
3-D Graphics and Visualisation (Part II)

EE563

Dr. Derek Molloy and Dr. Robert Sadleir

2

Contents

1 OpenGL - The Graphics Pipeline 5
1.1 Introduction . 5
1.2 What is the OpenGL API? . 5
1.3 Introduction to OpenGL Programming . 9

1.3.1 OpenGL Primitives and Attributes 9
1.3.2 OpenGL Full Source Code Example 14
1.3.3 OpenGL Colour . 16
1.3.4 Exercise: A Rotating Colour Solid 17
1.3.5 OpenGL Viewing . 18
1.3.6 OpenGL Display Lists . 24
1.3.7 OpenGL Stack . 28
1.3.8 Input Events . 29
1.3.9 Double Buffering . 31

1.4 Some Math . 32
1.4.1 3-D Math Notation . 32
1.4.2 Vectors - Math summary . 32
1.4.3 A Vector Class . 37
1.4.4 Matrices . 41
1.4.5 A Matrix Class . 42

1.5 Transformations . 47
1.5.1 Translation . 47
1.5.2 Rotation . 48
1.5.3 Scaling . 49
1.5.4 Shearing . 49
1.5.5 Inverse Operations . 50
1.5.6 Combination and Other Operations 50
1.5.7 The OpenGL Current Transformation Matrix (CTM) 50
1.5.8 Coordinate Spaces in the Graphics Pipeline 55

1.6 OpenGL Shading . 57
1.6.1 The Phong Model . 58
1.6.2 Lambertian Surfaces . 60
1.6.3 The Normal Vector . 61
1.6.4 Shading . 63
1.6.5 Lighting . 64
1.6.6 OpenGL code for Shading . 65

2 Scene Graph Theory 67
2.1 Introduction . 67
2.2 A Simple Scene Graph Implementation . 68

2.2.1 Traversing the Scene Graph . 70
2.2.2 Putting it Together: The Scene Graph with OpenGL 74
2.2.3 Making it Better: The Scene Graph with OpenGL 79

2.3 Constructive Solid Geometry (CSG) . 82

3

4 CONTENTS

2.4 Scene Graphs and Bounding Volume Hierarchies 84
2.5 Space Subdivision Structures . 85

2.5.1 Binary Space Partitioning Trees . 85
2.6 Hidden Surface Removal . 88

2.6.1 The Painter’s Algorithm and BSP 89

3 Real-Time 3D Computer Graphics Techniques 93
3.1 Introduction . 93
3.2 Texture Mapping in OpenGL . 93

3.2.1 Mipmapping . 98
3.3 Level of Detail (LOD) . 98
3.4 Billboarding . 101
3.5 Mappings . 102

3.5.1 Bump Mapping . 102
3.5.2 Displacement Mapping . 105

3.6 Shadows . 105
3.6.1 Algorithms for Computing Shadows 105

4 Appendices 109
4.1 Installing Dev C++ . 109
4.2 Exercise Solutions . 109

4.2.1 Solution: A Rotating Colour Solid 109

Chapter 1

OpenGL - The Graphics Pipeline

1.1 Introduction

The Graphics Pipeline is responsible for taking the description of a scene in 3-D space
and mapping it to the view plane in a raster form, i.e. generally to the computer monitor.
The most popular models of a graphics pipeline with an extensive API are Java3D and
OpenGL.

1.2 What is the OpenGL API?

OpenGL is defined simply as ‘a software interface to graphics hardware”, but this does not
do justice to the true capability of this technology; it is an extremely fast graphics library
that provides with all the functionality we require to model in 3-D. OpenGL is intended
for use with graphics hardware, but there are software versions of OpenGL available - in
particular the Microsoft version; however, these days almost all personal computers are
supplied with a 3-D graphics card that contains a hardware implementation of OpenGL.
Indeed, OpenGL works well in hiding the complexities involved with different 3D graphic
accelerators and their processing capabilities, which are supplied from different vendors1.
The processing capability of OpenGL is supplied by a graphics pipeline, known as the
OpenGL State Machine, which is illustrated in 1.1 and 1.2.

There are several 3-D graphic Application Programming Interfaces (APIs) available,
such as OpenGL, Direct3D and Java3D. We have discussed Java3D earlier in this mod-
ule, and now we are discussing the lower-level OpenGL API: We could have examined
the Direct3D API, but it is a Microsoft Technology, tied to the Windows OS. OpenGL is
maintained by Silicon Graphics Ltd. (SGI) and provides a standard specification defining
a cross-platform API for writing 3-D graphic applications. OpenGL is more commonly
used in 3-D Visualisation applications, whereas Direct3D is more commonly used in com-
puter gaming applications. As mentioned, OpenGL is a low-level API, which requires the
programmer to supply the exact steps to render a scene. This makes the generation of
scenes much more difficult than Java3D where we only had to describe the scene, but
it makes it possible for us to create novel rendering algorithms or to configure how the
pipeline processes the primitives that we specify.

OpenGL provides us with the functionality to specify the objects, cameras, light sources
and materials that we need to create 3-D scenes. OpenGL allows us to create objects by
using points, line segments, triangles and polygons... in particular, we create objects
through lists of vertices. The following listing allows us to create a simple triangle in the
xy plane (i.e. with z = 0 for every vertex):

0 glBegin(GL POLYGON);

1The best known vendors are probably nVidia (www.nvidia.com) and ATI technologies (www.ati.com)
- now owned by AMD

5

6 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

glVertex3f(0.0 f , 0.0f , 0.0f);
glVertex3f(0.0 f , 1.0f , 0.0f);
glVertex3f(1.0 f , 0.0f , 0.0f);

glEnd();

The function glBegin() specifies the type of shape that the vertices define. Each call
to the glVertex() function gives the x, y and z position of the vertex. In this case we
are creating a GL POLYGON but we could change this to GL POINTS to specify 3 points, or
GL LINE STRIP to specify two connected lines. So, in the example above, we could have
used glVertex2f() instead, as the z-component is 0 in each case. This is typical of the
syntax used in OpenGL.

The glVertex*() function allows us many different functions to specify a vertex in
3-D space; we can use two, three and even four dimensional spaces in OpenGL. In this
function the * can be replaced by any of the numbers 2, 3 or 4 and the particular type
of the value of the vertex, e.g. float(f), double(d), integer(i) or pointer(v): So,
glVertex2i(10,20) would specify that we are creating a vertex using two integer values
at (10, 20). We generally use the OpenGL types that are defined in the OpenGL header
files, such as: #define GLfloat float. This allows flexibility for implementations where
we might want to change floats into doubles without affecting the code already written.
Note that OpenGL functions all begin with the letters gl.

We can use arrays of points, using the following syntax:

0 GLfloat vertices [3][3] = {{0.0f, 1.0f , 0.0f},
{0.87f , −0.5f, 0.0f}, {−0.87f, −0.5f, 0.0f}};

// ...
glBegin (GL TRIANGLES);

for(int i=0; i<3; i++)
5 {

glVertex3fv(vertices [i]);
}

glEnd ();
// ...

For a full source example see: Example1a
The OpenGL user API provides us with a set of resources to help us in the development

of our applications:

• OpenGL Utility Library (GLU) - This library provides us with a set of functions
for drawing objects (such as spheres), manipulating textures, creation of standard
views, NURBS surfaces etc.; functions that are common across many applications.
The prefix for functions of this library is glu, not gl.

• OpenGL Utility Toolkit (GLUT) - This library provides us with functionality re-
lated to the windowing system on the current platform, for creating windows, create
menus, interaction with the mouse, draw objects, display text etc. The prefix for
functions of this library is glut. The GLUT library is available from Nate Robins’
web site: http://www.xmission.com/~nate/glut.html.

To include these libraries, we can use #include<GL/glut.h> for example. Figure 1.3
illustrates a simplified OpenGL Windows pipeline.

OpenGL Resources

The following are a list of the most important OpenGL references for this module:

• The OpenGL Red Book - This book is the programming guide for OpenGL. It is
designed to explain OpenGL functionality and to give examples of its use. The Red
Book is currently in its fifth edition, which covers OpenGL Version 2, but here is an

http://www.xmission.com/~nate/glut.html

1.2. WHAT IS THE OPENGL API? 7

TexCoord1

TexCoord2

TexCoord3

TexCoord4

Color3

Color4
Convert

RGBA to float

Index Convert
index to float

Current
Texture

Coordinates

Current
RGBA
Color

Current
Color
Index

Current
Normal

Normal3

Vertex2
RasterPos2

Vertex3
RasterPos3

Vertex4
RasterPos4

b
M

M*b

Model View
Matrix
Stack

OBJECT
COORDINATES

EYE
COORDINATES

M

Matrix
Control

MatrixMode
PushMatrix

PopMatrix

LoadIdentity
LoadMatrix

N
M

M*N

Matrix
Generators

Translate
Scale

Rotate
Frustum

Ortho

EdgeFlag
Current

Edge
Flag

Current
Raster

Position

CullFace

Polygon
Culling

Polygon
Mode

PolygonMode

PointSize

Enable/Disable
(Antialiasing/Stipple)

Unpack
Pixels

Bitmap

DrawPixels

TexImage

PolygonStipple

Pixel
Transfer

PixelTransfer

PixelStore

Pack
Pixels

ReadPixels

MultMatrix

b
M

M*b Normalize

Enable/Disable

TexGen
OBJECT_LINEAR

TexGen
EYE_LINEAR

TexGen
SPHERE_MAP

Enable/Disable

b
A

A*b

Texture
Matrix
Stack

Material
Parameters

Control

ColorMaterial
Material

Enable/Disable

Light
Parameters

RGBA Lighting Equation

Color Index Lighting Equation

Material
Parameters

Light Model
Parameters

Light
Enable/Disable

LightModel

M
M−T

Enable/Disable

Clamp to
[0,1]

Mask to

[0,2n−1]

Primitive
Assembly

Begin/End

TexGen

(Lighting)

EvalMesh
EvalPoint

EvalCoord

MapGrid

Map

Grid
Application

Map
Evaluation

Divide
Vertex

Coordinates
by
w

Apply
Viewport

DepthRange
Viewport

Flatshading

POINTS
RASTER POS.

LINE
SEGMENTS

POLYGONS

ShadeModel

Line
Clipping

Polygon
Clipping

Point
Culling

Clip
Planes

ClipPlane

Mb

b

b

(Vertex
Only)

Line
View Volume

Clipping

Polygon
View Volume

Clipping

Point
View Volume

Culling

M*b

Projection
Matrix
Stack

M
M−Tb

b

Feedback
Encoding

FeedbackBuffer

PassThrough

Selection
Control

SelectBuffer

RenderMode

Evaluator
Control

Rectangle
Generation

Rect

M*b

M*b

FrontFace

FrontFace

LineStipple

Enable/Disable
(Antialiasing)

PixelMap

Selection
Name
Stack

Selection
Encoding

InitNames

PopName
PushName

LoadName

Notes:
1. Commands (and constants) are shown without the

gl (or GL_) prefix.
2. The following commands do not appear in this
 diagram: glAccum, glClearAccum, glHint,
 display list commands, texture object commands,
 commands for obtaining OpenGL state
 (glGet commands and glIsEnabled), and

glPushAttrib and glPopAttrib. Utility library
 routines are not shown.
3. After their exectution, glDrawArrays and

glDrawElements leave affected current values
 indeterminate.
4. This diagram is schematic; it may not directly
 correspond to any actual OpenGL implementation.

Convert
normal coords

 to float

Enable/Disable

TexSubImage

PolygonOffset

LineWidth

Enable/Disable
(Antialiasing)

EdgeFlagPointer

TexCoordPointer

ColorPointer

IndexPointer

NormalPointer

VertexPointer

InterLeavedArrays

 EnableClientState
DisableClientState

DrawElements

ArrayElement

Vertex
Array

Control

t 0

r 0

q 1

A 1

z 0

w 1

DrawArrays

Figure 1.1: A schematic diagram of the OpenGL State Machine LHS c©Silicon Graphics
Ltd.

8 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

The OpenGL Machine
R

The OpenGL ? graphics system diagram, Version 1.1. Copyright ? 1996 Silicon Graphics, Inc. All rights reserved.

Polygon
Rasterization

Line
Segment

Rasterization

Point
Rasterization

Bitmap
Rasterization

Pixel
Rasterization

PointSize

Enable/Disable
(Antialiasing/Stipple)

PixelZoom

Texel
Generation

Texture
Memory

TexParameter

Texture
Application

Fog

TexEnv Fog
Enable/Disable Enable/Disable

Masking

ColorMask
IndexMask

DepthMask
StencilMask

Coverage
(antialiasing)
Application

Pixel
Ownership

Test

Alpha
Test

(RGBA only)

Scissor
Test

Stencil
Test

Depth
Buffer
Test

Clear
Values

Clear
Control

Clear

ClearColor
ClearIndex
ClearDepth

ClearStencil

Blending
(RGBA only)

Dithering Logic Op

Frame Buffer

Scissor AlphaFunc
StencilOp

StencilFunc

Enable/Disable
Enable/Disable Enable/Disable Enable/Disable Enable/Disable Enable/Disable Enable/Disable

Enable/Disable

DepthFunc BlendFunc LogicOp

Frame Buffer
Control

DrawBuffer

Readback
Control

ReadBuffer

Masking

LineStipple

Enable/Disable
(Antialiasing)

CopyPixels
CopyTexImage

CopyTexSubImage

PolygonOffset

LineWidth

Enable/Disable
(Antialiasing)

Key to OpenGL Operations

stnemgarFsevitimirP

Vertices

Feedback
&

Selection

Input
Conversion

&
Current
Values

Texture Coordinate
Generation

Evaluators
&

Vertex Arrays

Lighting

Matrix
Control

Clipping, Perspective,
and

Viewport Application Rasteriz−
ation Texturing,

Fog,
and

Antialiasing

Per−Fragment Operations

Frame Buffer
&

Frame Buffer ControlPixels

Figure 1.2: A schematic diagram of the OpenGL State Machine RHS c©Silicon Graphics
Ltd.

1.3. INTRODUCTION TO OPENGL PROGRAMMING 9

C/C++
OpenGL

Application

GL (Core)
Library

GLU (Utility)
Library

GLUT/MFC
Library

Win32

Graphics Hardware
Frame Buffer

Figure 1.3: The Simplified OpenGL Windows Pipeline.

Geometric Pipeline

OpenGL
Application

Transform

Pixel
Operations

Clipping Projection

Frame
BufferPixel Pipeline

Figure 1.4: A simplified OpenGL pipeline.

older version of the book in resources
redbook.pdf and associated examples in resources
redbookexamples.zip.

• The OpenGL Blue Book - This book is the reference guide for OpenGL. It is designed
to document all the functionality of OpenGL. It currently covers version 1.4 of
OpenGL, but an old version is available here in resources
bluebook.pdf, which covers OpenGL version 1.0.

