

EE563 PAGE 1 OF 14
Semester Two Solutions 2010

DUBLIN CITY UNIVERSITY

SEMESTER TWO SOLUTIONS 2010

MODULE: EE563 Graphics and Visualisation

COURSE: MEN – M.Eng. in Electronic Systems
 MEQ – Masters Engineering Qualifier Course
 MTC – M.Eng. in Telecommunications Engineering

YEAR: Postgraduate (C)

EXAMINERS: Prof. Peter Ashburn (External Examiner)

Dr Robert Sadleir, Section A, Ext no. 8592
Dr Derek Molloy, Section B, Ext no. 5355

TIME ALLOWED: 3 Hours

INSTRUCTIONS: Please answer any TWO questions from Section A

and any TWO questions from Section B. All
questions carry equal marks.

Please do not turn over this page until you are instructed to do so

The use of programmable or text storing calculators is expressly forbidden.
Please note that where a candidate answers more than the required number
of questions, the examiner will mark all questions attempted and then select
the highest scoring ones

EE563 PAGE 2 OF 14
Semester Two Solutions 2010

Section A

Q 1 (a)

(i) A directed-acyclic graph is a directed graph in which there are no other cycles i.e. the

beginning at one node in the graph, a path cannot be found to return to the same node.

[2 marks]

(ii) The ViewSpecificGroup node is a Group whose descendants are rendered only on a

specified set of views. It contains a list of views on which its descendants are rendered.

[2 marks]

(iii) Many shapes share vertices between their different faces. Index geometry allows the list

of vertices to be defined once and then the shape itself is defined by specifying indices into

the vertex list. Each index is represented by and int (4 bytes) and each vertex coordinate is

represented by 3 floats (12 bytes) so a lot of memory can be saved if there is significant

vertex reuse. [2 marks]

(iv) This shading model interpolates the colour at each vertex across the primitive (e.g. line,

polygon, quad) and consequently the primitive is drawn with many different colours.

[2 marks]

(v) Magnification is where a single pixel of the rendered geometry corresponds to a small

portion of a texel. Minification is where a single pixel of the rendered geometry corresponds

to an area of the texture, i.e. several texels. [2 marks]

(vi) A bounding region is used to specify the region of the virtual world that a particular

environment affects. If a bounding region is not specified for a particular environment node

then it is considered to be inactive. [2 marks]

(vii) A maximum intensity projection (MIP) is a simple technique for transforming 3D data

sets to a 2D image. It involves identifying the maximum valued pixel along each ray

projected from the pixels of the 2D view plane. The resulting maximum value is ultimately

assigned to the associated pixel. [2 marks]

Q1 (b) [2 marks]

(i) Non-uniform scale





































=



















w

z

y

x

sz

sy

sx

w

z

y

x

1000

000

000

000

'

'

'

'

(ii)Translate [2 marks]

EE563 PAGE 3 OF 14
Semester Two Solutions 2010





































=



















w

z

y

x

tz

ty

tx

w

z

y

x

1000

100

010

001

'

'

'

'

Q1 (c)

The view branch created by the SimpleUniverse utility class is a
BranchGroup routed scene graph consisting of a TransformGroup and a
ViewPlatform. This is illustrated below

The ViewPlatform represents the location of the viewer within the scene. The
scene is rendered from the perspective of the ViewPlatform to a canvas and
the rendering process is facilitated by the View which defines all the
parameters needed to render a 3D scene from a single viewpoint.

