - The position of the key frame.

– q - The rotation at the key frame.

– s - The scale at the key frame.

– t - The tension at the key frame (−1.0 < t < 1.0).

– c - The continuity at the key frame (−1.0 < c < 1.0).

– b - The bias at the key frame (−1.0 < b < 1.0).

The follow example demonstrates how a RotPosScaleTCBSplinePathInterpolator

behaviour can be used to generate a spline interpolated path along a series of control
points.

0

import javax.media.j3d.∗;
import javax.vecmath.∗;
import com.sun.j3d.utils.geometry.∗;
import com.sun.j3d.utils.behaviors.interpolators .∗;

5

public class TCBSplineExample extends BasicScene
{

public static void main(String args[]){new TCBSplineExample();}

10 public BranchGroup createContentBranch()
{

BranchGroup root = new BranchGroup();

TransformGroup tg = new TransformGroup();
15 tg. setCapability(TransformGroup.ALLOW TRANSFORM WRITE);

root.addChild(tg);

ColorCube colorCube = new ColorCube(0.1);
20 tg.addChild(colorCube);

TCBKeyFrame[] keyFrame = new TCBKeyFrame[5];

// Create the first key frame at (0.5, 0.5)
25 keyFrame[0] = new TCBKeyFrame(0.0f,

0,
new Point3f(0.5f,0.5f ,0.0 f ),
new Quat4f(0.0f, 0.0f, 0.0f , 0.0f ),
new Point3f(1.0f, 1.0f , 1.0f ),

30 0.0f , 0.0f , 0.0f );

// Create the second key frame at (−0.5, 0.5)
keyFrame[1] = new TCBKeyFrame(0.25f,

0,

157



35 new Point3f(−0.5f,0.5f,0.0f ),
new Quat4f(0.0f, 0.0f, 0.0f , 0.0f ),
new Point3f(1.0f, 1.0f , 1.0f ),
0.0f , 0.0f , 0.0f );

40

// Create the thrid key frame at (−0.5, −0.5)
keyFrame[2] = new TCBKeyFrame(0.50f,

0,
new Point3f(−0.5f,−0.5f,0.0f),

45 new Quat4f(0.0f, 0.0f, 0.0f , 0.0f ),
new Point3f(1.0f, 1.0f , 1.0f ),
0.0f , 0.0f , 0.0f );

50 // Create the fourth key frame at (0.5, −0.5)
keyFrame[3] = new TCBKeyFrame(0.75f,

0,
new Point3f(0.5f,−0.5f,0.0f ),
new Quat4f(0.0f, 0.0f, 0.0f , 0.0f ),

55 new Point3f(1.0f, 1.0f , 1.0f ),
0.0f , 0.0f , 0.0f );

// Create the final key frame at (0.0, 0.0)
60 keyFrame[4] = new TCBKeyFrame(1.0f,

0,
new Point3f(0.0f,0.0f ,0.0 f ),
new Quat4f(0.0f, 0.0f, 0.0f , 0.0f ),
new Point3f(1.0f, 1.0f , 1.0f ),

65 0.0f , 0.0f , 0.0f );

// Create an Alpha that loops indefinitely for
// a duration of 4 seconds
Alpha alpha = new Alpha(−1, 4000);

70

// Create the TCB spline path interpolator
RotPosScaleTCBSplinePathInterpolator i =

new RotPosScaleTCBSplinePathInterpolator(alpha,
tg, new Transform3D(),keyFrame);

75 BoundingSphere s = new BoundingSphere(new Point3d(),
Double.POSITIVE INFINITY);

i .setSchedulingBounds(s);
tg.addChild(i);

80 return root;
}

}

The program begins by creating a TransformGroup whose associated transforma-
tion will ultimately be controlled by a TCB spline path interpolator. The child of
the TransformGroup is a ColorCube with sides 20 cm in length.
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A total of five key frames are defined. Each key frame has a unique position and
knot value and uses spline interpolation. None of the key frames affect the rotation
or scale of the transform group and the tension, continuity and bias are all set to 0.

A RotPosScaleTCBSplinePathInterpolator object is created using an Alpha ob-
ject that loops infinitely with a period of 4 seconds, the TransformGroup that is to
be modified, the identity transform and the array of key frames. The bounds for the
interpolator are set to approximate infinite bounds and the interpolator is added to
the scene graph. The path taken by the ColorCube under the control of the TCB
spline path interpolator is illustrated in Figure 2.52.

(a) (b)

(c) (d)

Figure 2.52: A illustration of the path taken by the ColorCube under control of the
TCB spline path interpolator.

2.7.13 Picking

Picking is essentially the opposite operation to viewing. It enables the selection
of a specific shape by projecting 2D screen coordinates into the virtual world and
identifying the shape associated with the coordinates.

The PickCanvas class is used to turn the mouse coordinates into an area of space
or a PickShape, that projects from the viewer through the mouse location into the
virtual world. The PickCanvas class extends a more general PickTool class that
defines basic picking operations.
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When a pick is requested, Java 3D figures out the pickable shapes that intersect
with the PickShape. These shapes are stored in a list of PickResult objects.

A PickCanvas object can be created using the following constructor:

• PickCanvas(Canvas3D canvas, BranchGroup b)

Creates a PickCanvas object that monitors the specified Canvas3D object
for mouse events and uses these events to pick objects from the specified
BranchGroup rooted scene graph.

A range of methods are available for configuring the attributes of a PickCanvas

object, these include:

• void setMode(int mode)

Sets the picking detail mode for this PickCanvas object.

• void setTolerance(float tolerance)

Sets the picking tolerance. Objects within this distance in pixels to the mouse
x,y location will be picked. The default tolerance is 2.0 pixels.

If a mouse click occurs on the canvas then the list of shapes that were picked can
be obtained using the following method:

• PickResult[] pickAll()

Results an array that represents all of the nodes that intersect with the pick
location.

The following example demonstrates how the PickCanvas and its associated classes
can be used to select objects from a 3D scene using the mouse.