• OpenGL Specification Version 2.1 - The OpenGL specification 2.1 was released in
August 2006 and it describes the latest features of OpenGL. The most up-to-date
specification is available at resources
OpenGLSpecificationVersion2 1.pdf.

1.3 Introduction to OpenGL Programming

1.3.1 OpenGL Primitives and Attributes

The core OpenGL library supports a relatively small set of geometric primitives (such
as points, lines, polygons, curves and surfaces) and raster primitives (such as arrays of
pixels). Figure 1.4 (see 1.1 and 1.2 for the full diagram) illustrates the series of geometric
operations which are used to see if a primitive appears on the screen (frame buffer). The
transform block allows 2-D/3-D geometric primitives to be rotated or translated. Because
raster objects do not have geometric properties, they cannot be manipulated in the same
way and so follow a parallel path through the pipeline.

As discussed previously, basic OpenGL geometric primitives are created using the
following code:

0 glBegin(<type>);
glVertex ∗(...);
...

10 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

(a) GL_POINTS (b) GL_LINES (c) GL_LINE_LOOP (d) GL_LINE_STRIP

P0

P7

P1

P2

P3

P4

P5

P6

P0

P7

P1

P2

P3

P4

P5

P6

P0

P7

P1

P2

P3

P4

P5

P6

P0

P7

P1

P2

P3

P4

P5

P6

Figure 1.5: OpenGL Line Based Primitives.

(a) Simple Convex

P1

P2

(b) Simple Concave

P1

P2

(c) Complex (non-simple)

Figure 1.6: Displaying a polygon correctly (a) simple convex shapes (b) concave shapes
(c) a non-simple polygon

glVertex ∗(...);
glEnd();

where ∗ defines the particular glVertex function to call, and where <type> is one of
the following (see figure 1.5(a)-(d)) in the case of line based primitives:

• GL POINTS - Each vertex is displayed as a point, with a size of at least one pixel.

• GL LINES - Each vertex pair are used as the start and end point, thus creating a line.

• GL LINE LOOP - Each vertex is used as the end point to create a line, using the
previous vertex as the start point (except P0). The line loop connects the last point
to the first point, thus creating a loop.

• GL LINE STRIP - Each vertex is used as the end point to create a line, using the
previous vertex as the start point (except P0).

When we are creating objects that are constructed like line loops (see figure 1.5(c)),
but are filled in some way, we use the term polygon. Polygons are the fundamental build-
ing blocks of complex models, in that these models are constructed from thousands of
polygons.

For a polygon to be displayed correctly it must be (see figure 1.6):

• simple - the polygon should have a well-defined interior region. Lines connecting the
vertices of the polygon should not cross.

• convex - an object is convex if all points on the object, or its boundary may be
connected without leaving the boundary of the object2.

2A set in Euclidean space R is a convex set if it contains all the line segments connecting any pair of

1.3. INTRODUCTION TO OPENGL PROGRAMMING 11

(a) GL_POLYGON (b) GL_QUADS (c) GL_TRIANGLES

P0

P7

P1

P2

P3

P4

P5

P6

P0

P7

P1

P2

P3

P4

P5

P6

P0

P7

P1

P2

P3

P4

P5

P6

(d) GL_TRIANGLE_STRIP

P0

P7P1

P2

P3

P4

P5

P6

(e) GL_QUAD_STRIP

P0

P7P1

P2

P3

P4

P5

P6

(f) GL_TRIANGLE_FAN

P0 P7

P1

P2 P3 P4 P5

P6

Figure 1.7: OpenGL Polygon Based Primitives.

• flat - for a 3-D polygon all points of the polygon must lie on the same plane. If we
are using triangles to represent polygons then this is not an issue.

We can use the same segment of code to create polygon objects:

0 glBegin(<type>)
glVertex ∗(...);
...
glVertex ∗(...);

glEnd();

where ∗ defines the particular glVertex function to call, and where <type> is one of
the following (see figure 1.7(a)-(f)) in the case of polygon based primitives:

• GL POLYGON - Each successive vertex defines a line segment, with the final vertex
connected to the first vertex. The interior of the polygon is filled according to the
current OpenGL state. If we wish we can use the glPolygonMode() function to
display the edges or points of the vertices, instead of filling the polygon.

• GL TRIANGLES and GL QUADS - For the purpose of efficiency, it is possible to use
successive groups of either 3 or 4 vertices to create complex objects.

• GL TRIANGLE STRIP, GL QUAD STRIP and GL TRIANGLE FAN - When complex objects
are being constructed that share vertices and edges, these types are particularly
efficient at where each additional vertex is combined with the two previous vertices
in the case of a triangle strip array; each new pair of vertices combine with the
previous two vertices for the quad strip array; and using one fixed point and each
subsequent vertex in the case of a triangle fan array.

Here is an example of using these basic primitives to create more complex objects.
The easy way to do this is to use the fact that GLUT already provides a set of complex
primitives such as a sphere. Example1b provides the source code project for an example of
drawing a sphere using GLUT, and a screen capture of this application is shown in figure
1.8.

To use this example you must complete the following steps:

its points. If the set does not contain all the line segments, it is called concave. The convex hull is the set
of points that we get by stretching a tight-fitting surface over the object (like an elastic band in the 2-D
case). It is the smallest convex object that includes the the set of points.

12 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

Figure 1.8: Using OpenGL GLUT to draw a sphere.

• Download the GLUT library from http://www.xmission.com/~nate/glut.html

• Place the GLUT.h file in the DevC++ header file “GL” directory (i.e. where GL.h
is located)

• Place the .lib file in the DevC++ library directory.

• Place the GLUT32.dll file in the windows SYSTEM32 directory.

• In DevC++ Project −→ Project Options −→ press on “Parameters” and add the
following libraries to your Linker: -lglut32 -lwinmm -lgdi32

• In DevC++ you seem to have to add a line #define GLUT DISABLE ATEXIT HACK to
your code to get it to work correctly.

We can then very simply create a red sphere by using the code:

0 // Set the current OpenGL color to red
glColor4f (1.0, 0.0, 0.0, 1.0);
// Draw a wire sphere
glutWireSphere(0.95, 10, 10);

If we wish to do this the hard way! In this example we will approximate a sphere. We
can do this very efficiently by using a set of polygons defined by lines of longitude, using
either triangle strips of quad strips. A sphere can be described by the following equations:

x(θ, φ) = r sin θ cos φ

y(θ, φ) = r cos θ cos φ

z(θ, φ) = r sinφ

where −180 ≤ θ ≤ +180 and −90 ≤ φ ≤ +90. In this case when φ is fixed, we can draw
circles of constant latitude by varying θ (the Earth’s equator is a line of latitude). In our
code we will only vary −80 ≤ φ ≤ +80, so that the top and bottom (poles) of the sphere
can be closed more accurately using a triangle fan. Figure 1.9(a) illustrates the approach
to be taken where we will use GL QUAD STRIPs to fill in the largest area of the sphere and
GL TRIANGLE FANs to fill in the top and bottom of the sphere, ensuring that our sphere
begins and ends with a single point. To get OpenGL to display all of the lines in the sphere
it is necessary to set the mode to: glPolygonMode(GL FRONT AND BACK, GL LINE); The
source code for this example can be found in the Example1c directory.

Here is the implementation of the code for figure 1.9(b), where both ends of the
sphere have not yet been closed. For this example we call the method by the call:

http://www.xmission.com/~nate/glut.html

1.3. INTRODUCTION TO OPENGL PROGRAMMING 13

0

1

2

3

4

5

GL_QUAD_STRIP

GL_TRIANGLE_FAN

(a) (b) (c)

Figure 1.9: Drawing a sphere manually using the OpenGL core functionality. (a) illustrates
the approach taken (b) shows a screen grab with the ends not closed and (c) shows a screen
grab with the ends closed

drawGLSphere(0.75f, 10.0f); where the first arguments specifies the radius of the
sphere and the second specifies the number of degrees to use for each component polygon,
i.e. a larger number gives a lower resolution sphere mesh. Remember that the standard
trigonometric functions in C++ work in radians, so while we can specify the behaviour of
our sphere in degrees, we must do the calculations in radians.

0 void drawGLSphere(GLfloat radius, GLfloat step)
{

GLfloat x,y,z, c = 3.14159f/180.0f;
for (GLfloat phi=−80.0f; phi<80.0; phi+=step)
{

5 GLfloat phi rad = c ∗ phi;
GLfloat phi rad end = c ∗ (phi+step);
glBegin(GL QUAD STRIP);
for (GLfloat theta=−180.0f; theta<=180.0f; theta+=step)
{

10 GLfloat theta rad = c ∗ theta;
x = radius ∗ sin(theta rad)∗cos(phi rad);
y = radius ∗ cos(theta rad)∗cos(phi rad);
z = radius ∗ sin(phi rad);
glVertex3f(x,y,z);

15 x = radius ∗ sin(theta rad)∗cos(phi rad end);
y = radius ∗ cos(theta rad)∗cos(phi rad end);
z = radius ∗ sin(phi rad end);
glVertex3f(x,y,z);

}
20 glEnd();

}
}

To close the sphere at the top and bottom as in figure 1.9(b) it is necessary to add
some more code within the same function:

0 // Close one end
GLfloat closeRing rad = c ∗ 80.0;
glBegin(GL TRIANGLE FAN);
glVertex3f(0.0 f , 0.0f , −radius);
z = radius ∗ −sin(closeRing rad);

5 for(GLfloat theta=−180.0f; theta<=180.0f; theta+=step)
{

GLfloat theta rad = c ∗ theta;
x = radius ∗ sin(theta rad) ∗ cos(closeRing rad);
y = radius ∗ cos(theta rad) ∗ cos(closeRing rad);

14 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

Figure 1.10: The Nate Robins’ Tutorial Example on Shapes (a) demonstrates the use of
GL LINES, and (b) demonstrates the use of GL QUAD STRIP

.

Figure 1.11: Two screen captures of the OpenGL Full Example

10 glVertex3f(x,y,z);
}
glEnd();

// Close the other end
15 glBegin(GL TRIANGLE FAN);

glVertex3f(0.0 f , 0.0f , radius);
z = radius ∗ sin(closeRing rad);
for(GLfloat theta=−180.0f; theta<=180.0f; theta+=step)
{

20 GLfloat theta rad = c ∗ theta;
x = radius ∗ sin(theta rad) ∗ cos(closeRing rad);
y = radius ∗ cos(theta rad) ∗ cos(closeRing rad);
glVertex3f(x,y,z);

}
25 glEnd();

1.10 demonstrates an example of drawing shapes when using the OpenGL API. In all
of these tutorial examples you can change the parameters by left-clicking the mouse on
their values. In this example you can also right-click to change from drawing GL LINES,
as in 1.10(a) to drawing GL QUAD STRIPs as in 1.10(b).

1.3.2 OpenGL Full Source Code Example

This example demonstrates the use of Dev C++ for the creation of a first OpenGL windows
application. It is written for the MS Windows environment and should work on all PCs
with and without 3D graphics cards. 1.11 shows two screen captures of this example
running. The triangle is coloured red, green and blue at each vertex of the triangle, with
the apex red.

The source code for this example is listed as:

1.3. INTRODUCTION TO OPENGL PROGRAMMING 15

0 /∗∗
∗ EE563 Example Project 1
∗ by: Derek Molloy
∗ based on the DevC++ OpenGL template
∗

5 ∗∗/

#include <windows.h> // Header File For Windows
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library

10
HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

15
// Function Declarations

LRESULT CALLBACK WndProc (HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam);

20 void enableOpenGL (HWND hWnd, HDC ∗hDC, HGLRC ∗hRC);
int initGL(GLvoid);
int drawGLScene(float theta);
void disableOpenGL (HWND hWnd, HDC hDC, HGLRC hRC);

25 // WinMain − the starting point of our application

int WINAPI WinMain (HINSTANCE hInst, HINSTANCE hPrevInstance,
LPSTR lpCmdLine, int iCmdShow)

{
30 WNDCLASS wc;

HGLRC hRC;
hInstance = hInst;
MSG msg;
BOOL bQuit = FALSE;

35 float theta = 0.0f;

// register window class
wc.style = CS OWNDC;
wc.lpfnWndProc = WndProc;

40 wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;
wc.hIcon = LoadIcon (NULL, IDI APPLICATION);
wc.hCursor = LoadCursor (NULL, IDC ARROW);

45 wc.hbrBackground = (HBRUSH) GetStockObject (BLACK BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = ”EE553GLExample”;
RegisterClass (&wc);

50 // create main window
hWnd = CreateWindow (”EE553GLExample”, ”EE553 Example 1”,

WS CAPTION | WS POPUPWINDOW | WS VISIBLE,
0, 0, 256, 256,
NULL, NULL, hInstance, NULL);

55
// enable OpenGL for the window
enableOpenGL (hWnd, &hDC, &hRC);
initGL();

60 // program main loop
while (!bQuit)
{

// check for messages
if (PeekMessage (&msg, NULL, 0, 0, PM REMOVE))

65 {
// handle or dispatch messages
if (msg.message == WM QUIT)
{

bQuit = TRUE;
70 }

else
{

TranslateMessage (&msg);
DispatchMessage (&msg);

75 }
}
else
{

drawGLScene(theta);
80 SwapBuffers (hDC);

theta += 1.0f;
Sleep (1);

}
}

85 // shutdown OpenGL
disableOpenGL (hWnd, hDC, hRC);
// destroy the window explicitly
DestroyWindow (hWnd);
return msg.wParam;

90 }

// Window Callback Process

95 LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{

switch (message)
{

case WM CREATE:
100 return 0;

case WM CLOSE:
PostQuitMessage (0);

16 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

return 0;
case WM DESTROY:

105 return 0;
case WM KEYDOWN:

switch (wParam)
{
case VK ESCAPE:

110 PostQuitMessage(0);
return 0;

}
return 0;

default:
115 return DefWindowProc (hWnd, message, wParam, lParam);

}
}

120 //Enable OpenGL

void enableOpenGL (HWND hWnd, HDC ∗hDC, HGLRC ∗hRC)
{

PIXELFORMATDESCRIPTOR pfd;
125 int iFormat;

// get the device context (DC)
∗hDC = GetDC (hWnd);

130 // set the pixel format for the DC
ZeroMemory (&pfd, sizeof (pfd));
pfd.nSize = sizeof (pfd);
pfd.nVersion = 1;
pfd.dwFlags = PFD DRAW TO WINDOW | PFD SUPPORT OPENGL | PFD DOUBLEBUFFER;

135 pfd.iPixelType = PFD TYPE RGBA;
pfd.cColorBits = 24;
pfd.cDepthBits = 16;
pfd.iLayerType = PFD MAIN PLANE;
iFormat = ChoosePixelFormat (∗hDC, &pfd);