[3 marks] for scene graph
[4 marks] for description

EE563 PAGE 4 OF 14
Semester Two Solutions 2010

Q2 (a)

Strip Geometry reduces the need to repeatedly specify the same vertices
when defining continuous pieces of geometry. Additional pieces of geometry
are created using by specifying a single additional vertex to be used in
conjunction with the previous vertices of the geometry
[2 marks]

TriangleStripArray draws its array of vertices as a set of connected triangle
strips. An array of per-strip vertex counts specifies where the separate strips
appear in the vertex array. For every strip in the set, each vertex, beginning
with the third vertex in the array, defines a triangle to be drawn using the
current vertex and the two previous vertices.
[2.5 marks]

TriangleFanArray draws its array of vertices as a set of connected triangle
fans. An array of per-strip vertex counts specify where the separate fans
appear in the vertex array. For every strip in the set, each vertex, beginning
with the third vertex in the array defines a triangle to be drawn using the
current vertex, the previous vertex and the first vertex.
[2.5 marks]

Q 2(b)

A SharedGroup enables a subgraph to be shared between different groups via Link leaf

nodes. The essentially allows the same content to be replicated several times within a single

scene. A SharedGroup may be referenced by one or more Link leaf nodes. Any runtime

changes to a node or component object in a shared subgraph affect all graphs that refer to

that subgraph. Only Link leaf nodes may refer to SharedGroup nodes. A SharedGroup node

cannot have parents or be attached to a Locale object. A shared subgraph may contain any

group node, except an embedded SharedGroup node as SharedGroup nodes cannot have

parents.

EE563 PAGE 5 OF 14
Semester Two Solutions 2010

[5 marks]

One example of a node that can’t be replicated using a SharedGroup node is a Background

node. The reason for this is because a there can only be one background in a scene.

[1 marks]

Q2(c)

The depth values of all pixels generated by polygon rasterization can be offset by a value

that is computed for that polygon. Two values are used to specify the offset.

• Offset bias - the constant polygon offset that is added to the final device coordinate

Z value for the polygon primitive. [1 mark]

• Offset factor - the factor to be multiplied by the slope of the polygon and then

added to the final device coordinate Z value of the polygon. [1 mark]

Polygon offset is used to solve a specific problem: drawing lines on top of polygons. The

typical usage of this is in drawing a “hidden line” display. This is a form of wire-frame display

in which a solid object is drawn as lines so that the lines hidden by the foreground are

removed. An example of a hidden line display is illustrated below.[1 mark]

[1 mark]

Q2(d)

EE563 PAGE 6 OF 14
Semester Two Solutions 2010

(i) Texture2D: specifies a 2D image that is to be mapped to the exterior of a particular

geometry. The Texture2D class also specified the state of the texture, the boundary mode

i.e. how the texture appears for texture coordinates outside the range [0, 1] and the texture

filtering mode specifies how the texture is drawn when it is larger or smaller than its original

size. [2 marks]

(ii) TextureAttributes: defines the attributes that apply to texture mapping, such as the

texture mode, texture transform, blend colour, and perspective correction mode. [2 marks]

(iii) TexCoordGeneration: defines the attributes that apply to texture coordinate generation,

such as whether coordinate generation is enabled, coordinate format (2D or 3D

coordinates), coordinate generation mode (object linear, eye linear, or spherical reflection

mapping), and the R, S and T coordinate plane equations. [2 marks]

(iv) TextureUnitState: an array that defines the texture state for each of N separate texture

units. This allows multiple textures to be applied to a geometry. Each TextureUnitState

object contains a Texture object, a TextureAttributes object and a TexCoordGeneration

object. [2 marks]

Q 3(a)

A B-spline curve is a smooth path that is defined by a series of control points and blending

functions. A B-spline curve does not pass through its control points. It is a complete

piecewise cubic polynomial consisting of any number of curve segments.

[3 marks]

Qi is the ith B-spline segment and Pi is a set of four points in a sequence of control points.

The value for u over a single curve segment is 0 ≤ u ≤ 1. Using this notation u represents a

local parameter, locally varying over the parametric range 0 to 1 to define a single B-spline

curve segment. It is clear that a B-spline curve is a series of m¡ 2 curve segments that are

labelled Q3, Q4,, Qm defines or determined by m + 1 control points P0, P1, ..., Pm; m ≥ 3.