0

import java.awt.event.∗;
import javax.media.j3d.∗;

import com.sun.j3d.utils.picking.∗;
5 import com.sun.j3d.utils.geometry.∗;

import javax.vecmath.∗;

public class PickExample extends BasicScene
{

10 public static void main(String args[]){new PickExample();}

PickCanvas pickCanvas;
Appearance redAppearance;
Appearance greenAppearance;

15 Shape3D rightShape;
Shape3D leftShape;

public BranchGroup createContentBranch()
{

20 BranchGroup root = new BranchGroup();

// Create and configure the PickCanvas
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pickCanvas = new PickCanvas(canvas, root);
pickCanvas.setMode(PickTool.GEOMETRY);

25 pickCanvas.setTolerance(4.0f );

// Create a red appearance
redAppearance = new Appearance();
ColoringAttributes red = new ColoringAttributes(

30 new Color3f(1.0f, 0.0f , 0.0f ),
ColoringAttributes.SHADE FLAT);

redAppearance.setColoringAttributes(red);

// Create a green appearance
35 greenAppearance = new Appearance();

ColoringAttributes green = new ColoringAttributes(
new Color3f(0.0f, 1.0f , 0.0f ),
ColoringAttributes.SHADE FLAT);

greenAppearance.setColoringAttributes(green);
40

// Create a TransformGroup whose children will be located
// 50 cm to the left of the origin
Transform3D left = new Transform3D();
left . setTranslation(new Vector3f(−0.5f, 0.0f, 0.0f ));

45 TransformGroup leftGroup = new TransformGroup(left);
root.addChild(leftGroup);

// Add a red sphere to the left TransformGroup
Sphere leftSphere = new Sphere(0.2f, redAppearance);

50 leftShape = leftSphere.getShape();
leftShape.setCapability(Shape3D.ALLOW APPEARANCE WRITE);
leftGroup.addChild(leftSphere);

// Create a TransformGroup whose children will be located
55 // 50 cm to the right of the origin

Transform3D right = new Transform3D();
right . setTranslation(new Vector3f(0.5f, 0.0f , 0.0f ));
TransformGroup rightGroup = new TransformGroup(right);
root.addChild(rightGroup);

60

// Add a red sphere to the right TransformGroup
Sphere rightSphere = new Sphere(0.2f, redAppearance);
rightShape = rightSphere.getShape();
rightShape.setCapability(Shape3D.ALLOW APPEARANCE WRITE);

65 rightGroup.addChild(rightSphere);

return root;
}

70 public void mouseClicked(MouseEvent me)
{

// Set the colour of both spheres to red
leftShape.setAppearance(redAppearance);
rightShape.setAppearance(redAppearance);

75
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// Get the picked nodes
pickCanvas.setShapeLocation(me);
PickResult[] results = pickCanvas.pickAll();

80 if ( results != null)
for(int r=0; r<results.length; r++)
{

// Set the colour of the picked shape to green
PickResult result = results [ r ];

85 Shape3D sphere = (Shape3D)result.getObject();
sphere.setAppearance(greenAppearance);

}
}

}

This program begins by associating a PickCanvas with the main Canvas3D of the
application. Then two red spheres with radius 20cm are created and positioned 50
cm left and right of the origin. When the mouse is clicked the colour of both of
the spheres is set to red. The list of picked nodes is obtained and the colour of
each picked shape is set to green. Examples of the renderings obtained when this
program is executed are illustrated in Figure 2.53

(a) (b) (c)

Figure 2.53: The output generated by the picking example. Intially both of the
spheres are coloured red (a). When the user clicks on the left sphere its colour
changes to green (b). Then when the user clicks on the right sphere its colour
changes to green and the colour of the left sphere changes back to red (c).

2.8 Summary

This chapter has provided a detailed discussion of the Java 3D API. The concept of
scene graphs forms the basis for the organisation of content in a 3D scene. The scene
graph can contain group nodes, leaf nodes and node components. Relationships and
references can be created to link the various scene graph elements in order to create
a coherent structure.

The group nodes in the scene graph allow other nodes to be grouped together. In
some cases the group nodes implemented some kind of functionality, for example
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conditional rendering of the groups children, or implementing a specified transfor-
mation that is applied to all the children of the group.

The main visible content that can be contained in a scene graph is represented by a
Shape3D object. A Shape3D object is essentially a container for an appearance and
one or possibly more geometries.

The Appearance node component defines a series of attributes that indicate how a
shape appears in the rendered scene. These attributes define things like how the
shape appears when there is no light, how different types of light affect the appear-
ance of the shape, whether the shape is to be rendered using points, lines or polygons
and whether texture mapping is to be used in conjunction with the shape.

The Geometry node component essentially defines the structure of the shape. At
the most basic level the geometry can be a set of point, lines or polygons. Several
different approaches to polygon definition are also available to optimise the way that
geometry can be defined. These include fan and strip arrays of triangles. Indexed
arrays of vertices can also be used to reduce the amount of repetition that occurs
when defining adjoining polygons.

A series of environment nodes are also defined. These nodes are used to determine
different aspects of the environment. For example, they can be used to define a
background image or fog in order to add realism to a scene. A series of behaviours
are also defined. These enable the scene to react to various situations, for example
mouse events or the passage of time.

It is evident from the material discussed in this chapter that Java 3D is a compre-
hensive, fully featured, 3D graphics API that allow the programmer to develop 3D
content at a high level, i.e. it allows the developer to focus on what to render and
not how it is rendered.
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Chapter 3

Surface Extraction

Modern medical imaging modalities typically generate 3D volumetric data that rep-
resents the characteristics at each point in the scanned region. Examples of medical
imaging modalities that generate volumetric data include:

• Computed Tomography (CT)

• Magnetic Resonance Imaging (MRI)

• Single Photon Emission Computed Tomography (SPECT)

• Positron Emission Tomography (PET)

Examples of images obtained from an abdominal CT study of a patient are illus-
trated in Figure 3.1.
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Figure 3.1: A series of slices obtained from an abdominal CT study of a patient. Al-
though the data is obtained as a series of slices it essentially represents a volumetric
data set consisting of voxels.