140 SetPixelFormat (∗hDC, iFormat, &pfd);

// create and enable the render context (RC)
∗hRC = wglCreateContext(∗hDC);
wglMakeCurrent(∗hDC, ∗hRC);

145 }

// Setup our GL Scene
int initGL(GLvoid)
{

150 glShadeModel(GL SMOOTH); // Enable Smooth Shading
glClearColor(0.0f , 0.0f , 0.0f , 0.5f);// Black Background
glClearDepth(1.0f); // Depth Buffer Setup
glEnable(GL DEPTH TEST); // Enables Depth Testing
glDepthFunc(GL LEQUAL); // The Type Of Depth Testing To Do

155 glHint(GL PERSPECTIVE CORRECTION HINT,
GL NICEST); // Really Nice Perspective Calculations

return TRUE; // Initialization Went OK
}

160 // Called to update the scene − give us the animation
int drawGLScene(float theta) // Draw the scene;
{ // theta is amount to rotate

glClear (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT); // Clear Screen
165 glLoadIdentity();

glPushMatrix ();
glRotatef (theta, 1.0f , 1.0f , 0.0f); // Rotate theta around the xy−axis
glBegin (GL TRIANGLES); // Drawing Using Triangles

glColor3f (1.0 f , 0.0f , 0.0f); glVertex2f (0.0 f , 1.0f);
170 glColor3f (0.0 f , 1.0f , 0.0f); glVertex2f (0.87f , −0.5f);

glColor3f (0.0 f , 0.0f , 1.0f); glVertex2f (−0.87f, −0.5f);
glEnd ();
glPopMatrix ();

return TRUE; // Keep Going
175 }

// Disable OpenGL
void disableOpenGL (HWND hWnd, HDC hDC, HGLRC hRC)
{

180 wglMakeCurrent (NULL, NULL);
wglDeleteContext (hRC);
ReleaseDC (hWnd, hDC);

}

1.3.3 OpenGL Colour

There are two colour models used in OpenGL; the RGB Colour Model and the Indexed
Colour Model. OpenGL provides us with a fairly simple mechanism for specifying colour
directly by providing the red, green and blue values directly. When using 24-bit colour
(224 = 16.7M colours) we specify our colour components as values between 0.0 and 1.0,
using functions such as:

0 glColor3f(0.0 f , 0.0f , 1.0f); // (R, G, B)

1.3. INTRODUCTION TO OPENGL PROGRAMMING 17

(a) (b) (c)

Green

Blue

Red

Yellow

White

Red

Magenta

Cyan

Blue

Green

Black

Figure 1.12: The Colour Cube Exercise (a) Colour Cube ;(b),(c) Screen Grabs of my
solution.

which sets the current drawing colour to blue. The drawing colour will remain as blue until
we change the colour again. OpenGL also provides support for transparency (opacity),
which can be used for transparent models, image blending or for effects such as fog. The
function takes a fourth parameter which specifies the level of opacity, which can vary from
0.0 (fully transparent) to 1.0 (fully opaque).

0 glColor4f(0.0 f , 0.0f , 1.0f , 1.0f); // (R, G, B, A)

which will give us a fully opaque blue. If we wish to change the background colour we can
use the function:

0 glClearColor(1.0f , 1.0f , 1.0f , 1.0f); // (R, G, B, A)

which will result in a white clearing colour. OpenGL also has support for indexed colour,
by providing a user-defined colour-lookup table that is of size 2n, which contains 3 columns,
one for each of R,G, and B. If the bit level for each of R,G and B is 8-bits then the user
can choose 2n individual colours out of the 16.7M possibilities, creating a palette. When
you are in indexed colour mode you can select the current colour from the palette, by
using:

0 glIndexi ();

The indexed colour model is not so important any more due to the vast capabilities of
todays’ graphics cards.

1.3.4 Exercise: A Rotating Colour Solid

Write the code to generate a rotating colour solid which demonstrates the range of RGB
colours that has a variable diameter. Please use the structure as illustrated in figure 1.12,
where (a) illustrates the colour cube, and (b),(c) show screen grabs of my solution.

Please note that OpenGL uses variants of bilinear interpolation to generate the colours
between the vertices. Therefore, as in the previous triangle example it is possible to specify
colours on a vertex-by-vertex basis and allow OpenGL to do the colour mixing over the
polygons.

You should try to write this code as efficiently as possible. You should be able to
modify previous examples to generate the cube, but you should look in particular at the
glVertex3fv() and glColor3fv() functions, which take an array of values, rather than
individual values. My solution is given in the appendices.

18 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

(a)

a

b

c

a’

b’

c’

parallel projectors

View Plane

(b)

a

b

c

a’

b’

c’

View Plane

Centre of
Projection

Figure 1.13: The projection of a triangle onto the image plane using (a) parallel projection
and (b) perspective projection.

1.3.5 OpenGL Viewing

There are two ways to view an OpenGL scene; one way is by viewing objects in an
orthographic manner, and the other is viewing objects in a perspective view. Looking
down a long straight road you will see that the road width appears narrower the further
away the section of road is - this is a perspective view. In the same example, with an
orthographic view, the road would remain the same width for as far as you can see.
Figure 1.13 illustrates the projection of a triangle onto the image plane using both parallel
projection and perspective projection. It is very important that we understand what is
happening in viewing when using OpenGL as changes to the viewing volume can have
dramatic effects on the appearance of our scene.

The view volume is also very important for real-time visualisation as we can use clipping
against the view volume to remove objects which are not within the view volume, where
typically polygons outside of the view volume are discarded and polygons that intersect
the view volume boundary are ‘clipped’. Culling is a similar operation that takes account
of the viewer’s position to determine if part of an object cannot be seen; for example, in
3-D (the real world!) most objects are only 50% visible from any one point, as the back
side of the object is occluded by the front side. A very simple test to see if we are looking
at the front-side or back-side of a polygon is to use the view vector ~n and the polygon’s
normal vector ~np, where a particular polygon is visible if: ~np · ~n < 0 (we will discuss this
later).

Orthographic Viewing

Mathematically speaking, an orthographic view is what we would get if a camera had
an infinitely long telephoto lens and we could place the camera infinitely far from the
object - in 3-D it is an affine3, parallel projection of an object onto a perpendicular plane.
Orthographic projections are very common in CAD and 3-D modelling applications, where
the user is presented with a top, front and side orthographic view. Objects in these
orthographic views appear to be the exact same size, no matter how far they are from the
viewer.

In OpenGL an orthographic projection can be specified as:

0 void glOrtho(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top , GLdouble near, GLdouble far)

where distances are measured from the camera. Objects outside of this viewing volume
are not displayed. If we do not specify a viewing volume then OpenGL uses its default
2x2x2 cube, with the origin as the centre.

3affine transformation between two vector spaces consists of a linear transformation followed by a
translation x 7→ Ax + b

1.3. INTRODUCTION TO OPENGL PROGRAMMING 19

P(x,y,z)

P’(xs,ys)

View Planey

x

z

(a)

y

zc

View Plane
P(x,y,z)

py

d

ys

-pz

(b)

x

zc

View Plane

P(x,y,z)

px

xs

(c)

Figure 1.14: Illustration of the projection of a single point onto the view plane when using
perspective transformation (a) illustrates the project, (b) shows the same figure when
looking along the x-axis, and (c) shows the same figure when looking along the y-axis.

x
y
z
w

 =

2

r−l 0 0 − r+l
r−l

0 2
t−b 0 − t+b

t−b

0 0 − 2
f−n −f+n

f−n

0 0 0 1

px

py

pz

1

Perspective Viewing

Figure 1.14 illustrates the perspective projection of a point onto the view plane, with the
cross-sections of this projection illustrated in (b) and (c), where (b) illustrates the view
when looking along the x-axis and (c) illustrates the view when looking along the y-axis.
In OpenGL the centre of projection is always at the origin and pointing in the negative
z-axis, hence the z-axis in this figure is pointing in the negative direction. The point
P (x, y, z) is a point in the view coordinate system, and P ′(xs, ys) is the projection of this
point onto the view plane, which is normal to the z-axis. Assuming that the image plane
is a distance d in front of the centre of projection, the point P (x, y, z) is projected onto
(x, y,−d). From similar triangles 4, we have:

xs

−d
=

px

pz
,

ys

−d
=

py

pz
, z = −d (1.1)

which gives:

xs =
−dpx

pz
, ys =

−dpy

pz
, z = −d (1.2)

where all z values are reduced to −d. Later we will see that OpenGL uses a technique
called z-buffering for hidden surface removal, which does not reduce z values to a single
value.

OpenGL Frustum

The mechanism for creating a perspective projection in OpenGL is through the definition
of a pyramidal frustum5, using the glFrustum function call, which has the following form:

4Two triangles are similar if their triples of vertex angles are the same. If two triangles are similar,
then their sides will be proportional; meaning that every side of one triangle will be in a fixed ratio with
the corresponding side of the other triangle

5Note: Frustum, not “Fustrum” - A frustum is the portion of a solid (normally a cone or pyramid),
which lies between two parallel planes cutting the solid.

20 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

Y

X

Z
y=t

y=b

x=l

z=-f

z=-n

x=r X

Y

Z

0

z=+1

z=-1

x=+1

x=-1

y=+1

y=-1

(-1,1,1)

(-1,-1,1)

(1,-1,1)

(1,-1,-1)

(1,1,-1)

(-1,1,-1)

(1,1,1)

(-1,-1,-1)

(a)

(b)

Figure 1.15: The OpenGL Frustum (a) illustrates the perspective view frustum volume
and (b) illustrates its mapping to a homogeneous clip space cube.

0 void glFrustum(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top, GLdouble near, GLdouble far)

The perspective view frustum volume that is defined by glFrustum is illustrated in figure
1.15(a), where x spans from left to right, y spans from top to bottom, and z spans from
near to far. Objects outside of this view frustum are clipped and are not displayed.
OpenGL maps the frustum as illustrated in 1.15(b), where left 7→ −1, right 7→ +1,
bottom 7→ −1, top 7→ +1, near 7→ −1 and far 7→ +1, reversing the direction of the z-axis.

From figure 1.15 and from equations 1.2 we can write:

xs =
−npx

pz
, ys =

−npy

pz
, z = −n (1.3)

For an affine mapping of u 7→ v based on u0 7→ v0 and u1 7→ v1 we define the mapping
as a scaling a with a shift b as:

v = au + b (1.4)

It can be shown that this can be represented as:

v = (u− u0)
v1 − v0

u1 − u0
+ v0 (1.5)

which maps u0 7→ v0 and u1 7→ v1. Taking our present case where as illustrated in figure
1.15 OpenGL maps x = left 7→ x′ = −1, x = right 7→ x′ = +1, y = bottom 7→ y′ = −1
and y = top 7→ y′ = +1. In our case, where u = x, v = x′, (u0 = left) 7→ (v0 = −1) and
(u1 = right) 7→ (v1 = +1), we can write equation this as:

x′ = (x− left)
+1− (−1)

right− left
+ (−1) (1.6)

= (x− l)
2

r − l
− 1 (1.7)

=
2(x− l)− r + l

r − l

=
2x− 2l − r + l

r − l

So,

x′ =
2x− (r + l)

r − l
(1.8)

When we substitute this into equation (x = xs) 1.3, we get:

x′ =
2(−npx

pz
)− (r + l)

r − l
(1.9)

1.3. INTRODUCTION TO OPENGL PROGRAMMING 21

Rewriting in the form that we will require for our projection matrix, we get:

− x′pz =
2npx + (r + l)pz

r − l
(1.10)

If we solve similarly for y′ we get:

− y′pz =
2npy + (t + b)pz

t− b
(1.11)

Unfortunately we also have to solve for z′, which is made a bit more difficult by the
fact that the rasterisation state needs the reciprocal of pz, so our affine mapping v = au+b
is z′ = a(1

pz
) + b, where s = − 1

n 7→ z′ = −1 and s = − 1
f 7→ z′ = +1, so from equation 1.5

we get:

z′ =
(1

pz
+ 1

n)(1 + 1)

(− 1
f + 1

n)
− 1

=
(2

pz
+ 2

n)

(−n+f
fn)

− 1

=
2fn

pz
+ 2f

−n + f
− 1

=
2fn

pz
+ 2f

f − n
− 1

=
2fn

pz
+ 2f − f + n

f − n

−z′pz =
−2fn− fpz − npz

f − n

Therefore:

− z′pz =
−pz(f + n)− 2fn

f − n
(1.12)

From a projected point P ′(x, y, z), the mapped from P (x, y, z), we can now write from
equations 1.10, 1.11 and 1.12 as:

− x′pz =
2n

r − l
px +

r + l

r − l
pz (1.13)

−y′pz =
2n

t− b
py +

t + b

t− b
pz (1.14)

−z′pz = −f + n

f − n
pz −

2fn

f − n
(1.15)

glFrustum describes a perspective matrix that produces a perspective projection. The
current matrix (see glMatrixMode) is multiplied by the matrix and the result replaces
the current matrix, just as if glMultMatrix was called with the following matrix as its
argument:

The final projective transformation can now be written in terms of a matrix multipli-
cation and homogeneous coordinates as:

x
y
z
w

 =

2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 −f+n
f−n − 2nf

f−n

0 0 −1 0

px

py

pz

1

22 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

where w = 1. Remember, that if you create a 3-D vertex using glVertex3d(x,y,z),
OpenGL will create a 4-D homogeneous vectors by augmenting (x, y, z) with w = 1,
giving (x, y, z, w = 1). In OpenGL all vertices are vectors and are represented by four
homogeneous coordinates (x, y, z, w) and all transformations are 4× 4 matrices.

While we are at it we can also derive a matrix for the orthographic projection matrix.
In the parallel projection the rays are parallel to one another and the lack of perspective
distortion means that in OpenGL true z coordinates can be interpolated directly, rather
than using the reciprocal (1/z) values. From equation 1.8, we have:

x′ =
2x− (r + l)

r − l
(1.16)

We get:

x′ =
2x

r − l
− r + l

r − l
(1.17)

and, the same for y gives us:

y′ =
2x

t− b
− t + b

t− b
(1.18)

Because the z coordinate mapping is −far 7→ −1 and −near 7→ +1, therefore,

z′ =
−2z

f − n
− f + n

f − n
(1.19)

Giving the final OpenGL orthographic matrix representation:
x
y
z
w

 =

2

r−l 0 0 − r+l
r−l

0 2
t−b 0 − t+b

t−b

0 0 − 2
f−n −f+n

f−n

0 0 0 1

px

py

pz

1

Matrix Modes

The OpenGL pipeline architecture requires that we apply a number of transformation
matrices to manipulate our scene. As we have seen OpenGL involves placing and moving
vertices in 3-D space, creating primitives using GL TRIANGLES, GL QUAD STRIPs etc. and
transforming them into a set of coordinates to make them have a 3-D appearance on the
screen. The two matrices that are most important for this task are the projection and
model view matrices. OpenGL is a state machine and so these variables are part of the
state and remain there until changed.