Each curve segment is defined by four control points and each control point influence four

and only four curve segments. An example of a B-spline curve is illustrated below:

[4 marks]

Java 3D provides support for a variation on B-splines known as Kochanek-Bartels cubic

splines. These types of spline are also known as a TCB splines as they have configurable

EE563 PAGE 7 OF 14
Semester Two Solutions 2010

tension, continuity and bias characteristics. Unlike B-splines, TCB splines do go through the

control points.

[2 marks]

Q3(b)

The marching cubes algorithm begins by thresholding the data set, assigning a 1 to voxels ≥

diso (inside the isosurface) and a 0 to voxels < diso (outside the isosurface). A cubic mask of

size 2 x 2 x 2 is then passed through the volume and at each mask location the configuration

of the eight underlying voxels is examined and the relevant surface patches are generated.

[3 marks]

There are 256 (2
8
) possible configurations of eight binary voxels and although possible, the

task of manually specifying the surface patches associated with each configuration is both

tedious and prone to error. This task can be greatly simplified by considering all

complementary cases (& rotations) for each configuration.

[2 marks]

=>

Case A

=>

Case B

[2 marks]

The use of complementary cases as outlined above can cause holes in the mesh generated

by the marching cubes algorithm. The holes are due to ambiguous cases resulting from

mismatches between the surface patches of adjoining cubes. The ambiguous cases that

result in unwanted holes are a direct result of the use of complementary cases in the

standard MCA to reduce the number of core cube configurations that must be specified. By

disregarding complementary cases and using only rotation to identify equivalent cube

configurations the number of core configurations increases from 15 to 23.

[2marks]

EE563 PAGE 8 OF 14
Semester Two Solutions 2010

Q3(c)

The term splatting is used to describe the effect that one voxel has on the image plane. This

algorithm considers how the contribution of a voxel should be spread or splatted in the

image plane. The two possible ways that splatting can be used are:

[3 marks]

(a) A point in the data set at the centre of a particular voxel projects onto a single pixel.

The three dimensional region surrounding the sampled voxel is filtered to determine

its contribution to the pixel. [2 marks]

(b) A single pixel value can be spread over a number of pixels in the image plane.

[2 marks]

EE563 PAGE 9 OF 14
Semester Two Solutions 2010

Section B

4(a) There are many different unique solutions to this problem. One possible solution is that
you would create classes as follows:

Scene Object

- Camera
o Viewer View – with overlay car controls
o Possible out of car view

- Geometric Scene Object -> would have textures and bounding boxes
o Other cars
o Race track scenery
o Bullet
o Particles? - Smoke, rain etc.
o Ground Plane

- Light
o Realistic lighting from the sun, glare in windscreen, mirrors
o Ambient lights for global illumination

- Physics Properties
o Collisions
o Movement model, inertia, acceleration, friction etc.

These relationships could exist as inheritance relationships – e.g. a Smoke Cloud IS-A
Geometric Scene Object IS-A Scene Object. The Scene Graph would be designed to have a
root node and all of the scene objects could be added to this node in a tree structure. The
scenegraph would allow the objects to be related to each other for undergoing translations,
rotations etc. E.g. if there was a geometric model representing a driver in a car – if the car
translates then so should the driver. Given the huge amount of geometric information and the
inter-relationships that must occur between all the objects in the scene it is vital that certain
efficiencies are employed, e.g.:

- Binary Space Partitioning to establish the spatial relationship between different scene
objects efficiently.

- Culling and Clipping – to only display the polygons that are visible to the viewer. The
clipping, culling should be complex, to reduce cost, where it should be based on the
overlay from the controls also.

- The use of convex hulls and bounding boxes to help with the spatial relationships of
the object – e.g. have two cars collided? – first evaluate against the convex hull/
bounding box.

- Use mip-mapping and billboarding to reduce the number of polygons in the scene
and replace their geometries with textures/imposters, e.g. cars/scenery objects (e.g.
Trees) in the distance.