The images in this figure are represented as 2D slices. However, they actually
represent thin volumetric regions with a thickness of approximately 1.5 mm. Conse-
quently, the series of images represents a volumetric data set consisting of individual
voxels. In the case of CT, the value of a voxel represents the density at a particular
point in the scanned region.

If the volumetric data contains continuous isosurfaces, then these surfaces can be
explicitly extracted and converted into a polygonal mesh. The resulting mesh can
be rendered using the methods outlined in the previous chapter. The techniques
used to extract an isosurface from a volumetric data sets is known as the marching
cubes algorithm and was originally reported by Lorenson and Cline in 1987.
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• Lorensen, W. E. & Cline, H. E. (1987), ‘Marching cubes: A high resolution
3D surface construction algorithm’, Computer Graphics 41(4), 163-169.

This chapter will provide an overview of the standard marching cubes algorithm.
A series of enhancements are then introduced that enhance the operation of the
standard algorithm. The marching cubes algorithm is described in relation to a
specific area of medical imaging known as virtual endoscopy (specifically virtual
colonoscopy).

3.1 The Standard Marching Cubes Algorithm

The marching cubes algorithm (MCA) is used to extract a surface represented by
an isosurface value (diso) from a volumetric data set. The value of diso is dependent
on the surface being extracted and in the case of the colon surface diso has a value
of -800 HU1.

The MCA begins by thresholding the data set, assigning a 1 to voxels ≥ diso (inside
the isosurface) and a 0 to voxels < diso (outside the isosurface). The isosurface asso-
ciated with the colonic mucosa cannot be uniquely identified using a simple threshold
operation due to the number of gas/soft tissue interfaces that are present in a CTC
data set (i.e. those due to the lung bases, the small intestine, the stomach and the
exterior of the patient). In this case, segmentation information is used in conjunc-
tion with the isosurface value to identify the region associated with the colon surface.

A cubic mask of size 2 × 2 × 2 is then passed through the volume and at each
mask location the configuration of the eight underlying voxels is examined and the
relevant surface patches are generated. This process is illustrated in Figure 3.2.

Original 2 x 2 x 2 

voxel neighbourhood

Associated MCA 

neighbourhood

configuration

Resulting mesh 

representation

Figure 3.2: An illustration of the marching cubes isosurface generation process.
Each 2 × 2 × 2 voxel neighbourhood is examined and the surface patch associated
with the neighbourhood configuration is generated and added to the output mesh.
In this example, the original eight voxels in the input volume are replaced by a
single triangle in the output mesh. Note that the corner sphere in the central image
indicates the presence of a voxel located inside the isosurface i.e. the shaded voxel
in the original 2× 2× 2 volume.

There are 256 (28) possible configurations of eight binary voxels and although possi-
ble, the task of manually specifying the surface patches associated with each config-

1The units of CT attenuation are named after the inventor of the CT technique, G. N.
Hounsfield. The CT attenuation of a material is related to its density.
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uration is both tedious and prone to error. Lorensen & Cline observed that this task
could be greatly simplified by considering all rotations and complementary cases for
each configuration.

Using this approach, the number of possible configurations is reduced from 256 down
to just 15, as illustrated in Figure 3.3. This significant reduction in the number of
configurations makes the task of manually specifying surface patches associated with
particular voxel configurations much more manageable and a lot less prone to error.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 3.3: The 15 possible configurations of eight binary voxels arranged in a cubic
formation. Voxels located inside the isosurface are indicated by cube corners with
spheres and voxels outside the isosurface are indicated by cube corners without
spheres. The relevant surface patches (highlighted using red) have been inserted as
documented in the original marching cubes algorithm specification.

Once the relevant surface patches have been specified for the 15 base configurations,
the original 256 configurations are regenerated by applying a series of rotations to
the original 15 configurations and their complements. In each case the associated
list of vertices (i.e. surface patches) and their complements are also rotated.

The resulting information is used to populate a 256 element lookup table associating
voxel configurations with edge lists (i.e. lists of vertices that are positioned relative
to the local origin of the cube). The lookup table index is generated based on the
voxel configuration. This process is illustrated in Figure 3.4.

By default a vertex will lie midway between the two complementary valued voxels
(va & vb) that led to its creation. This is demonstrated in general by all of the ver-
tices associated with each of the 15 cases illustrated in Figure 3.3 and in particular,
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Vertex list =

=> inside the iso-surface (>= diso), assigned a 1

=> outside the iso-surface (< diso), assigned a 0

(a)

Figure 3.4: A sample voxel configuration where v1, v5, v6 & v8 are inside the iso-
surface and all other voxels are outside. A LUT index of 0xB1 is generated which
results in the specified edge list. Note that the order of the edges is important as it
defines the front face for the associated triangle in Java 3D.

by the vertex resulting from v1 & v2 in Figure 3.4.

In order to fit the extracted surface more accurately to the actual isosurface identified
by diso, each vertex must be interpolated between va & vb based on the relationship
between their densities da & db and the isosurface density diso. This is achieved by
calculating the normalised distance (δiso) between the voxel that is closest to the
origin (either va or vb) and the isosurface (see Equation 3.1).

δiso =
diso − da

db − da

(3.1)

The value for δiso represents the intersection location relative to the reference voxel
in terms of the intervoxel spacing (see Figure 3.5).

va vb

-1000 HU 0 HU

δiso

(0.2)

(a)

va vb

-600 HU -1000 HU

δiso

(0.5)

(b)

va vb

-1000 HU -750 HU

δiso

(0.8)

(c)

Figure 3.5: The calculation of δiso at three sample boundaries. In each case, the
value of δiso is calculated using linear interpolation and the density at the point
represented by diso is -800 HU, i.e. the isosurface density diso.

The closest voxel to the origin is used as the reference point va to ensure δiso has a
positive value and to standardise the interpolation process throughout the surface
extraction algorithm. The δiso value can then be used to calculate an interpolated
vertex location that is more representative of the actual isosurface. Assuming that
va is the closest voxel to the origin, the interpolated vertex location (xi, yi, zi) located
between va and vb is calculated using:
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xi = xa + δiso(xb − xa)

yi = ya + δiso(yb − ya) (3.2)

zi = za + δiso(zb − za)

where (xa, ya, za) and (xb, yb, zb) are the locations of va and vb respectively.