The GL PROJECTION is a matrix transformation that is applied to every vertex that
comes after it and GL MODELVIEW is a matrix transformation that is applied to every vertex
on a particular model. The GL PROJECTION matrix should contain only the projection
transformation calls it needs to transform eye space coordinates into clip coordinates - i.e.
think of the projection matrix as describing the attributes of the camera, such as the focal
length, field of view etc.

The GL MODELVIEW matrix, as its name implies, should contain modelling and viewing
transformations, which transform object space coordinates into eye space coordinates.
Remember to place the camera transformations on the GL MODELVIEW matrix and never
on the GL PROJECTION matrix. Think of the model view matrix as the location in the 3-D
world where you stand your camera and the direction you point it.

The only functions that should be called when the matrix mode is in GL PROJECTION
mode are: glLoadIdentity(), glFrustum(), gluPerspective(), glOrtho() and glOrtho2()
- That is it6.

To set up the view in OpenGL we will carry out the following steps:
6The one weak exception is that you could use glLoadMatrix() to set up your own projection matrices

1.3. INTRODUCTION TO OPENGL PROGRAMMING 23

• Position the camera - using the Model-View matrix

• Select a lens - set up the projection matrix

• Describe clipping - set up the view volume

By default, the object and camera frames are both the same (the model-view matrix is
an identity matrix), where the camera is positioned at the origin, pointing in the -ve z
direction. The default clipping view volume is a cube with all sides of length 2, centered
at the origin. The default project is orthogonal.

So, if we begin with an object that straddles the z axis (i.e. contains +ve and -ve z
values) and we wish to visualise the object we can either:

• Translate the camera in the +ve z direction, translating the camera frame, or,

• Move the object in the -ve z direction, translating the world frame.

Both of these operations are equivalent and determined by the model-view matrix, and
performed by a call such as glTranslatef(0.0f, 0.0f, −dz), where dz > 0.

We can set the matrix transformation by changing the matrix mode, using the glMatrixMode()
function, as follows:

0 glMatrixMode(GL PROJECTION);
glLoadIdentity();
glOrtho(−1.0f, 2.0f , −1.5f, 1.5f , −1.0f, 1.0f);

// l , r , b, t , zNear, zFar

By default, the matrix mode is GL MODELVIEW. Once you set the matrix mode each following
operation is applied to that particular matrix mode (matrix level) and below it. In this
example glLoadIdentity() replaces the current matrix space with the identity matrix 7.
The output of this is applied to the sphere example from earlier and we can see that the
glOrtho() function has adjusted the view. This is illustrated in figure 1.16(a). The next
segment of code applies the glTranslatef() function to the view (see figure 1.16(b)).

0 glMatrixMode(GL PROJECTION);
glLoadIdentity();
glOrtho(−1.0f, 2.0f , −1.5f, 1.5f , −1.0f, 1.0f);

// l , r , b, t , zNear, zFar
glTranslatef (0.5f , 0.5f , 0.0f); // x, y, z

This code means current GL PROJECTION Matrix = Identity * ORTHOGRAPHIC
Matrix * TRANSLATION Matrix. In the example Example1d, we then multiply this by
a ROTATION matrix glRotatef(theta, 1.0f, 1.0f, 0.0f);, where θ changes to give
the impression of rotation in our scene. Interestingly, in OpenGL we often talk about
changing the projection matrix as moving a camera in the 3-D world; however, this is not
the case - we really move the entire world!

Figure 1.16 demonstrates the code segment:

0 glMatrixMode(GL PROJECTION); // set up the camera attributes
glLoadIdentity();
gluPerspective (60.0, 1.0, 2.0, 10.0); // 60 degrees fov
glMatrixMode(GL MODELVIEW); // set up the camera location
glLoadIdentity();

5 gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

where it is important to note how the projection and model view transforms work
together. In this example, the projection transform sets up a 60.0-degree field of view,
with an aspect ratio of 1.0. The near clipping plane is 2.0 units in front of the eye, and
the far clipping plane is 10.0 units in front of the eye. This leaves a z volume distance of

7This is semantically equivalent to calling glLoadMatrix() with a 4x4 identity matrix.

24 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

(a) (b) (c)

Figure 1.16: The OpenGL matrix mode screen capture example (a) demonstrates with
glOrtho(-1.0f, 2.0f, -1.5f, 1.5f, -1.0f, 1.0f); (b) applying glTranslatef(
0.5f, 0.5f, 0.0f); // x, y, z and (c) using gluPerspective(50.0, 1.0, 3.0,
7.0); instead.

8.0 units, which is plenty of room for our sphere example. The GL MODELVIEW transform
sets the eye position at (0.0, 0.0, 5.0), and the look-at point is the origin in the center
of the sphere. So the eye is 5.0 units away from the “look at” point, which is within the
z volume distance of 8.0 units. Again, remember that the model-view matrix is used to
position the camera (such as by using gluLookAt()) and to build models of objects; and
the projection matrix is used to define the view volume and to set up the camera lens
properties.

Rotating the model-view and projection matrices by the same matrix are not the same
operations; At the matrix level, post-multiplication of the model-view matrix is the same
as pre-multiplication of the projection matrix.

1.17 demonstrates the setup of a view using the gluLookAt() function. You can right
click on the code view to change the scene from a gluPerspective() view setup, to either
a glOrtho() or a glFrustum() view setup.

1.3.6 OpenGL Display Lists

Display lists allow us to improve the performance of OpenGL as we can cache OpenGL
commands for later execution. This is particularly important if we plan to redraw the same
object many times. Using display lists we can define the geometry (and OpenGL state
changes) only once and execute it many times. If we think about a car being represented
in 3-D, we would have a wheel model that we would have to draw four times. An efficient
way to draw the car’s wheels would be to store the geometry for one wheel in a display
list and then execute the list four times, adjusting the model view matrix between each
draw wheel operation.

The OpenGL model is a client/server model, where OpenGL is the server and your PC
is the client. Because of the processing power of modern 3-D graphics cards the bottleneck
in performance is due to the amount of traffic being passed between the client and the
server. The fundamental mode of operation in OpenGL is immediate mode where as soon
as our C++ program executes a statement that defines a primitive (or indeed vertices,
attributes, viewing information etc.), the primitive is sent immediately to the graphics
card server for display. When the scene needs to be redrawn, as in our rotating sphere
example, then the vertices defining the sphere must be resent to the server. Clearly, this
will involve sending large amounts of data between your C++ client application and the
3-D graphics server.

OpenGL also provides retained mode graphics, which provides us with display lists.

1.3. INTRODUCTION TO OPENGL PROGRAMMING 25

Figure 1.17: The Nate Robins’ Tutorial Example on Projection

26 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

(a) (b)

Figure 1.18: The Example 1e screen capture, illustrating the use of the display lists to
display three spheres (a) and (b) capture two different views (note that in (a) the view
is clearly perspective and not orthographic as the spheres are actually the same size, but
display differently)

As discussed, we define the object once and place it in a display lists. Since display lists
are part of the server state, therefore residing on the 3-D graphics server, the cost of
repeatedly sending vertex information is dramatically reduced. Some graphics hardware
may store display lists in dedicated memory or may store the data in an optimised form
that is more compatible with the graphics hardware. There are some disadvantages with
display lists; display lists require memory on the server and there is a small overhead in
creating the display lists.

Here is an example, which builds on the previous sphere example to use display lists
for retained mode in place of immediate mode graphics (The full source code is in example
1e):

0 #define SPHERE 1 // An identifier for our sphere

void defineGLSphere(GLfloat radius, GLfloat step)
{

glNewList(SPHERE, GL COMPILE); // define the sphere
5 ...

for (GLfloat phi=−80.0f; phi<80.0; phi+=step)
{

...
glBegin(GL QUAD STRIP);

10 ...
glEnd();

}

// Close one end
15 glBegin(GL TRIANGLE FAN);

...
glEnd();

// Close the other
20 glBegin(GL TRIANGLE FAN);

...
glEnd();

glEndList(); // end sphere definition

1.3. INTRODUCTION TO OPENGL PROGRAMMING 27

}
25

// Called to update the scene − give us the animation
int drawGLScene(float theta)
{

...
30 glCallList (SPHERE); // actually draw the sphere

...
}

This example demonstrates how the drawGLSphere() function has been changed to a
defineGLSphere() function, in which we only define the geometrical structure of a sphere,
and do not actually draw it. The main change here is that the definition is surrounded by
the lines of code glNewList(SPHERE, GL COMPILE); and glEndList();. The very first
line of code #define SPHERE 1 gives a simple identifier for our defined list, which we
then use in the glNewList() function. There is an alternative to using this #define style
identifier, by using the GLuint glGenLists(range) method, which creates a contiguous
set of empty display lists. It returns an unsigned integer which is the first number from
the range that is unused.

The second parameter is a flag GL COMPILE, which sends the list to the graphics server,
but does not display its contents; if we wished to display the contents also, we could
have used the parameter GL COMPILE AND EXECUTE instead. To draw the sphere on the
screen we use the line of code glCallList(SPHERE); which calls the display list. In the
initial example of a car with four wheels, we can apply any transformations we wish to
the current state, call the glCallList() function; apply more transformations and call it
again, displaying the list in different locations each time. Figure 1.18 displays two screen
captures of the same example, which demonstrates the use of the display lists.

0 int drawGLScene(float theta)
{

glClear (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT); // Clear Screen
glPolygonMode(GL FRONT AND BACK, GL LINE); // display all mesh lines of the sphere

5 glMatrixMode(GL PROJECTION); // Set up the camera properties
glLoadIdentity(); // clear
gluPerspective (60.0, 1.0, 1.0, 20.0);

//60 degrees fov, aspect ratio 1.0, zNear 1.0, zFar 20.0 units
glMatrixMode(GL MODELVIEW); // move the camera location

10 glLoadIdentity();
gluLookAt(0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);

// Sphere at (x,y,z)=(0,0,3), looking at (0,0,0), up vector
// is (0,1,0) i .e. the up direction is up the y−axis

glColor3f(0.0 f , 1.0f , 0.0f); // green − middle sphere
15 glRotatef (theta, 1.0f , 1.0f , 0.0f); // Rotate theta around the xy−axis

glCallList (SPHERE); // draw the first sphere
glColor3f(0.0 f , 0.0f , 1.0f); // blue − right sphere
glTranslatef (1.0 f , 0.0f , 0.0f); //move to the right
glCallList (SPHERE); // draw second sphere

20 glColor3f(1.0 f , 0.0f , 0.0f); // red − left sphere
glTranslatef(−2.0f, 0.0f , 0.0f); // move to the left
glCallList (SPHERE); // draw third sphere
return TRUE;

}

This source code example shows how we can use the same list three times, while
changing the OpenGL states; in this example we change the colour of each sphere and
the location at which it is drawn. The use of the gluPerspective() and gluLookAt()
functions set up the view of our scene, placing a camera that has a field of view of 60
degrees, aspect ratio of 1.0 and zNear of 1.0 and zFar of 20.0 at the location (0, 0, 3),

28 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

looking at the origin (0, 0, 0) which the up direction of the camera (0, 1, 0) - i.e. the +ve
y-axis is up. The fact that this is a perspective view and not an orthographic view is
clearly visible in figure 1.18(a) as the spheres have been created with the exact same
radius, but the as the spheres rotate the one that is closest to the camera on rotation is
clearly perceived to be larger.

1.3.7 OpenGL Stack

Because we need to apply many transformations to different objects and vertices in using
OpenGL, we have to be careful that we only apply these transformations to the correct
objects and vertices. This can be a difficult problem, but fortunately OpenGL has provided
us with the matrix and attribute stacks. These stacks allow us to store the current state, by
pushing it onto the stack; change the state to some other value, perform some operations
and finally to restore the original state. We can do this by pushing and popping them
from the stack.

It is good practice to push both the current matrices and attributes onto the their
correct stacks when we enter a display list, and to pop them off when we are exiting the
list. For example, we could use:

0 void defineGLSphere(GLfloat radius, GLfloat step)
{

glNewList(SPHERE, GL COMPILE); // define the sphere
glPushMatrix();
glPushAttrib(GL ALL ATTRIB BITS);

5 ...
// Define sphere here.
...
glPopMatrix();
glPopAttrib();

10 glEndList(); // end sphere definition
}

We have also altered Example1e to Example1f to give the exact same output, but by
using the OpenGL stack to reset our drawing location of each sphere. The updated source
code is:

0 glPushMatrix();
glColor3f(0.0 f , 1.0f , 0.0f); // green
glCallList (SPHERE);
glPopMatrix();

5 glPushMatrix();
glColor3f(0.0 f , 0.0f , 1.0f); // blue
glTranslatef (1.0 f , 0.0f , 0.0f);
glCallList (SPHERE);
glPopMatrix();

10

glPushMatrix();
glColor3f(1.0 f , 0.0f , 0.0f); // red
glTranslatef(−1.0f, 0.0f , 0.0f); //NB − note change to −1 from −2
glCallList (SPHERE);

15 glPopMatrix();

where the first sphere is drawn at (0, 0, 0). The second sphere (blue) is translated by
(1, 0, 0), i.e. 1 unit in the +ve x-direction. Because we have done this encapsulated in a
call to glPushMatrix() and glPopMatrix(), when we pop the matrix we have reset our
universe to where it was originally, i.e. (0, 0, 0). Now for the third sphere this is where we
have a difference; we are translating 1 unit in the -ve x-direction. When we did not use

1.3. INTRODUCTION TO OPENGL PROGRAMMING 29

the matrix stack, we previously had to translate 2 units in the -ve x-direction, i.e. where
the origin was the centre of the second sphere.

1.3.8 Input Events

We now wish to look at interacting with our OpenGL application. There are two main
approaches that we can take; the first is to use the GLUT library and the second is to use
the Windows API. Both approaches are very similar in that they both use events to drive
the interaction with the application. This is very similar to the event approach that you
would have seen when developing Java applications. Mouse events and keyboard events
are the primary way of allowing a user to interact with our application.

We will use the Windows API for this module for handling our events as it will allow us
to embed our OpenGL code within MFC applications, taking advantage of its components;
however, the GLUT library is very similar in the way that it operates and it should not
be difficult to transition between the two approaches.