[8 marks]
4(b) This SceneObject container will work for all of the scene objects in (a)

#include<vector> // Use the STL Vector as our container

enum RTTI_OBJECT_TYPE
{
 RTTI_CAMERA, //does not exist yet
 RTTI_LIGHT, //does not exist yet
 RTTI_DUMMY,
};

class SceneObject
{

 protected:
 SceneObject* parentObject;
 std::vector<SceneObject*> childrenObjects;

EE563 PAGE 10 OF 14
Semester Two Solutions 2010

 public:
 SceneObject();
 virtual ~SceneObject();

 // assessors/mutators
 void setParent(SceneObject* parent) { parentObject = parent; }
 void addChild(SceneObject* child);
 std::vector<SceneObject*>* getChildrenObjects() { return &childrenObjects; }
 virtual RTTI_OBJECT_TYPE getType() const = 0;

 // Force every child to have a render and update methods
 virtual void render(float timeElapsed) = 0;
 virtual void update(float timeElapsed) = 0;
};

void SceneObject::addChild(SceneObject *child)
{
 if (!child) { std::cerr << "Attempt to add invalid child to scene graph."; }

 child->setParent(this);
 childrenObjects.push_back(child);
}

Need to describe how it works.

[9 marks]

4(c) This is the recursive depth first traversal code:

class SceneObject; //avoid a circular definition

class SceneGraph
{
 public:

 SceneGraph();
 virtual ~SceneGraph();

 void updateScene(SceneObject* sceneObject, float timeElapsed);
};

void SceneGraph::updateScene(SceneObject* sceneObject, float timeElapsed)
{
 if (!sceneObject)
 {
 std::cerr << "Attempt update of object not on the scene graph.";
 return;
 }
 else
 {
 sceneObject->update(timeElapsed);
 // and call all the children
 std::vector<SceneObject*>::iterator it = sceneObject->getChildrenObjects()-
>begin();
 for (; it!=sceneObject->getChildrenObjects()->end(); ++it)
 {
 updateScene(*it, timeElapsed);
 }
 }
}

EE563 PAGE 11 OF 14
Semester Two Solutions 2010

There would be many reasons to traverse the scenegraph in the game:
- Check that a bullet object has collided with any object after a certain number of milli-
seconds. This would be a non-display test that would call the updateScene() method (possibly
using a thread with a delay).
- Establish the viewers view volume and determine the objects (and therefore polygons) that
are present in that view.
- Determine an updated BSP tree for the scene as bullets and other actors move
independently of the viewer.
- Display the scene through the eyes of the viewer.

[8 marks]

5(a) Binary Space Partitioning (BSP) is a technique for recursively subdividing a 3-D space
into two non-overlapping regions using a plane, referred to as a hyperplane. Any point in 3-D
space lies within only one of these regions. BSP is a hierarchal approach where the space
that is divided can be further subdivided using the same space partitioning approach until
some condition is met, resulting in a space-partitioning tree, which is particularly useful when
building techniques for dealing with hidden surface removal. The basic properties of BSPs are
that objects on one side of a hyperplane cannot intercept an object on the other side; and
given a particular view point objects on the same side of the hyperplane are closer than
objects on the other side.

This 2-D example illustrates the sample creation of a BSP Tree using lines to create the tree.
Each line represents a partition plane (a) creates the partition plane and thus the root node,
(b) through (d) illustrates the addition of further planes, with f representing the front side and b
representing the back side.

[6 marks]

5(b) The algorithm to build a BSP tree is:
• Select a partition plane - The choice of planes is application dependent, but often axis
aligned. In an ideal situation this will result in a balanced tree, but a poor choice will result in a
large number of splits and an increase in the number of polygons. There is usually a trade-off
between a well-balanced tree and a large number of splits.
• Segment the current set of polygons using the chosen plane - If a polygon lies entirely to
one side or other of the plane then it is not modified and is added to the partition set for the
side that it is on. If the polygon spans the partition plane then it is split into two pieces, which
are added to the set on the correct side of the plane.
• Repeat again using the new sets of polygons - The termination condition is a application
specific, often based on a maximum number of nodes in a leaf node, or maximum tree depth.