The final stage of the MCA involves generating unit normals for each vertex in the
extracted isosurface. The normals are used to facilitate surface shading (Gouraud
shading in the case of Java 3D). Normals are calculated at each voxel in the original
data set using a 3-D gradient operator. The three masks for the gradient operator
proposed by Lorensen and Cline are illustrated in Figure 3.6. The resulting gradient
magnitude in each direction is divided by the overall gradient magnitude to yield
the unit normal.

-1 1

(a)

-1

1

(b)

1

-1

(c)

Figure 3.6: The three masks (a, b & c) that are used by (lorensen1987a) to calculate
the edge magnitudes in the x, y & z directions respectively. Note that the scaling
factors are omitted as the implementation discussed here is intended for use with
isotropic data.

The normals of the two voxels (e.g. va & vb as above) associated with a particular
vertex must be interpolated in order to give an approximation of the normal value
at the vertex location (ai, bi, ci). As with the vertex locations, the normals are
interpolated using δiso from Equation 3.1 as follows:

ai = (1− δiso)aa + δisoab

bi = (1− δiso)ba + δisobb (3.3)

ci = (1− δiso)ca + δisocb

Where (aa, ba, ca) and (ab, bb, cb) are the normals associated with voxels va and vb

respectively. The effect of vertex and normal interpolation on the quality of the
extracted surface is illustrated in Figure 3.7.

This completes the basic description of the standard MCA. The vertices and their
associated normals can now be rendered using conventional 3-D graphics techniques.
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(a) (b)

Figure 3.7: An illustration of an isosurface model for the colonic mucosa before (a)
and after (b) the use of vertex and normal interpolation.

The standard MCA is only suitable for display purposes. In order to use the MCA
in virtual colonoscopy, a number of modifications and enhancements are required.
These modifications, which are summarised below, are dealt with in the remainder
of this chapter.

1. The standard MCA does not generate airtight surfaces. In certain cases holes
may be inadvertently introduced into the generated mesh. The standard MCA
must be updated so that such surface discontinuities do not occur.

2. The standard MCA uses a very basic method to generate normals. A more
accurate normal generation technique is proposed as normals will be used for
surface analysis as well as surface visualisation.

3. The mesh generated by the standard MCA is wasteful of memory as it contains
a vast amount of repeated information. A more streamlined alternative is
used to reduce the amount of memory required to store vertex coordinates
and associated information (e.g. normals, colours, etc.).

4. In the streamlined mesh, mentioned in 3. above, a vertex is no longer repre-
sented by an (x, y, z) coordinate. Instead, it is represented by a unique index
into a list of common coordinates. A neighbour list is generated for each ver-
tex index that identifies all of the directly connected neighbouring vertices.
This is extremely useful for region growing in a triangular mesh and crucial in
identifying the surface of the mesh with polyp-like properties.

3.2 Topology Errors (Holes)

Upon visual inspection of the output generated by the standard MCA, it is clear
that topology errors (or holes) are present in the generated surface, see Figure 3.10
(a). These holes are due to ambiguous cases resulting from mismatches between the
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surface patches of adjoining cubes. An example of an ambiguous case is illustrated
in Figure 3.8.

Voxel inside iso-surface

Voxel outside iso-surface

Front-facing triangle

Back-facing triangle

Configuration 6
Complement of 

Configuration 3

Figure 3.8: An example of the ambiguous case that results when the complement of
configuration 3 (Figure 3.3 (d)) occurs next to configuration 6 (Figure 3.3 (g)). A
hole is evident at the interface between these two cubes.

The ambiguous cases that result in unwanted holes are a direct result of the use
of complementary cases in the standard MCA to reduce the number of core cube
configurations that must be specified. By disregarding complementary cases and
using only rotation to identify equivalent cube configurations the number of core
configurations increases from 15 to 23. The eight additional cases and their associ-
ated surface patches are illustrated in Figure 3.9.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.9: The eight additional configurations of eight binary voxels arranged in
a cubic formation. These extra configurations remove the need to generate com-
plementary cases and as a result, solve the topology problem associated with the
original MCA.
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Altering the standard MCA to include these eight extra cases removes the necessity
to generate complementary cases and thus results in the generation of airtight sur-
faces that do not contain unwanted holes. The result of using the revised algorithm
is presented in Figure 3.10 (b) where the solitary hole that is evident at the top of
Figure 3.10 (a) is no longer present.

(a) (b)

Figure 3.10: An isosurface extracted using the 15 core neighbourhood configurations
of the standard marching cubes algorithm (a) and the extended 23 neighbourhood
configurations of the modified algorithm (b). Note that the standard approach
creates an unwanted hole, indicated by a red circle, whereas the extended approach
results in an airtight isosurface.

3.3 Improved Normal Calculation

The edge detector that is used for normal generation by the standard MCA (see
Figure 3.6) is very basic and provides only a rough estimation of 3-D edge direction.
Vertex normals are usually only used for visualisation purposes i.e. to enable shading
so that surfaces generate a more realistic response to lighting. In the enhanced MCA
a more accurate estimation of 3-D edge direction is required. The Zucker-Hummel
edge operator was selected for this task due to its inherent smoothing effect.

• Zucker, S. W. & Hummel, R. A. (1981), ‘A three-dimensional edge operator’,
IEEE Transactions on Pattern Analysis and Machine Intelligence 3(3), 324-
331.

The use of this edge operator gives a more global indication of the normal at each
vertex location. The three masks for the 3-D Zucker-Hummel operator are illustrated
in Figure 3.11.
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Figure 3.11: The three 26-neighbour masks representing the Zucker-Hummel edge
operator where ma = 1.0, mb =

√
2

2
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√
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3
.

3.4 Mesh Representation

The mesh generated by the standard MCA consists of a disjoined set of triangu-
lar patches where there is a high degree of vertex repetition. This representation,
although suitable for visualisation purposes, is not ideal for analysis. It is also ex-
tremely wasteful of memory due to the high degree of vertex repetition.

An alternative mesh representation involves storing each vertex in an array structure
where a particular vertex can be present only once. Using this approach, triangles
that represent the mesh are specified as indices into the vertex array and not as
actual vertex locations. An array of unit normals is generated and populated in the
same manner.