The first events we will look at are keyboard input events. Example1g has implemented
a key event handler that you can use as the basis of your own event driven application.
Our application receives keyboard input in the form of keystroke messages and character
messages. We need to map these messages into useful functionality within our application.
For example:

0 LRESULT CALLBACK WndProc(HWND hWnd, UINT message,
WPARAM wParam, LPARAM lParam)

{
switch (message)
{

5 case WM CREATE:
...

case WM KEYDOWN:
switch (wParam)
{

10 case VK ESCAPE:
PostQuitMessage(0);
return 0;

case VK LEFT:
decreaseFOV();

15 return 0;
case VK RIGHT:

increaseFOV();
return 0;

...
20 }

return 0;
case WM CHAR:

switch(wParam)
{

25 case ’a’ :
decreaseFOV();
return 0;

case ’s ’ :
increaseFOV();

30 return 0;
}
return 0;

...
}

35 }

30 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

(a) (b) (c)

Figure 1.19: Example 1g which illustrates input events (a) is a screen capture of the initial
view, (b) is the use of zoom (with the left/right arrows), and (c) is obtained by holding
the left mouse button and dragging the mouse.

This segment of code shows that for calling our own functions increaseFOV() and
decreaseFOV(), which are designed to increase and decrease the field of view of our
application. The WndProc() function is being called when a key on the keyboard is pressed.
Here we have two different types of messages being received, a WM KEYDOWN message, which
we must compare against the virtual-key code in the message’s wParam parameter. This
is used for dealing with the non-character keys, such as the arrows, function keys, escape
keys and edit keys (such as INS, DEL, HOME, END etc.). For character keys (such as
‘a’, ‘b’ etc.) the window will receive a WM CHAR message, and we can examine its wParam
parameter to find out the character code of the key that was pressed.

Now we will look at the mouse:

0 GLfloat fov = 60.0f;
int downX = 0, downY = 0;
float xOffset = 0.0f, yOffset = 0.0f;

LRESULT CALLBACK WndProc(HWND hWnd, UINT message,
5 WPARAM wParam, LPARAM lParam)

{
switch (message)
{

case WM RBUTTONDOWN: // if the right button is down
10 setFOV(60);

xOffset=0.0f;
yOffset=0.0f;
return 0;

case WM LBUTTONDOWN:
15 downX = (int)(short)LOWORD(lParam);

downY = (int)(short)HIWORD(lParam);
case WM MOUSEMOVE: // if the mouse is moved

if (wParam == MK LBUTTON) // and the left mouse button is down
{

20 int xPos = (int)(short)LOWORD(lParam);
int yPos = (int)(short)HIWORD(lParam);
int diffx = xPos − downX;
int diffy = yPos − downY;
// move by 1/10th of the difference

25 xOffset+= ((float)diffx)/10;
yOffset+= ((float)diffy)/10;

}
return 0;

1.3. INTRODUCTION TO OPENGL PROGRAMMING 31

...
30 }

}

// Other Windows Messages available − and their meanings
//

35 // WM LBUTTONDBLCLK − The left mouse button was double−clicked.
// WM LBUTTONDOWN − The left mouse button was pressed.
// WM LBUTTONUP − The left mouse button was released.
// WM MBUTTONDBLCLK − The middle mouse button was double−clicked.
// WM MBUTTONDOWN − The middle mouse button was pressed.

40 // WM MBUTTONUP − The middle mouse button was released.
// WM RBUTTONDBLCLK − The right mouse button was double−clicked.
// WM RBUTTONDOWN − The right mouse button was pressed.
// WM RBUTTONUP − The right mouse button was released.

When the right button on the mouse is pressed a WM RBUTTONDOWN message is generated,
and we reset the view to the original position. When the left button is pressed for the first
time a WM LBUTTONDOWN message is generated and we record the current (x, y) position of
the mouse. This is important as this is the location of the mouse that we will use as the
origin. The third mouse message that we will handle is WM MOUSEMOVE message is called,
we check to see if the left mouse button is also down with the if (wParam ==
MK LBUTTON) call. If this is the case then we will extract the new (x, y) position and use
this to translate our view. In this example the (int)(short)LOWORD(lParam); call takes
the low word out of the parameter, converts it to a short and then to an int; allowing
lParam to contain both the x and y values in one value.

1.3.9 Double Buffering

Computers constantly redraw the visible video page (at around 70 times a second), and so
it is difficult to make changes to the video page (such as creation or movement of complex
3-D objects) without the monitor showing the results before the graphics operation is
complete. This results in ugly artifacts such as flickering, tearing and shearing.

The hardware method uses two graphics pages in VRAM. At any one time, one page is
actively being displayed by the monitor, while the other, background page is being drawn.
When drawing is complete, the roles of the two pages are switched, so that the previously
shown page is now being modified, and the previously drawn page is now being shown. The
page-flip is typically accomplished by modifying the value of a pointer to the beginning of
the display data in the video memory. The hardware method means that artifacts will not
be seen as long as the pages are switched over during the monitor’s vertical blank period
when no video data is being drawn. This method requires twice the amount of VRAM
that is required for a single video page. The currently active and visible buffer is called
the front buffer, while the background page is called the back buffer.

Since we are using a double buffered DC in Microsoft Windows, we set up double
buffering through our call to:

0 ...
pfd.dwFlags = PFD DRAW TO WINDOW | PFD SUPPORT OPENGL |

PFD DOUBLEBUFFER;
...
SetPixelFormat (∗hDC, iFormat, &pfd);

anything we draw to the device context actually goes to a non-visible space in memory.
This happens when you specify the PFD DOUBLEBUFFER flag in the pixel format above. It
is not displayed in the window until we allow it. This is very useful for rendering the scene
off-screen and displaying the final image in one call. This can be performed in one simple
function call to SwapBuffers(), to which we pass the GDI device context.

32 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

0 SwapBuffers(hDC);

in the winMain() function.
It is possible to setup double buffering in non-Microsoft Windows environments by

using the GLUT library. It provides functions to set up a double buffered display for the
platform on which we are compiling.

1.4 Some Math

1.4.1 3-D Math Notation

It is important to be able to clearly distinguish between the following geometric objects:

• Point - A point in 3-D graphics is simply a position in space. It specifies a location
in space and has no volume, area or length. In OpenGL it is represented by a dot,
and allow us to specify geometric objects. In a Carthesian 3-D space we can specify
a point with three real number coordinates P = (5.2, 2.4,−1.2)

• Scalar - In linear algebra, real-numbers are called scalars. A vector space is defined
as a set of vectors, a set of scalars and a scalar multiplication that takes a scalar s
and a vector ~v to give a new vector s~v.

• Vector - Vectors in 3-D space are ordered triples of real-numbers. The description
of a vector is very similar to the description of a point; however, a vector indicates
a direction and magnitude. For example, velocity is a good example of a vector. It
is important to remember that a vector does not have a fixed position in space.

The linear vector space can contain both vectors and scalars; we can combine scalars
and vectors to create new vectors, and we can add vectors to create new vectors. A
Euclidean space is an extension to a vector space that adds a measure of size/distance,
which allows us to define the length of our line segments. An affine space is an extension
of the vector space that includes the concept of a point. In an affine space we can subtract
two points to get a vector, or add a vector to a point to get another point (you cannot
add points, as there is no origin).

Object-oriented programming with C++ allows us to use data abstraction to apply a
set of operations to different data, independent of its type. We can use features of the
language, in particular operator overloading to give us the ability to apply x = a ∗ (b + c);
to real-number, matrices or vectors. However, while in theory this is a very powerful
feature that should simplify our coding, in practice it will introduce some complexity; for
example, what does the ∗ mean when we are operating on vectors, is it the dot-product
or the cross-product? Well, we will have to decide.

1.4.2 Vectors - Math summary

A vector is characterised by a magnitude and a direction. To extract the magnitude of a
3-D vector (denoted using two vertical bars) we can use:

‖~v‖ =
√

v2
x + v2

y + v2
z (1.20)

The magnitude is a real number. The unit vector is a method of finding out the simple
direction of a vector (1.20 summarises the rules). A unit vector, also known as a normalised
vector (or normal), has a magnitude of 1. To normalise a vector we divide it by its
magnitude e.g.

~vnorm =
~v

‖~v‖
, ~v 6= 0 (1.21)

1.4. SOME MATH 33

We can multiply two vectors together using either the dot product or the cross product.
The dot product (inner product) is the sum of the products of corresponding components,
which results in a scalar value. In the 3-D case:

~a ·~b = axbx + ayby + azbz (1.22)

This tells us how similar two vectors are, where the larger the dot product, the more
similar the two vectors are. The dot product is equal to the product of the magnitudes of
the vector and the cos of the angle between the vectors:

~a ·~b =
∥∥∥~a∥∥∥∥∥∥~b∥∥∥ cos(θ) (1.23)

Therefore we can solve for θ to give:

θ = arccos

 ~a ·~b∥∥∥~a∥∥∥∥∥∥~b∥∥∥
 (1.24)

If we just examine the sign of the dot product.

~a ·~b =

> 0 0◦ < θ < 90◦ acute, pointing in the same direction
0 θ = 90◦ orthogonal (perpendicular)
< 0 90◦ < θ < 180◦ obtuse, pointing in the opposite direction

If either ~a or ~b is equal to zero then ~a ·~b = 0, a vector parallel to every vector.
The cross product (outer/vector product) gives a vector that is perpendicular to the

original two vectors, allowing us to derive three mutually orthogonal vectors in a 3-D space
from any two non-parallel vectors. It is given by:

~a×~b = (1.25) ax

ay

az

×
 bx

by

bz

 =

 aybz − azby

azbx − axbz

axby − aybx

 (1.26)

If these two vectors ~a and ~b are lying in the same plane, then the vector ~a ×~b pointing
straight up out of the plane, perpendicular to ~a and ~b. The coordinate system is given by
the right-hand rule. So :

~a×~b = ~n
∥∥∥~a∥∥∥∥∥∥~b∥∥∥ sin θ , or (1.27)∥∥∥~a×~b

∥∥∥ =
∥∥∥~a∥∥∥∥∥∥~b∥∥∥ sin θ

Where θ is the angle between ~a and ~b on the plane defined by the span of the vector and
~n is the unit vector perpendicular to both ~a and ~b.

Vectors need a frame of reference, so that we can relate points and objects to the
physical world. For example, I could ask you, where exactly are you standing now? You
could not answer without some frame of reference (e.g. in a particular room in DCU with
reference to its map, at a particular longitude/latitude on the earth - my office is at: West
6◦15’22” North 53◦23’08”, See: http://maps.google.com/maps?q=++53+23.14+-+6+15.
37)- but West and North of where?8). In OpenGL we can relate this to world co-ordinates
or view co-ordinates.

To create such a coordinate system, we consider a basis ~v1, ~v2, . . . , ~vn (a subset of
vectors in vector space V), where a vector can be written as ~v = α1 ~v1 +α2 ~v2 + . . .+αn ~vn.

8This system still needs an origin - Latitude is the angle formed by a line from the centre of the earth
to the equator and a line from the centre of the earth to your location, and Longitude is the angle formed
by a line from the centre of the earth to the prime meridian at Greenwich England and a line from the
centre of the earth to your location

http://maps.google.com/maps?q=++53+23.14+-+6+15.37
http://maps.google.com/maps?q=++53+23.14+-+6+15.37

34 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

Vector

v

has direction and
magnitude

Inverse

-v

same magnitude but
different direction

Multiplication

sv

can be multiplied by a
scalar (e.g. s=0.66)

Sum

v

the sum of two vectors
is a vector

w

x

v

vectors lack position;
these vectors are identical

v

v

v

Points

v

a point minus a point
gives a vector

(note P + v = Q)

P

Q

= Q - P

Lines

v

P0

P(s)

P(s) = P0 + sv

parametric form of the line,
extends to curves and surfaces

Planes

v

P0

u

P(s,t) = P0 + sv + tu

Q

R

or, from 3 points as:
P(s,t) = P0 + s(Q-P0) + t(R-P0)

Unit Vector

v

any vector with a
magnitude = 1

(normalised)

^v

^v = v
v

Figure 1.20: Summary of the rules when working with vectors

1.4. SOME MATH 35

v

v

(b) (c)(a)

v

P0

Figure 1.21: (a) An example of three basis vectors forming a co-ordinate system (b) The
same example (c) A frame which includes an origin.

The list of scalars α1, α2, . . . , αn is the representation of ~v with respect to this basis, and

we can write it as
[

α1 α2 α3

]T
. A basis vector for a vector space is a set of linearly

independent vectors where every object in the vector space can be described as a linear
combination of the basis vectors. For instance any position vector in a three-dimensional
coordinate system with axis x, y and z can be described as a weighted sum of a vector of
unit length in the x-axis, unit length in the y-axis and unit length in the z-axis. In this
example the weights in the weighted sum are the x, y and z coordinate of the point which

is described by the position vector. e.g. ~a =
[

1 −2 5
]T

. For instance, any position
vector in a three-dimensional coordinate system with axis x, y and z can be described as
a weighted sum of a vector of unit length in the x-axis, unit length in the y-axis and unit
length in the z-axis. In this example the weights in the weighted sum are the x, y and z

co-ordinate of the point which is described by the position vector. ~a =
[

1 −2 5
]T

.

Referring to 1.21(a) illustrates an example of three basis vectors forming a co-ordinate
system in which to place our vector ~v. However, since vectors have no fixed location, (b) is
just as valid a co-ordinate system as (a). Think of this as longitude and latitude without
the intersection of the prime meridian and equator providing us with an origin; we would
have a co-ordinate system which would allow us to use a vector to describe a movement

from one point in the world to another, e.g. a movement ~a =
[

0◦00′ −3◦00′
]T

, might
describe a trip from Dublin to Galway, but it might also be a trip from London to Cardiff.

In other words, a co-ordinate system is insufficient to represent points. If we work in
an affine space, we can add an origin to our basis vectors to form a frame, as in figure
1.21(c).In the longitude and latitude example, this origin is the intersection of the prime
meridian and the equator, thus providing us with a reference by which we can describe
any point on the Earth. Mathematically, a frame is determined by (P0, ~v1, ~v2, ~v3), where
within this frame every vector can be written as ~v = α1 ~v1 + α2 ~v2 + . . . + αn ~vn and every
point can be written as P = P0 + β1 ~v1 + β2 ~v2 + . . . + βn ~vn. It is important not to

confuse points and vectors; In this example we could write ~v =
[

α1 α2 α3

]T
and

P =
[

β1 β2 β3

]T
, but remember that a vector has no position, so the point is at a

fixed location (β1, β2, β3),but the vector could be anywhere.
Homogeneous co-ordinates allow affine transformations to be easily represented by

a matrix. Homogeneous co-ordinate systems are key to computer graphic systems as
all standard transformations can be implemented with matrix multiplications using 4x4
matrices, taking advantage of an accelerated hardware pipeline.