[3 marks]

EE563 PAGE 12 OF 14
Semester Two Solutions 2010

5(c) A Bounding Volume Hierarchy (BVH) is a tree of bounding volumes where the root node
includes every object in the scene and at the leaf nodes each bounding volume is just large
enough to contain each scene object. The tree takes on the same hierarchical shape as the
scene graph. Once again, we can quickly determine if an object is in a particular region of
space using its bounding volume, but the hierarchy also allows us to determine if the
segmented objects’ bounding volumes contained in the child nodes are also within this region
of space. The tree like structure allows all these tests to be performed very quickly. It is
common practice for us to use the same object-oriented tree structure for the scene graph
and also for the bounding volume hierarchy. This figure illustrates the BVH approach.

The BVH Approach is a hierarchial approach, which may require a priori knowledge of the
structure of the objects in the scene. BSP does not rely on any higher a priori knowledge,
rather it partitions space entirely. BSP can segment individual objects into collections of
polygons depending on the way that the space is segmented.

[3 marks]
5(d)

Output of code on RHS on LHS.

[8 marks]

5(e) Clipping against the view volume removes objects which are not within the view volume,
where typically polygons outside of the view volume are discarded and polygons that intersect
the view volume boundary are ‘clipped’. Culling is a similar operation that takes account of the
viewer’s position to determine if part of an object cannot be seen; for example, in 3-D (the real
world!) most objects are only 50% visible from any one point, as the back side of the object is
occluded by the front side. A very simple test to see if we are looking at the front-side or back-
side of a polygon is to use the view vector ~n and the polygon’s normal vector ~np, where a
particular polygon is visible if: ~np · ~n > 0. Similarly if the polygon is outside the bounding
box of the view volume then it can be clipped.

[5 marks]

EE563 PAGE 13 OF 14
Semester Two Solutions 2010

6(a)
• Specular surfaces - These surfaces appear shiny as the light that is reflected is
maintained within a narrow range of angles, close to the angle of reflection. Mirrors are
perfect specular surfaces.
• Translucent surfaces - These surfaces allow some of the light to penetrate the
surface and to emerge from some other location on the object. For example, refraction in
glass or water would cause the light to emerge from another location on the object.
• Diffuse surfaces - These surfaces are characterised by having light scattered in all
directions; for example, walls painted with a matte paint are diffuse reflectors.

[3 marks]

6(b)
The Phong Reflection model provides a good approximation to physical reality, producing
good renderings under varying lighting conditions and materials. The Phong model uses four
vectors to calculate the colour at a particular point P on a surface; these are n, the normal
vector at that point on the surface; v, which is in the direction from point P to the viewer (or
centre of projection); l, the direction of a line from P to a point light source; and r is the
direction that a perfectly reflected ray from l would take. The Phong model supports the three
types of material-light interaction of ambient, diffuse and specular. OpenGL works by
assuming that if there is a set of point sources that each source can have separate red, green
and blue ambient, diffuse and specular components.

Diffuse relections are characterised by rough surfaces, where rays of light that strike the
surface are reflected back at quite different angles. Perfectly diffuse surfaces are called
Lambertian Surfaces and can be modelled by Lambert’s law, which states that: , where theta
is the angle between the normal at the point of interest n and the direction of the light source l.
If only a fraction of incoming light is reflected we can add in a reflection coefficient kd (where
0 < kd < 1) we can write: Rd = kdLd cos theta.

 [7 marks]

6(c)

The code required is on the RHS.

[3 marks for the texture space - inc. use of GL_CLAMP]
[3 marks for the mapping of TexCoord to glVertex]

[2 marks for use of GL_MODULATE]

EE563 PAGE 14 OF 14
Semester Two Solutions 2010

[8 marks Total]
6(d)

It should be clear that the torus will be red with the centre of the ring accented by a green
highlight. The solution should describe each one of the arguments and what they mean.

[7 marks Total]