This approach to mesh storage has the potential to significantly reduce the amount
of memory required to store a fully characterised isosurface representation of the
colonic mucosa. A simple example illustrating the difference between the standard
mesh and the indexed mesh is presented in Figure 3.12.

v1

v3v2

v4 v5

vi = (xi, yi, zi)

mesh = (v1, v2, v3; v1,v4,v5; v1,v3,v5; 

v1,v2,v3; v2,v3,v5; v3,v4,v5)

#values = 54

(a)

v1

v3v2

v4 v5

vi = i

mesh = (v1, v2, v3; v1,v4,v5; v1,v3,v5; 

v1,v2,v3; v2,v3,v5; v3,v4,v5)

#values = 18 + 5x3 = 33

1 (x1, y1, z1)

2 (x2, y2, z2)

3 (x3, y3, z3)

4 (x4, y4, z4)

5 (x5, y5, z5)

Vertex

Table

(b)

Figure 3.12: An illustration of how indexing can be used to reduce the amount of
data required to specify a mesh structure. A pyramid consists of five vertices and
six triangles. The unoptimised representation yields 54 values (a) and the optimised
alternative yields only 33 (b). Note that in Java the data type for vertex (float) and
index (int) both require four bytes of storage space.
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The indexing process requires a modification to the standard MCA. As each vertex
is encountered it is assigned an index and stored in the vertex list. This index is
then used to represent the relevant vertex coordinates (i.e. an Integer primitive (four
bytes) is used to reference three floating point primitives (12 bytes)).

If a vertex that was already assigned an index is encountered then that index is
used. Conversely, a new index is generated if a new vertex is encountered. Only
vertices associated with the same slice or two adjacent slices can be shared. As a
result, only two slices need to be resident in memory at any one time. Noting that
in the context of the marching cubes algorithm a slice is actually two voxels thick.

3.5 Neighbour Identification

The final modification to the standard MCA involves identifying all of the directly
connected neighbouring vertices within the mesh. This step is required to facilitate
the automatic detection of polyps from the isosurface representation of the colon
surafce.
As each triangle, consisting of vertices e0, e1 and e2, is identified, its vertex relation-
ships are added to an array structure where: e0 is associated with e1 & e2 (i.e. two
vertex pairs (e0, e1) and (e0, e2)), e1 is associated with e0 & e2 and e2 is associated
with e0 & e1. A vertex pair is only added to the array structure if this vertex pair
is not already present.

An example illustrating the neighbour identification process is illustrated in Fig-
ure 3.13. Representing the vertex neighbours in this way reduces the task of neigh-
bourhood identification from an extensive mesh search to a simple table lookup
i.e. by specifying the index of one vertex the indices of all of the neighbouring ver-
tices are returned.

v0

v7

v1

v2
v3

v6

v8

v0

v11

v10

v4 v5

v9

1 0, 2, 4, 8, 9

2 0, 1, 3, 4

3 2, 4, 5, 6

4 1, 2, 3, 5, 9, 10

11 5, 6, 10, 12

v12

Neighbour List

neighbours[4] = {1, 2, 3, 5, 9, 10}

Figure 3.13: The neighbour indexing process: The neighbouring vertices for each
mesh vertex are stored in a list to streamline the process of searching for vertex
neighbours.
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3.6 Summary

This chapter provided a complete description of the marching cubes algorithm. The
use of this approach to extract an isosurface enables the indirect rendering of vol-
umetric data using conventional surface rendering techniques, i.e. those described
in the previous chapter. The implementation of the marching cubes algorithm de-
scribed in this chapter deals with some of the issues associated with the standard
marching cubes algorithm e.g. fixing topology errors and improving the normal cal-
culation stage. It has also been demonstrated that the use of indexed geometry can
be used to reduce the amount of memory required to store the extracted polygonal
mesh structure.
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Chapter 4

Volume Rendering

The basic idea of volume rendering is that a viewer should be able to perceive a data
volume from a rendered projection on the view plane. There are two main types of
volume rendering:

• Direct volume rendering - involves generating a 2D representation of a 3D
volumetric data set by projecting the voxels of the data set on to a 2D view
plane.

• Indirect volume rendering - involves extracting a polygonal mesh repre-
sentation of an isosurface of interest from a volumetric data set and rendering
it to a 2D view plane using conventional 3D surface rendering techniques.

Volume rendering involves assigning transparency and colour to voxels within the
data set. The data set can then be viewed from any angle by projecting the voxels
values on to a suitably orientated view plane.

In medical applications this process is sometimes referred to as a computed X-ray
as it is analogous to a conventional X-ray. It is possible to generate a computed
X-ray from any viewing angle, including angles that may be physically impossible
with conventional X-ray equipment.

Currently, the main application of volume rendering is in medical imaging due to
the volumetric nature of data acquired using 3D medical imaging modalities. A 2D
representation of the volume rendering process is illustrated in Figure 4.1.

Viewpoint

vertical scan line in 

the 2D view plane

slice through the 

3D volume

pixel ray

pixel ray

Figure 4.1: A 2D representation of the volume rendering process. Pixel rays are
fired from the viewpoint through the volume. The colour of the a pixel in the 2D
view plane is defined by the path of its associated pixel ray.

175



The illustration of the volume rendering process in Figure 4.1 uses perspective pro-
jection where all the rays emanate from a single viewpoint. An alternative would be
to use parallel projection where a parallel rays is generated from each pixel in the
view plane. In either case the volume rendering process is referred to as ray casting.

Note: The term ray casting is used to distinguish the method from ray tracing,
which models the path taken by light rays as they interact with optical surfaces.

References:

• Levoy M. (1988) “Display of surfaces from volume data” IEEE Computer
Graphics Applications, 8(3), 29-37.

• Levoy M. (1990) “Efficient ray tracing of volume data” ACM Transactions on
Graphics, 9(3), 263-270.

The following sections describe different approaches to direct volume rendering that
can be used to create a 2D representation of a 3D volumetric data set.