We can write a vector ~v and point P as:

36 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

v

(a)

v2

v1

v3

u2

u1

u3

(b)

v2

v1

v3

u2

u1

u3

Q0

P0

Figure 1.22: (a) Two different bases with the one vector ~v, and (b) the change of frames.

~v = α1 ~v1 + α2 ~v2 + α3 ~v3 =
[

α1 α2 α3 0
] [

v1 v2 v3 P0

]T
(1.28)

P = P0 + β1 ~v1 + β2 ~v2 + β3 ~v3 =
[

β1 β2 β3 1
] [

v1 v2 v3 P0

]T
(1.29)

Therefore, a four-dimensional homogeneous representation is ~v =
[

α1 α2 α3 0
]T

and P =
[

β1 β2 β3 1
]T

. If we consider two representations a =
[

α1 α2 α3

]
and

b =
[

β1 β2 β3

]
of the same vector ~v with respect to two different bases (as in figure

1.22), where:

~v = α1 ~v1 + α2 ~v2 + α3 ~v3 =
[

α1 α2 α3

] [
v1 v2 v3

]T
(1.30)

~v = α1 ~u1 + α2 ~u2 + α3 ~u3 =
[

α1 α2 α3

] [
u1 u2 u3

]T
(1.31)

Figure 1.22 illustrates the change of basis for a vector ~v. It is possible to represent
each of the second basis vectors ~u1, ~u2 and ~u3 in terms of the first basis as:

~u1 = γ11 ~v1 + γ12 ~v2 + γ13 ~v3 (1.32)
~u2 = γ21 ~v1 + γ22 ~v2 + γ23 ~v3 (1.33)
~u3 = γ31 ~v1 + γ32 ~v2 + γ33 ~v3 (1.34)

We can write this in matrix form a = MT b, where:

M =

 γ11 γ12 γ13

γ21 γ22 γ23

γ31 γ32 γ33

 (1.35)

We can also apply this process in homogeneous coordinate representation to extend the
process to both vectors and points. 1.22(b) illustrates two different frames (P0, v1, v2, v3)
and (Q0, u1, u2, u3), where any point or vector can be represented in either frame. So, if
we wish to represent the second frame in terms of the first frame, we can use:

~u1 = γ11 ~v1 + γ12 ~v2 + γ13 ~v3 (1.36)
~u1 = γ21 ~v1 + γ22 ~v2 + γ23 ~v3 (1.37)
~u1 = γ31 ~v1 + γ32 ~v2 + γ33 ~v3 (1.38)
~Q0 = γ41 ~v1 + γ42 ~v2 + γ43 ~v3 + γ44P0 (1.39)

1.4. SOME MATH 37

So, within two frames any vector or point has a representation a =
[

α1 α2 α3 α4

]
in the first frame and b =

[
β1 β2 β3 β4

]
in the second frame, where α4 = β4 = 0 for

vectors and α4 = β4 = 1 for a point, then we can write a = MT b, as before, where:

M =

γ11 γ12 γ13 0
γ21 γ22 γ23 0
γ31 γ32 γ33 0
γ41 γ42 γ43 1

 (1.40)

The matrix M is a 4x4 matrix that specifies an affine transformation in homogeneous
co-ordinates, which has 12 degrees of freedom, as 4 of the elements in the matrix are
fixed. Affine transformations preserve line structure, and allow us to apply rotations,
translations, scaling and shear to our scene objects. For 3-D graphics applications these
transforms are very efficient as we only need to transform the two end points of a line, and
we can let the hardware implementation draw the line segment between these transformed
points.

1.4.3 A Vector Class

Here is an example 3-D Vector class.

0 /∗ Vec3.h: General Purpose 3−D Vector class.
/∗ EE563 − 3−D Graphics and Visualisation.
/∗ General purpose float vector for use as vertices , vectors and normals.
∗/

5 #if !defined VEC3
#define VEC3

#include<iostream>
using std::ostream;

10 #include<cfloat>
#include<cmath> // for the isNaN (is not a number) function

class Vec3
{

15 public:
float v [3]; // states are public for ease of access

Vec3() { v[0]=0.0f ; v[1]=0.0f ; v[2]=0.0f ;} // constructor
Vec3(float x,float y,float z) { v[0]=x; v[1]=y; v[2]=z; }

20

// overloaded operators
inline bool operator == (const Vec3& v) const
{ return v[0]==v.v[0] && v[1]==v.v[1] && v[2]==v.v[2]; }

25 inline bool operator != (const Vec3& v) const
{ return v[0]!=v.v[0] || v[1]!=v.v[1] || v[2]!=v.v [2]; }

inline bool operator < (const Vec3& v) const
{

30 if (v[0] < v.v[0]) return true;
else if (v[0] > v.v[0]) return false;
else if (v[1] < v.v[1]) return true;
else if (v[1] > v.v[1]) return false;
else return (v[2] < v.v [2]);

35 }

38 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

inline float∗ ptr() { return v; }
inline const float∗ ptr() const { return v; }

40 inline void set(float x, float y, float z)
{

v[0]=x; v[1]=y; v[2]=z;
}

45 inline float& operator [] (int i) { return v[i]; }
inline float operator [] (int i) const { return v[i]; }

inline float& x() { return v[0]; }
inline float& y() { return v[1]; }

50 inline float& z() { return v[2]; }

inline float x() const { return v[0]; }
inline float y() const { return v[1]; }
inline float z() const { return v[2]; }

55

inline bool valid() const { return !isNaN(); }
inline bool isNaN() const { return isnan(v[0]) || isnan((double)v[1])

|| isnan((double)v[2]); }

60

inline float operator ∗ (const Vec3& rhs) const // dot product
{

return v[0]∗rhs.v[0]+v[1]∗rhs.v[1]+v[2]∗rhs.v [2];
}

65

inline const Vec3 crossProduct(const Vec3& rhs) const // cross product
{

return Vec3(v[1]∗rhs.v[2]−v[2]∗rhs.v [1],
v[2]∗rhs.v[0]−v[0]∗rhs.v[2] ,

70 v[0]∗rhs.v[1]−v[1]∗rhs.v [0]);
}
inline const Vec3 operator ˆ (const Vec3& rhs) const // cross product
{

return this−>crossProduct(rhs); // call method just above
75 }

inline const Vec3 operator ∗ (float rhs) const // multiply by scalar
{

return Vec3(v[0]∗rhs, v[1]∗rhs, v[2]∗rhs);
80 }

inline Vec3& operator ∗= (float rhs)
{

v[0]∗=rhs; v[1]∗=rhs; v[2]∗=rhs; return ∗this;
85 }

inline const Vec3 operator / (float rhs) const // divide by scalar
{

return Vec3(v[0]/rhs, v[1]/rhs, v[2]/rhs);
90 }

inline Vec3& operator /= (float rhs) // divide by scalar
{

v[0]/=rhs; v[1]/=rhs; v[2]/=rhs; return ∗this;
95 }

inline const Vec3 operator + (const Vec3& rhs) const // vector add

1.4. SOME MATH 39

{
return Vec3(v[0]+rhs.v[0], v[1]+rhs.v [1], v[2]+rhs.v [2]);

100 }

inline Vec3& operator += (const Vec3& rhs)
{

v[0] += rhs.v[0]; v [1] += rhs.v[1];
105 v[2] += rhs.v[2]; return ∗this;

}

inline const Vec3 operator − (const Vec3& rhs) const // vector subtract
{

110 return Vec3(v[0]−rhs.v[0], v[1]−rhs.v [1], v[2]−rhs.v [2]);
}

inline Vec3& operator −= (const Vec3& rhs) // vector subtract
{

115 v[0]−=rhs.v[0]; v[1]−=rhs.v[1]; v[2]−=rhs.v[2]; return ∗this;
}

inline const Vec3 operator − () const //negate
{

120 return Vec3 (−v[0], −v[1], −v[2]);
}

inline float length() const
{

125 return sqrtf(v[0]∗v[0] + v[1]∗v[1] + v[2]∗v[2]);
}

inline float normalize()
{

130 float norm = Vec3::length();
if (norm>0.0f)
{

v[0] /= norm; v[1] /= norm; v[2] /= norm;
}

135 return(norm);
}

inline void zero() { v[0] = v[1] = v[2] = 0; }

140 // to allow us to send our vector to the standard output stream cout
friend inline ostream& operator << (ostream& output, const Vec3& vec)
{

output << ”(” << vec.v[0] << ”,” << vec.v[1] << ”,” << vec.v[2] << ”)”;
return output;

145 }
};

#endif // VEC3

This class has been designed to be as efficient as possible, which is very important
for the real-time visualisation applications that we will be developing. This is especially
important for the vector class as a single frame could involve hundreds of vector operations.
To this end, we have made several design decisions:

• Operator Overloading - For both ease of use and efficiency we have allowed the user
to apply unary and binary operations on vectors and indeed vectors with scalars, eg.
~a ·~b can be called using “a*b” and the cross product ~a×~b can be called using âb (It

40 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

is not possible to treat the character ‘x’ as an operator in C++). The use of theˆfor
the cross-product is not an ideal choice and sometimes draws criticism when used -
because of this we have included a crossProduct() method.

• The inline keyword - In C++ inline methods (identified by the inline keyword)
are inserted by the compiler directly at the location where they are called. This
provides significant performance improvement over standard methods, as there is no
overhead in jumping the program counter in the compiled code. You should reserve
this for short methods, otherwise your program size will be significant.

• Why the float type? - It depends on the precision of our application as to whether
we should use float or double types9; floats will provide the level of accuracy that
we will require in our systems. It is possible to use C++ templates to remove the
type from the Vec3 class developed here, to allow us to substitute doubles if required.

• Using const methods - By placing the keyword const after a method name, we
are undertaking that this method will not modify the object, allowing us to pass a
constant vector to the method.

• Passing by const reference - Passing an object by value copies the data at that
memory location to create a new copy of that value, allowing us to protect the original
value from changing. However, this is inefficient, especially when we are passing an
object, as the constructor must be called to create the object copy. Passing by
constant reference passes the address directly using the reference (like a pointer),
but the const keyword prevents the value from being modified - providing all the
benefits of pass-by-value, but with the efficiency of pass-by-reference.

• No virtual methods? - Virtual methods are useful when our solution involves in-
heritance and dynamic binding; however, as a design decision the Vec3 class will
not involve the creation of child classes. Virtual methods require that additional
instructions are inserted and that checks are put in place at runtime, slowing per-
formance, which would be problematic for this class. In particular, the use of the
inline keyword would be affected by the compiler optimisation.

• No encapsulation? - Yes, if you completed the EE533 object-oriented module then
you would know that it is generally poor practice to expose the states of the class
(i.e. make them public). However, in this case the use of accessor and mutator
methods would detrimentally affect performance. It is not clear that there would be
any benefit either in checking the three values of the vector - as they are just floats
of any value.

Here is an example of the use of this Vector.

0 /∗∗
∗ EE563 Example Project 2
∗ by: Derek Molloy
∗∗/

5 #include <windows.h> // Header File For Windows
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include ”vec3.h”
#include <iostream>

10 using namespace std;

9typically float values are 32-bit numbers using 24-bits for the mantissa (including a sign bit) and
8-bits for the exponent; the double type provides 64-bit numbers that use 11-bits for the exponent and
53-bits for the mantissa (including a sign bit), allowing us to represent larger or smaller, more accurate
numbers

1.4. SOME MATH 41

int main()
{

Vec3 a(1.0f ,2.0 f ,3.0 f), b(1.0f ,2.0 f ,4.0 f), c(1.0 f ,2.0 f ,1.0 f);
15

cout << ”Vector a = ” << a << endl;
cout << ”Vector b = ” << b << endl;
cout << ”Vector c = ” << c << endl;
cout << ”a has magnitude = ” << a.length() << endl;

20 cout << ”The cross product of axb = ” << (aˆb) << endl;
cout << ”The dot product of a.b = ” << a∗b << endl;

Vec3 d = a + b + (c ∗ 2.0f); // float must be second
cout << ”Vector d = a + b + (c ∗ 2.0f) gives: ” << d << endl;

25 cout << ”Normalise d gives ” << d.normalize() << endl;

system(”pause”);
return 0;

}

1.4.4 Matrices

Matrices are a fundamental building block of 3-D graphics and visualisation applications.
They allow us to move objects around the 3-D world; scaling, rotating or translating them.
Linear Algebra describes the type of mathematics used in the manipulation of matrices.
We can write the linear simultaneous equations:

v1 = 6u1 + 1v2 (1.41)
v2 = 4u1 + 8v2

As v = Au, or: [
v1

v2

]
=

[
6 1
4 8

] [
u1

u2

]
(1.42)

Where u and v are tuples, represented by a 2× 1 matrix.
So, a matrix is a 2-D array of scalars arranged into rows and columns. A vector is a

one-dimensional array of scalars. A square matrix is one with the same number of rows
and columns - we are most interested in 2x2, 3x3 and 4x4 matrices. We are also interested
in the column n × 1 matrix or row 1 × n matrix as we can write a vector in this form;
for example, ~v = (vx, vy, vz) can be represented as a row vector (written horizontally) as
V =

[
vx vy vz

]
or as a column vector (written vertically) as: vx

vy

vz

The transpose of a matrix M with dimensions r× c is denoted as MT is the c× r matrix,
where the matrix is flipped diagonally. It is easier to represent a column vector in text as

the transpose of a row vector, i.e.
[

vx vy vz

]T
.

A diagonal matrix is one in which all non-diagonal elements in the matrix are zero. For
example, here is a diagonal matrix and a special diagonal matrix, known as the identity
matrix: 21 0 0

0 −45 0
0 0 1.5

 I =

 1 0 0
0 1 0
0 0 1

The identity matrix produces no transformation effect, so AI = A.

42 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

Multiplication

To multiply a matrix by a scalar we use:

kA = k

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 ka11 ka12 ka13

ka21 ka22 ka23

ka31 ka32 ka33

To multiply two matrices A, with dimensions m1×n1 and B, with dimensions m2×n2;

we can, provided that n1 = m2. This would result in a matrix with dimensions m1 × n2,
such that:

C︸︷︷︸
m1×n2

= A︸︷︷︸
m1×x

B︸︷︷︸
x×n2

(1.43)

where x = n1 = m2.
To multiply two matrices where the number of columns in A matches the number of

rows in B then AB is as follows for a 3× 3 matrix (otherwise it is undefined): a11 a12 a13

a21 a22 a23

a31 a32 a33

 b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

 a11b11 + a12b21 + a13b31 a11b12 + a12b22 + a13b32 a11b13 + a12b23 + a13b33

a21b11 + a22b21 + a23b31 a21b12 + a22b22 + a23b32 a21b13 + a22b23 + a23b33

a31b11 + a32b21 + a33b31 a31b12 + a32b22 + a33b32 a31b13 + a32b23 + a33b33

Transpose

The transpose of a matrix A is denoted as AT , so if:

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 AT =

 a11 a21 a31

a12 a22 a32

a13 a23 a33

 (1.44)

Inverse

To find the inverse of a matrix A, denoted as A−1 and is given by:

A =

[
a11 a12

a21 a22

]
A−1 =

1
|A|

[
a22 −a21

−a12 a11

]
(1.45)

Where |A| = a11a22 − a12a21.

1.4.5 A Matrix Class

Good 3-D engines use 4x4 matrices. That form is convenient for the translations and
rotations because it allows transforming points with respect to a centre point. However, it
is possible to use 3x3 matrices, but all the transformations are performed with assumption
that object’s origin is (0,0,0). It is impossible to perform translations when using 3x3
matrices.

0 // Matrix.h: interface for the Matrix class.
//
//

#if !defined MATRIX H
5 #define MATRIX H

#include ”Vec3.h”
#include ”Vec4.h”

10 class Quat; //must define Quat as Matrix uses Quat and Quat uses Matrix

class Matrix

1.4. SOME MATH 43

{
protected:

15
float mat [4][4]; //matrix state − using a 4x4 storage element

public:
Matrix();

20 Matrix(const Matrix& other);

explicit Matrix(float const ∗ const def);

Matrix(float a00, float a01, float a02, float a03,
25 float a10, float a11, float a12, float a13,

float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33);

˜Matrix() {}
30

int compare(const Matrix& m) const { return memcmp(mat,m.mat,sizeof(mat)); }

bool operator < (const Matrix& m) const { return compare(m)< 0; }
bool operator == (const Matrix& m) const { return compare(m)==0; }

35 bool operator != (const Matrix& m) const { return compare(m)!=0; }

inline float& operator()(int row, int col) { return mat[row][col]; }
inline float operator()(int row, int col) const { return mat[row][col]; }

40 inline bool valid() const { return !isNaN(); }
inline bool isNaN() const { return isnan(mat[0][0]) ||

isnan(mat [0][1]) || isnan(mat [0][2]) || isnan(mat [0][3]) ||
isnan(mat [1][0]) || isnan(mat [1][1]) || isnan(mat [1][2]) ||
isnan(mat [1][3]) || isnan(mat [2][0]) || isnan(mat [2][1]) ||

45 isnan(mat [2][2]) || isnan(mat [2][3]) || isnan(mat [3][0]) ||
isnan(mat [3][1]) || isnan(mat [3][2]) || isnan(mat [3][3]); }

inline Matrix& operator = (const Matrix& other)
{

50 if (&other == this) return ∗this;
std :: copy((float∗)other.mat,(float∗)other.mat+16,(float∗)(mat));

return ∗this;
}

55 inline void set(const Matrix& other)
{

std :: copy((float∗)other.mat,(float∗)other.mat+16,(float∗)(mat));
}

60 inline void set(float const ∗ const ptr)
{

std :: copy(ptr,ptr+16,(float∗)(mat));
}

65 void set(float a00, float a01, float a02, float a03,
float a10, float a11, float a12, float a13,
float a20, float a21, float a22, float a23,
float a30, float a31, float a32, float a33);

70 float ∗ ptr() { return (float ∗)mat; }
float ∗ ptr() const { return (float ∗)mat; }

void makeIdentity();

75 void makeScale(const Vec3&);
void makeScale(float, float, float);

void makeTranslate(const Vec3&);
void makeTranslate(float, float, float);

80
void makeRotate(const Vec3& from, const Vec3& to);
void makeRotate(float angle, const Vec3& axis);
void makeRotate(float angle, float x, float y, float z);

void makeRotate(const Quat& q);
85 void makeRotate(float angle1, const Vec3& axis1,

float angle2, const Vec3& axis2,
float angle3, const Vec3& axis3);

// Set to a orthographic projection. See glOrtho for further details .
90 void makeOrtho(double left, double right,

double bottom, double top,
double zNear, double zFar);

// Set to a 2D orthographic projection. See glOrtho2D for further details .
95 inline void makeOrtho2D(double left, double right, double bottom, double top)

{
makeOrtho(left,right,bottom,top,−1.0,1.0);

}

100 // Set to a perspective projection. See glFrustum for further details .
void makeFrustum(double left, double right,

double bottom, double top,
double zNear, double zFar);

105 // Set to a symmetrical perspective projection, See gluPerspective for
// further details . Aspect ratio is defined as width/height.
void makePerspective(double fovy,double aspectRatio,

double zNear, double zFar);

110 // Set to the position and orientation as per a camera, using the same
// convention as gluLookAt.
void makeLookAt(const Vec3& eye,const Vec3& center,const Vec3& up);

115 bool invert(const Matrix&);

44 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

//basic utility functions to create new matrices
inline static Matrix identity(void);

inline static Matrix scale(const Vec3& sv);
120 inline static Matrix scale(float sx, float sy, float sz);

inline static Matrix translate(const Vec3& dv);
inline static Matrix translate(float x, float y, float z);
inline static Matrix rotate(const Vec3& from, const Vec3& to);
inline static Matrix rotate(float angle, float x, float y, float z);

125 inline static Matrix rotate(float angle, const Vec3& axis);
inline static Matrix rotate(float angle1, const Vec3& axis1,

float angle2, const Vec3& axis2,
float angle3, const Vec3& axis3);

inline static Matrix rotate(const Quat& quat);
130 inline static Matrix inverse(const Matrix& matrix);

// Create a orthographic projection. See glOrtho for further details .
inline static Matrix ortho(double left, double right,

double bottom, double top,
135 double zNear, double zFar);

// Create a 2D orthographic projection. See glOrtho for further details .
inline static Matrix ortho2D(double left, double right,

double bottom, double top);
140

// Create a perspective projection. See glFrustum for further details .
inline static Matrix frustum(double left, double right,

double bottom, double top,
double zNear, double zFar);

145
// Create a symmetrical perspective projection, See gluPerspective.
// Aspect ratio is defined as width/height.
inline static Matrix perspective(double fovy,double aspectRatio,

double zNear, double zFar);
150

// Create the position and orientation as per a camera, using the
// same convention as gluLookAt.
inline static Matrix lookAt(const Vec3& eye,const Vec3& center,const Vec3& up);

155 inline Vec3 preMult(const Vec3& v) const;
inline Vec3 postMult(const Vec3& v) const;
inline Vec3 operator∗ (const Vec3& v) const;
inline Vec4 preMult(const Vec4& v) const;
inline Vec4 postMult(const Vec4& v) const;

160 inline Vec4 operator∗ (const Vec4& v) const;
void setTrans(float tx, float ty, float tz);

void setTrans(const Vec3& v);
inline Vec3 getTrans() const { return Vec3(mat[3][0],mat[3][1],mat[3][2]); }
inline Vec3 getScale() const { return Vec3(mat[0][0],mat[1][1],mat [2][2]); }

165
// apply apply an 3x3 transform of v∗M[0..2,0..2]
inline static Vec3 transform3x3(const Vec3& v,const Matrix& m);

// apply apply an 3x3 transform of M[0..2,0..2]∗v
170 inline static Vec3 transform3x3(const Matrix& m,const Vec3& v);

// basic Matrix multiplication, our workhorse methods.
void mult(const Matrix&, const Matrix&);
void preMult(const Matrix&);

175 void postMult(const Matrix&);

inline void operator ∗= (const Matrix& other)
{ if (this == &other) {

Matrix temp(other);
180 postMult(temp);

}
else postMult(other);

}

185 inline Matrix operator ∗ (const Matrix &m) const
{

Matrix r;
r .mult(∗this,m);

return r ;
190 }

};

//static inline utility methods
195 inline Matrix Matrix::identity(void)

{
Matrix m;
m.makeIdentity();
return m;

200 }

inline Matrix Matrix::scale(float sx, float sy, float sz)
{

Matrix m;
205 m.makeScale(sx,sy,sz);

return m;
}

inline Matrix Matrix::scale(const Vec3& v)
210 {

return scale(v.x(), v.y(), v.z());
}

inline Matrix Matrix::translate(float tx, float ty, float tz)
215 {

Matrix m;
m.makeTranslate(tx,ty,tz);
return m;

1.4. SOME MATH 45

}
220

inline Matrix Matrix::translate(const Vec3& v)
{

return translate(v.x(), v.y(), v.z());
}

225

inline Matrix Matrix::rotate(const Quat& q)
{

Matrix m;
230 m.makeRotate(q);

return m;
}

inline Matrix Matrix::rotate(float angle, float x, float y, float z)
235 {

Matrix m;
m.makeRotate(angle,x,y,z);
return m;

}
240

inline Matrix Matrix::rotate(float angle, const Vec3& axis)
{

Matrix m;
m.makeRotate(angle,axis);

245 return m;
}

inline Matrix Matrix::rotate(float angle1, const Vec3& axis1,
float angle2, const Vec3& axis2,

250 float angle3, const Vec3& axis3)
{

Matrix m;
m.makeRotate(angle1,axis1,angle2,axis2,angle3,axis3);
return m;

255 }
inline Matrix Matrix::rotate(const Vec3& from, const Vec3& to)
{

Matrix m;
m.makeRotate(from,to);

260 return m;
}

inline Matrix Matrix::inverse(const Matrix& matrix)
{

265 Matrix m;
m.invert(matrix);
return m;

}

270 inline Matrix Matrix::ortho(double left, double right,
double bottom, double top,
double zNear, double zFar)

{
Matrix m;

275 m.makeOrtho(left,right,bottom,top,zNear,zFar);
return m;

}

inline Matrix Matrix::ortho2D(double left, double right,
280 double bottom, double top)

{
Matrix m;
m.makeOrtho2D(left,right,bottom,top);
return m;

285 }

inline Matrix Matrix::frustum(double left, double right,
double bottom, double top,
double zNear, double zFar)

290 {
Matrix m;
m.makeFrustum(left,right,bottom,top,zNear,zFar);
return m;

}
295

inline Matrix Matrix::perspective(double fovy,double aspectRatio,
double zNear, double zFar)

{
Matrix m;

300 m.makePerspective(fovy,aspectRatio,zNear,zFar);
return m;

}

inline Matrix Matrix::lookAt(const Vec3& eye,const Vec3& center,const Vec3& up)
305 {

Matrix m;
m.makeLookAt(eye,center,up);
return m;

}
310

inline Vec3 Matrix::postMult(const Vec3& v) const
{

float d = 1.0f/(mat[3][0]∗v.x()+mat[3][1]∗v.y()+mat[3][2]∗v.z()+mat[3][3]) ;
315 return Vec3((mat[0][0]∗v.x() + mat[0][1]∗v.y() + mat[0][2]∗v.z() + mat[0][3])∗d,

(mat[1][0]∗v.x() + mat[1][1]∗v.y() + mat[1][2]∗v.z() + mat[1][3])∗d,
(mat[2][0]∗v.x() + mat[2][1]∗v.y() + mat[2][2]∗v.z() + mat[2][3])∗d) ;

}

320 inline Vec3 Matrix::preMult(const Vec3& v) const
{

46 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

float d = 1.0f/(mat[0][3]∗v.x()+mat[1][3]∗v.y()+mat[2][3]∗v.z()+mat[3][3]) ;
return Vec3((mat[0][0]∗v.x() + mat[1][0]∗v.y() + mat[2][0]∗v.z() + mat[3][0])∗d,

(mat[0][1]∗v.x() + mat[1][1]∗v.y() + mat[2][1]∗v.z() + mat[3][1])∗d,
325 (mat[0][2]∗v.x() + mat[1][2]∗v.y() + mat[2][2]∗v.z() + mat[3][2])∗d);

}

inline Vec4 Matrix::postMult(const Vec4& v) const
{

330 return Vec4((mat[0][0]∗v.x() + mat[0][1]∗v.y() + mat[0][2]∗v.z() + mat[0][3]∗v.w()),
(mat[1][0]∗v.x() + mat[1][1]∗v.y() + mat[1][2]∗v.z() + mat[1][3]∗v.w()),
(mat[2][0]∗v.x() + mat[2][1]∗v.y() + mat[2][2]∗v.z() + mat[2][3]∗v.w()),
(mat[3][0]∗v.x() + mat[3][1]∗v.y() + mat[3][2]∗v.z() + mat[3][3]∗v.w())) ;

}
335

inline Vec4 Matrix::preMult(const Vec4& v) const
{

return Vec4((mat[0][0]∗v.x() + mat[1][0]∗v.y() + mat[2][0]∗v.z() + mat[3][0]∗v.w()),
(mat[0][1]∗v.x() + mat[1][1]∗v.y() + mat[2][1]∗v.z() + mat[3][1]∗v.w()),

340 (mat[0][2]∗v.x() + mat[1][2]∗v.y() + mat[2][2]∗v.z() + mat[3][2]∗v.w()),
(mat[0][3]∗v.x() + mat[1][3]∗v.y() + mat[2][3]∗v.z() + mat[3][3]∗v.w()));

}
inline Vec3 Matrix::transform3x3(const Vec3& v,const Matrix& m)
{

345 return Vec3((m.mat[0][0]∗v.x() + m.mat[1][0]∗v.y() + m.mat[2][0]∗v.z()),
(m.mat[0][1]∗v.x() + m.mat[1][1]∗v.y() + m.mat[2][1]∗v.z()),
(m.mat[0][2]∗v.x() + m.mat[1][2]∗v.y() + m.mat[2][2]∗v.z()));

}

350 inline Vec3 Matrix::transform3x3(const Matrix& m,const Vec3& v)
{

return Vec3((m.mat[0][0]∗v.x() + m.mat[0][1]∗v.y() + m.mat[0][2]∗v.z()),
(m.mat[1][0]∗v.x() + m.mat[1][1]∗v.y() + m.mat[1][2]∗v.z()),
(m.mat[2][0]∗v.x() + m.mat[2][1]∗v.y() + m.mat[2][2]∗v.z())) ;

355 }

inline Vec3 operator∗ (const Vec3& v, const Matrix& m)
{

360 return m.preMult(v);
}
inline Vec4 operator∗ (const Vec4& v, const Matrix& m)
{

return m.preMult(v);
365 }

inline Vec3 Matrix::operator∗ (const Vec3& v) const
{

return postMult(v);
370 }

inline Vec4 Matrix::operator∗ (const Vec4& v) const
{

return postMult(v);
}

375
inline std :: ostream& operator<< (std::ostream& os, const Matrix& m)
{

os << ”{”<<std::endl;
for(int row=0; row<4; ++row) {

380 os << ”\t”;
for(int col=0; col<4; ++col)

os << m(row,col) << ” ”;
os << std::endl;

}
385 os << ”}” << std::endl;

return os;
}

#endif // MATRIX H

The explicit keyword allows us prevent a constructor from acting as an implicit
conversion operatior. For example if we had a class A that had the form:

0 class A{
...

public:
C(int x); // this constructor will allow implicit conversions

}

We can use it to construct an object by typing A a(1); or we could write a = 1; in an
implicit form. There are cases where this implicit conversion does not work correctly and
we can prevent the assignment a = 1; by adding in the explicit keyword; so, writing for
example: explicit C(int x); in the class A above.