4.1 Maximum Intensity Projection

A maximum intensity projection (MIP) is a simple technique for transforming a 3D
data sets to a 2D image. It involves identifying the maximum valued pixel along
each ray projected from the pixels of the 2D view plane. The resulting maximum
value is ultimately assigned to the associated pixel. An illustration of this process
is illustrated in Figure 4.2.
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Figure 4.2: An illustration of the maximum intensity projection process. Maximum
valued voxels are identified along each pixel ray. The resulting value is assigned to
the associated pixel in the MIP image.

Maximum intensity projection is particularly useful in medical imaging applications
where contrast enhanced material has been used to highlight a abnormal region of
anatomy. One example of this is in a medical imaging technique known as magnetic
resonance cholangiopancreatography. This involves the use of magnetic resonance
imaging to visualise the biliary tree and pancreatic ducts in a non-invasive manner.
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This procedure can be used to determine if gallstones are lodged in any of the ducts
surrounding the gallbladder. An illustration of the types of images obtained in an
MRCP examination and the resulting MIP representation are illustrated in Figure
4.3.

MIP

Figure 4.3: An illustration of the MIP process used in conjunction with MRCP
data. The maximum value voxels projected in the the MIP image give a much
better representation of the imaged anatomy than the individual slices.

It is clear that the structure of the anatomy is much more apparent from the MIP
image. The structure of the biliary tree and liver can easily been seen in this image.

4.2 Average Intensity Projection

An average intensity projection is the same a computed X-ray (mentioned earlier).
The average value of the voxels encountered by each pixel ray is assigned to the
associated pixel in the 2D view plane. The theory behind this process is illustrated
in Figure 4.4. It is clear that the approach for average intensity projection is a
variation of the approach outlined for maximum intensity projection.
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Figure 4.4: An illustration of the average intensity projection process. The average
voxel value is identified along each pixel ray. The resulting value is assigned to the
associated pixel in the AIP image.

An example of how the average intensity projection process can be applied to a CT
data set is illustrated in Figure 4.5. It is clear that the output of this process is very
similar to an X-ray image.
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(a) (b)

Figure 4.5: An example of the average intensity projection process. (a) A single slice
from the data set being projected. (b) The resulting average intensity projection.
Note that the AIP image is very similar to an X-ray image.

4.3 Transparent Voxel Rendering

The previous examples dealt with voxels that have a single property, i.e. the voxel
colour. A more comprehensive approach to volume rendering involves giving the
viewer the facility to see all the data. This involves assigning an additional opacity
property to each voxel. The physical analogue to this model is that each voxel is
considered to be made of a coloured transparent gel.

Each voxel is assigned a colour, C, and a transparency, α. The colour associated
with the material type can be chosen aesthetically. For example, in the case of CT:

• White could be selected for the colour of bone voxels and an opacity could be
selected that makes bone appear completely opaque.

• Mid-grey could be selected for soft tissue voxels and an opacity could be se-
lected that makes soft tissue appear semi transparent.

• Black could be selected for air voxels and an opacity could be selected that
makes air appear completely transparent.

In addition, it would be possible to use RGB colours to provide a greater degree of
realism that can be achieved when limited to using grey scale colours.

Rendering volumes consisting of transparent voxels involves casting a ray into a
volume which has been rotated into the desired viewing orientation. Compositing
is performed along the ray path to generate the relevant pixel value in the 2D view
plane. The compositing process involves accumulating the colours and opacities
along the pixel ray.

This approach to volume visualisation involves the following three steps:

1. Classify each voxel in the original data set and assign the desired colour and
opacity values.
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2. Transform the classified volume data into the viewing direction.

3. For each pixel, cast a ray and find, by composition along the ray, a colour for
that pixel.

4.3.1 Compositing Pixels Along a Ray

The most straightforward compositing operation involves the recursive application
of the following formula:

Cout = Cin(1− α) + Cα (4.1)

where:

• Cout is the accumulated colour emerging from the current voxel

• Cin is the accumulated colour going into the current voxel

• α is the opacity at the current voxel.

• C is the colour if the current voxel.

This process is illustrated in Figure 4.6

Viewpoint

2D view 

plane

3D volume

V0 V1 V2

Pixel ray

Cout C α Cin

Compositing 

direction

Cout = Cin(1 - α) + Cα

Figure 4.6: An illustration of the ray compositing process.

The direction implied by Cin and Cout is from back to front with respect to the view
plane, i.e. the operation starts at the voxel that is furthest from the view plane.

Using this approach, the colour that comes out of a particular voxel is the product of
the colour of the voxel and the opacity of the voxel plus the product of the incoming
colour and the transparency of the voxel.

Note: The colour coming into the voxel that is furthest away from the view plane
is black.

The purpose of this operation is to make voxels with high opacity values predomi-
nate, obscuring voxels that are behind them and being made visible through voxels
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in front of them.

Example: Calculate the value of the shaded pixel in the view plane in Figure 4.7
by compositing the voxel values along the pixel ray.

Viewpoint

2D view 

plane

3D volume

ray

1 2

3 4

Figure 4.7: An illustration of the ray compositing process.

Given the following grey scale colour values and opacity values for the numbered
voxels in the volume.

Voxel # Colour Opacity
1 20 0.05
2 25 0.07
3 130 0.55
4 225 0.80

• Voxel 4

– Cin = 0, C = 225, α = 0.8

– Cout = Cin(1− α) + Cα

– Cout = 0× (1− 0.80) + 225× 0.8

– Cout = 180

• Voxel 3

– Cin = 180, C = 130, α = 0.55

– Cout = Cin(1− α) + Cα

– Cout = 180× (1− 0.55) + 130× 0.55

– Cout = 81 + 71.5 = 152.5

• Voxel 2

– Cin = 152.5, C = 25, α = 0.07

– Cout = Cin(1− α) + Cα

– Cout = 152.5× (1− 0.07) + 25× 0.07
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– Cout = 141.825 + 1.75 = 143.575

• Voxel 1

– Cin = 144, C = 20, α = 0.05

– Cout = Cin(1− α) + Cα

– Cout = 144× (1− 0.05) + 20× 0.05

– Cout = 136.8 + 1 = 137.8

Consequently, the value of the shaded pixel in the view plane is 138. It is clear
that the voxels with the highest opacity values have the greatest influence on the
composited pixel value.

4.3.2 Voxel Projection

This is a variant on volume rendering that involves traversing the data set and
projecting each voxel onto the view plane. This process is illustrated in Figure 4.8.

3D volume

voxel

Image

plane

voxel projection on

the image plane

Figure 4.8: An illustration of the voxel projection process.

If the image plane is moved through the data, then the frame buffer is used as an
accumulator and all pixels are updated simultaneously until the entire data set has
been traversed and the pixels have their final values.

Possibly the most well know voxel projection algorithm is known as “splatting”.
This term is used to describe the effect that one voxel has on the image plane. This
algorithm considers how the contribution of a voxel should be spread or splatted in
the image plane. There are two possible ways that splatting can be used:

1. A point in the data set at the centre of a particular voxel projects onto a single
pixel. The three dimensional region surrounding the sampled voxel is filtered
to determine its contribution to the pixel.

2. A single pixel value can be spread over a number of pixels in the image plane.
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Both of these approaches are equivalent. Representations of the two approaches are
illustrated in Figure 4.9.

(a)

(b)

Figure 4.9: The two different approaches to splatting. (a) Many voxels are filtered
over a spherical region to provide a single value for a pixel. (b) One voxel contributes
value in a footprint region weighted as shown.

Reference:

• Westover L. (1990) “Footprint evaluation for volume rendering” Computer
Graphics, 24(4), 367-376.

4.3.3 Volume Rendering Implementation

The following example uses ray casting to generate a volume rendering of a CT data
set. The program begins by loading a data set called dataset.iso. The dimensions
of the data set are obtained by calling the relevant methods of the DataSet class.
The dimension of the data set used in this example are:

• width = 512 voxels

• height = 593 voxels
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• depth = 512 voxels

An initial raster scan of the data set is performed to determine the minimum and
maximum voxel values. The extrema for the data set used in this example are:

• minValue = -1024 HU

• maxValue = 1833 HU

Recall that the values assigned to voxels in a CT data set are measured in Hounsfield
Units. These units provide a measure of attenuation which is equivalent to density.
A low value (-1024 HU) is equivalent to a low density material, e.g. air, whereas a
high value (1833 HU) is equivalent to a high density material, e.g. bone.

In order to display a set of attenuation values in the form of a grey scale image, the
values must be normalised in the range [0 - 255]. This is achieved by calculating
two values:

1. The offset - this is the value that must be added to all attenuation values to
ensure that each value is at least zero.

2. The range - this is the range of attenuation values. Dividing an offset atten-
uation value by the range always gives a value in the range [0 - 1].

In order to create a grey scale value in the range [0 - 255] from an attenuation value,
the following equation can be used.

grey =
255× (attenuation + offset)

range
(4.2)

A BufferedImage object is created to hold the 2D volume rendering and for loop is
entered to calculate each pixel value for the BufferedImage object. At each (x, y)
the ray composition algorithm is applied along the z direction. The colour of each
voxel is calculated using equation 4.2 and a corresponding alpha value is calculated
by dividing the colour value by 255.0. This results in a value in the range [0 - 1].
The initial alpha value is scaled using an exponential function to increase the trans-
parency of low density voxels.

The JFrame is configured and the BufferedImage is displayed on the JFrame using
a JLabel.

0

import java.awt.image.∗;
import javax.swing.∗;
import java.awt.∗;

5 public class VolumeRenderingExample extends JFrame {

public static void main(String args[]){new VolumeRenderingExample();}

public VolumeRenderingExample()
10 {

// Load the data set and get dimensions

183



(a) (b)

(c) (d)

Figure 4.10: Volume renderings of the same abdominal CT data set where the
opacity is scaled using different exponential functions. It is clear that as the scale of
the exponential function is increased, the lower density material, i.e. the soft tissue,
becomes more and more transparent. In (a) the exterior of the patient and the outer
covering of the patient can be seen, whereas in (d) only the skeleton is visible.

DataSet dataset = new DataSet(”dataset.iso”);

int width = dataset.getWidth();
15 int height = dataset.getHeight();

int depth = dataset.getDepth();
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// Calculate the exrema of voxel values
int minValue = Integer.MAX VALUE;

20 int maxValue = Integer.MIN VALUE;

for(int x=0; x<width; x++)
for(int y=0; y<height; y++)

for(int z=0; z<depth; z++)
25 {

int voxel = dataset.getVoxel(x, y, z );
if (voxel<minValue) minValue = voxel;
if (voxel>maxValue) maxValue = voxel;

}
30

System.out.println(”Min value: ”+minValue+” HU”);
System.out.println(”Max value: ”+maxValue+” HU”);

// Calculate values required for normalisation
35 int range = maxValue − minValue;

int offset = − minValue;

// Create a BufferedImage to store the rendered output
BufferedImage bufferedImage = new BufferedImage(width, height,

40 BufferedImage.TYPE INT ARGB);

// Configure the exponential scaling function
float exponentialFactor = 1.0f;
float divisor = (float)Math.exp(exponentialFactor);

45

// Enter the volume rendering loop
float C in, C out = 0.0f;
for(int x=0; x<width; x++)

for(int y=0; y<height; y++)
50 {

C in = 0.0f;
for(int z=depth−1; z>=0; z−−)
{

// Calculate the colour and opacity
55 float C = dataset.getVoxel(x, y, z );

C = (255∗(C + offset))/range;

float alpha = C/255.0f;
alpha = (float)(alpha ∗ Math.exp(exponentialFactor∗alpha)/divisor);

60

// Applied the ray compositing formula
C out = C in∗(1.0f − alpha) + C∗alpha;
C in = C out;

}
65

// Generate a pixel value for ray and store in output image
int grey = (int)C out;
int pixel = 0xff000000 | (grey << 16) | (grey << 8) | grey;
bufferedImage.setRGB(x, height−1−y, pixel);

70 }
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// Configure the JFrame and display the image
this.getContentPane().setLayout(new BorderLayout());
JLabel label = new JLabel();

75 label.setIcon(new ImageIcon(bufferedImage));
this.getContentPane().add(label, BorderLayout.CENTER);
this.pack();
this. setVisible (true);

}
80 }

A series of different volume renderings can be obtained by changing the exponential
scaling function. Examples of these volume renderings are illustrated in Figure 4.10

4.4 Sample Volume Renderings

As mentioned earlier, volume rendering is typically used with volumetric data ob-
tained using a medical imaging modality. The following examples, illustrated in
Figure 4.11, demonstrate how volume rendering can be used to generate extremely
detailed representations of human anatomy.

(a) (b)

Figure 4.11: Two examples of high quality volume renderings obtained using com-
mercial volume rendering software. In both cases pseudo colouring has been used to
help distinguish between different voxel classes and enhance the appearance of the
rendered output.

4.5 Medical Imaging Modalities

Volumetric data sets are typically acquired using a medical imaging modality that
sample the characteristics of the region occupied by the patient at regular intervals.
The images generated by 3D medical imaging modalities typically consist of thin
slices of voxels that can be stack to create a volumetric representation of the scanned
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region. This section will describe two medical imaging modalities: Computed to-
mography (CT) and magnetic resonance imaging (MRI).

4.5.1 Computed Tomography

Computed tomography (CT), originally known as computed axial tomography (CAT),
is a medical imaging method employing tomography where digital geometry process-
ing is used to generate a 3D volumetric representation of a scanned region from a
large series of 2D X-ray images taken around a single axis of rotation.

X-ray slice data is generated using an X-ray source that rotates around the object.
X-ray sensors are positioned on the opposite side of the circle from the X-ray source.
Many data scans are progressively taken as the object is gradually passed through the
gantry. The scans are ultimately combined together using a mathematical procedure
known as tomographic reconstruction. There have been several generations of CT
scanners and these are illustrated in Figure 4.12. Examples of the techniques used
by two commercial CT scanners are illustrated in Figure 4.14.

(a) (b)

(c) (d)

Figure 4.12: An illustration of the four generations of CT scanners. (a) The first
generation: one detector, translation rotation, parallel beam. (b) Second genera-
tion: multiple detectors, translation-rotation, small fan-beam. (c) Third generation:
multiple detectors, source rotation, large fan beam. (d) Fourth generation: Detector
ring, source-rotation, large fan-beam.

CT is regarded as a moderate to high radiation diagnostic technique. While tech-
nical advances have improved radiation efficiency, there has been a simultaneous
pressure to obtain higher-resolution image and use more complex scan techniques,
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both of which require higher doses of radiation. The effective radiation dose for a
chest CT is 290 times the dose for a chest X-ray.

(a) (b)

Figure 4.13: An illustration of the operation of two commercially available CT
scanning systems. (a) A siemens system, third generation. (b) A Picker system,
fourth generation.

An example of an actual Siemens CT scanner is illustrated in Figure 4.14. This
is a Siemens Somatom Sensation 16 scanner. It has 0.5 mm resolution and a 0.4
second rotation time. This type of high performance rotation is key for scanning
the beating heart (4D medical imaging).

Figure 4.14: An image of a Siemens Somatom Sensation 16 scanner. This scanner
has 0.5 mm resolution and 0.4 second rotation time.
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4.5.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a non-invasive method used to render an image
of the interior of an object. It is primarily used in medical imaging to demonstrate
pathological1 or other physiological2 alterations of living tissues.

A CT scanner uses X-rays, a type of ionising radiation, to acquire its images. MRI,
on the other hand uses non-ionising radio frequency signals to acquire its images.
MRI relies on the properties of hydrogen molecules in water when influenced by a
strong magnetic field. Even though the strength of the magnet is typically 100,000
the strength of the earths magnetic field, an MRI examination poses no threat to
the subject being imaged.

It should be noted that although CT and MRI both generate volumetric represen-
tations of the interior of a patient, MRI takes longer to scan a volume than CT,
MRI responds differently to materials than CT and MRI does not provide as high
a resolution as CT. An MRI scanner provides a maximum resolution of 1mm3. A
modern commercially available MRI scanner is illustrated in Figure 4.15.

Figure 4.15: A three tesla Philips MRI scanner.

1Caused by a disease.
2Relating to the functions and activities of living organisms.
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4.6 Stereo 3D Visualisation

All of the 3D content discussed in this course has been rendered to a 2D display.
This essentially flattens the 3D content so that it can be viewed using conventional
visualisation systems, e.g. LCD and CRT displays.

In order to get that full effect of 3D content, it must be viewed using a stereo 3D
visualisation system where a different views of the content are created for the left and
the right eyes. Using this approach the content appears to have a depth associated
with it. This adds a great deal of realism to a 3D scene. An overview of the stereo
viewing process is illustrated in Figure 4.16.
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rendering

left

rendering
left eye

right eye

Figure 4.16: An illustration of the stereo viewing process where separate renderings
are created for the left and right eyes.

One example of a stereo 3D viewing system is CrystalEyes from StereoGraphics
(RealD). This system utilises a pair of LCD shutter glasses in conjunction with a
CRT display and a compatible high refresh rate view card to facilitate stereo 3D
viewing.

Assume that the CRT monitor has a refresh rate of 120 Hz. The CrystalEyes system
displays the left eye and right eye renderings of a 3D scene in subsequent frames. A
signal is sent to the CrystalEyes glasses so that right lens is opaque when the left
eye image is being displayed and the left lens is opaque when the right eye image is
being displayed. The CrystalEyes equipment is illustrated in Figure 4.17.

Figure 4.17: The CrystalEyes LCD shutter glasses and remote control unit.
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4.7 Summary

This chapter has presented an overview of volume rendering techniques dealing with
ray casting and voxel projection based approaches. A implementation of a ray cast-
ing based volume rendering system demonstrated the simplicity of the approach. It
should be noted that the direct volume rendering techniques discussed in this chap-
ter provide a very different output to the indirect volumetric rendering technique
based on the marching cubes algorithm that was discussed in the previous chapter.
This chapter also provided a overview of common medical imaging modalities and
introduced the concept of immersive 3D stereoscopic visualisation.
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