An example of the use of this class is in:
0 /∗∗

∗ EE563 Example Project 3
∗ by: Derek Molloy
∗∗/

5 #include <windows.h> // Header File For Windows
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include ”vec3.h”
#include ”Matrix.h”

10 #include ”vec4.h”
#include ”Quat.h”
#include <iostream>

1.5. TRANSFORMATIONS 47

P

P’

v

(a)

P[x y]

P’ [x’ y’]

(b)
x

y

r
r

φ
θ

Figure 1.23: (a) illustrates the transformation of a point P to a point P ′ by a vector ~v.

using namespace std;

15 int main()
{

Matrix m(11, 12, 13, 14, 21, 22, 23, 24, 31, 32, 33, 34, 41, 42, 43, 44);
cout << ”Matrix M: ” << m << endl;

20 Vec4 e (1,2,3,4);
cout << ”Vector e: ” << e << endl;
Vec4 f = m ∗ e;
cout << ”Vector f = Me: ” << f << endl;

25 Matrix r;
r .makeScale(0.5, 0.5, 0.5);
cout << ”Matrix R (scaling matrix): ” << r << endl;
Matrix n = m∗r;
cout << ”Matrix N = MR: ” << n << endl;

30
system(”pause”);
return 0;

}

1.5 Transformations

1.5.1 Translation

At this stage you will have examined transformations in Java3D. We will cover some
of that material again here, just to provide the basis for transformations in OpenGL.

1.23(a) illustrates the transformation of a point P =
[

x y z 1
]T

to a new location

P ′ =
[

x′ y′ z′ 1
]T

by a vector ~v =
[

vx vy vz 0
]T

when using homogeneous
coordinate representation. We can write P ′ = P + ~v (where x′ = x + vx, y′ = y + vy and
z′ = z + vz), or in matrix form P ′ = TP , where:

T =

1 0 0 vx

0 1 0 vy

0 0 1 vz

0 0 0 1

 (1.46)

This matrix notation is much better as it can represent all affine transformations and
even allow multiple transformations at the same time (e.g. rotation and translation).

See Example3a for a numerical example. It demonstrates that P =
[

1 2 3 1
]T

(i.e. a point P = (1, 2, 3)) translated by a homogeneous vector ~v =
[

3 4 5 0
]T

can

48 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

be written as P ′ = TP where:

T =

1 0 0 3
0 1 0 4
0 0 1 5
0 0 0 1

 (1.47)

and when applied will result in a point P ′ = MP =
[

4 6 8 1
]T

Using the 4x4
matrix class that we just created, the code for this example is:

0 Matrix m(1, 0, 0, 3,
0, 1, 0, 4,
0, 0, 1, 5,
0, 0, 0, 1);

cout << Matrix M: << m << endl;
5

Vec4 p (1,2,3,1);
cout << ”Point P: << p << endl;
Vec4 pp = m ∗ p;
cout << ”Point P\ = MP: << pp << endl;

1.5.2 Rotation

We may also wish to apply a rotation to our point (we will consider 2-D rotation for
simplicity). Figure 1.23 illustrates the rotation of a point P about the origin by θ degrees.
We can describe this as x = r cos φ, y = r sinφ and:

x′ = r cos(φ + θ) (1.48)
y′ = r sin(φ + θ) (1.49)

Now, the standard cosine identity rule allows us to write:

x′ = r cos φ cos θ − r sinφ sin θ (1.50)
y′ = r sinφ cos θ + r cos φ sin θ (1.51)

Since x = r cos φ and y = r sinφ:

r = x/ cos φ (1.52)
r = y/ sinφ (1.53)

Substituting into above to remove φ, we get:

x′ = x cos θ − y sin θ (1.54)
y′ = x cos θ + x sin θ (1.55)

So, if we take it that rotating about the z-axis leaves the z value unchanged, we can
write:

x′ = x cos θ − y sin θ (1.56)
y′ = x sin θ + y cos θ (1.57)
z′ = z (1.58)

1.5. TRANSFORMATIONS 49

We can then write this in homogeneous co-ordinates as P ′ = Rz(θ)P , where:

Rz(θ) =

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 (1.59)

We can apply the same technique as for rotation about the z-axis to derive rotation
matrices for rotations about the x-axis (where x is unchanged) and y-axes(where y is
unchanged), giving:

Rx(θ) =

1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (1.60)

Ry(θ) =

cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

 (1.61)

1.5.3 Scaling

We can also apply these transformations to the scaling of objects, allowing the expansion
or contraction of the object along each axis. We can write this as:

x′ = sxx (1.62)
y′ = syy (1.63)
z′ = szz (1.64)

We can rewrite this as P ′ = SP where:

S(sx, sy, sz) =

sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 (1.65)

1.5.4 Shearing

We will look at one last transformation, a shear operation, which will result in the dis-
tortion of the object as illustrated in 1.24(a). This can be described mathematically as in
figure 1.24(b) and can be described as:

x′ = x + y cot θ

y′ = y

z′ = z

This can be represented in homogeneous form as:

H(θ) =

1 cot θ 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (1.66)

Which can be extended to shearing operations along other axes. Figure 1.24 demon-
strates the execution of various affine transforms on an object in 3-D space.

50 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

(a)

x

y

θx

y

z

x

y

z

Shear 30o

(b)

(x,y)(x’,y’)

Figure 1.24: (a) illustrates the shearing of an object along the x-axis, and (b) shows the
mathematical representation of this shearing.

1.5.5 Inverse Operations

We can compute inverse matrices by general formula, but we can also provide simple
geometric observations, such as:

• Translation: T−1(vx, vy, vz) = T (−vx,−vy,−vz)

• Rotation: R−1(θ) = R(−θ) where cos(−θ) = cos(θ) and sin(−θ) = − sin(θ)

• Scaling: S−1(sx, sy, sz) = S(1
sx

, 1
sy

, 1
sz

)

1.5.6 Combination and Other Operations

We can create an arbitrary affine transformation by combining rotation, translation and
scaling matrices by multiplication. The same transformation can then be applied to many
vertices. This is quite efficient, as the computational cost of combining the matrices is
insignificant when it is then applied to hundreds of vertices in a complex object. If we
have a vector ~v′ = TSR~v, where we wish to apply a translation, rotation and scaling, then
the order by which these operations will be carried out in this case is: ~v′ = T (S(R~v)).

We can carry out about a rotation about an arbitrary axis ~v (as in figure 1.25(a)),
by decomposing the rotation into a combination of rotations about the x, y and z-axes
in the form: R(θ) = Rx(θx)Ry(θy)Rz(θz). One important note is that these rotations do
not commute, i.e. if we apply the rotations in different orders it will result in a different
location; we can achieve the same location by using different angles. If we wish to apply a
rotation about a point P other than the origin then we must carry out the following steps:

1. identify our perceived rotation point P

2. translate our object to the origin

3. rotate the object about the origin

4. translate the object back to the point P

This matrix will have the form M = T (P)R(θ)T (−P)

1.5.7 The OpenGL Current Transformation Matrix (CTM)

The Current Transformation Matrix (CTM) defines a 4x4 homogeneous co-ordinate matrix
that is part of the current OpenGL state (loaded into the transformation unit) and is

1.5. TRANSFORMATIONS 51

(a)

x

y

θ

v

z

(b)

x

y

z

x

y

z

x

y

z

x

y

z

P P

(i) (ii) (iii) (iv)

Figure 1.25: (a) illustrates the rotation of a vector about the x, y and z-axes (b) illustrates
the steps involved in the rotation of an object about a point P .

Figure 1.26: The Nate Robins Tutorial Example on Transformation.

52 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

applied to all vertices that are passed down the OpenGL pipeline. Where vertices v are
passed into the transformation unit, where they are operated on by a matrix C to provide
the output p′ = Cp.

We can change the CTM by loading a new matrix, or by post-multiplication by another
matrix. We can do some of the following, basic loads:

• Load an Identity matrix I 7→ C

• Load a new matrix M 7→ C

Or, we could load a particular matrix, such as:

• Load a translation matrix T 7→ C

• Load a scaling matrix S 7→ C

• Load a rotation matrix R 7→ C

Or, we could post-multiply the current C, such as:

• Post-multiply by some arbitrary matrix CM 7→ C

• Post-multiply by some translation matrix CT 7→ C

• Post-multiply by some scaling matrix CS 7→ C

• Post-multiply by some rotation matrix CR 7→ C

Remembering back to figure 1.25(b), where we wish to rotate about a fixed point P ; if we
wish to apply this in OpenGL we would:

• Start with an identity matrix I 7→ C

• Move the fixed point P to the origin CT 7→ C

• Rotate the object CR 7→ C

• Move the fixed point P back CT−1 7→ C

If we were to apply these as post-multiplications, then this will result in an operation of
C = TRT−1 which would be applied in the wrong order! (backwards). To do this correctly
we have to perform the operations in the order C = T−1RT (i.e. I 7→ C, CT−1 7→ C,
CR 7→ C, and then CT 7→ C). Each one of these operations corresponds to an OpenGL
function call, remembering the the last operation specified is the first executed in the
program.

OpenGL has a pipeline as illustrated in figure 1.27 where the model-view (GL MODELVIEW)
and projection (GL PROJECTION) matrix in the pipeline is concatenated to create the CTM.
Again, we use the glMatrixMode() function to state which part of the CTM we are
changing. If we use the same example of rotating an object about a fixed point, we
could pick a numerical example of rotating 45 degrees about the y-axis at a fixed point
P = (1.5, 2.5, 3.5). You will remember that mathematically we defined this (intuitively
backwards) as: C = T−1RT . Therefore, the correct OpenGL code for this operation is:

0 glMatrixMode(GL MODELVIEW);
glLoadIdentity();
glTranslatef (1.5 f , 2.5 f , 3.5 f);
glRotatef(0.0 f , 45.0f , 0.0 f , 1.0 f);
glTranslatef(−1.5f, −2.5f, −3.5f);

Where the last operation is the first one applied. We could also use OpenGLs ability
to load an arbitrary matrix to do the same Example3b

1.5. TRANSFORMATIONS 53

Model-View Projection

CTM

vertices vertices

GL_MODELVIEW GL_PROJECTION

Figure 1.27: An illustration of the OpenGL model-view and projection in the pipeline.

0 Matrix C: {
0.71 0.00 −0.71 0.0
0.00 1.00 0.00 0.0
0.71 0.00 0.71 0.0
−2.74 0.00 −7.21 1.0

5 }

One additional useful feature is that we can query the CTM in OpenGL to find out
what the current CTM matrix values are by using the query functions glGetIntegerv(),
glGetFloatv(), glGetDoublev(), glGetBooleanv() and glIsEnabled(). So, we could
write:

0 float matrix arr [] = new float[16];
glGetFloatv(GL MODELVIEW MATRIX, matrix arr);
Matrix m(matrix arr);

These calls allow us to query the hundreds of states of the current OpenGL state
machine; in this case we are using GL MODELVIEW MATRIX as our parameter name, but
there are many other states that can be queried.

0 void glGetBooleanv(GLenum pname, GLboolean ∗params);
void glGetDoublev(GLenum pname, GLdouble ∗params);
void glGetFloatv(GLenum pname, GLfloat ∗params);
void glGetIntegerv(GLenum pname, GLint ∗params);

See: http://www.xfree86.org/current/glGet.3.html for a full list of the states.
Example3c demonstrates the display of the GL MODELVIEW MATRIX state, using the code:

0 case VK F1: //F1 key pressed
float matrix arr [16];
glGetFloatv(GL MODELVIEW MATRIX, matrix arr);
Matrix m(matrix arr);
std :: string s = m.toString();

5 MessageBox (NULL,s.data(),GL MODELVIEW Matrix,MB OK|MB ICONINFORMATION);
return 0;

So, by pressing the key ‘F1’ key in Example3c the model-view matrix will be displayed
in a window message box.

This segment of code from Example3c has a boolean switch isRawMatrixMode which
allows us to switch from a manual calculation of the transformation matrix to the use of
the standard OpenGL functions for rotation and translation. It is important to note here
that the order of the matrix multiplication C = T−1RT is in the reverse order to the calls
to the functions glTranslatef().

http://www.xfree86.org/current/glGet.3.html

54 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

(a)

(b)

Figure 1.28: Screen captures of Example 3c, displaying the CTM Matrix and the matrix
transform that we have calculated manually

0 // Please note that these matrices are in transpose form
if (isRawMatrixMode) // Allow us to switch between the following sets of code
{

Matrix Tti(1.0f , 0, 0, 0,
0, 1.0 f , 0, 0,

5 0, 0, 1.0 f , 0,
−1.5f, −2.5f, −3.5f, 1.0 f);

float thetaRads = DegreesToRadians(theta);
Matrix Rt (cos(thetaRads), 0, −sin(thetaRads), 0,

0, 1.0 f , 0, 0,
10 sin(thetaRads), 0, cos(thetaRads), 0,

0, 0, 0, 1.0 f);
Matrix Tt (1.0f, 0, 0, 0,

0, 1.0 f , 0, 0,
0, 0, 1.0 f , 0,

15 1.5 f , 2.5 f , 3.5 f , 1.0f);
C = Tti ∗ Rt ∗ Tt;
glMultMatrixf(C.ptr());

}
else

20 {
glTranslatef (1.5 f , 2.5 f , 3.5 f);
glRotatef (theta, 0.0f , 1.0 f , 0.0 f);
glTranslatef(−1.5f, −2.5f, −3.5f);

}

1.5. TRANSFORMATIONS 55

1.5.8 Coordinate Spaces in the Graphics Pipeline

Local coordinate system (Object space)

When we create models it is easiest if we have a local coordinate system centered on or
close to the geometry of the model. If for example we created a sphere, it would probably
make the most sense to have the sphere centered on the origin of our coordinate system.
For example, when we think of an airplane we think of a coordinate system local to the
airplane, with a z-axis representing our height above the ground and an xy plane aligned
parallel to the Earth’s surface. We can then consider rotations around the x or y axis as
describing the pitch and roll of the airplane. Object space can be split into many subspaces
at many levels, depending on the complexity of the object; for example, a car may have
nested subspaces for the individual wheels etc.

World coordinate system (World space)

Many models with individual local coordinate systems can be placed in a single scene. We
place the models in the world coordinate system by transforming their locations from the
local coordinate system, taking account of any spatial relationships between the various
models. As well as models, other graphics objects such as lights, cameras and special effects
may also be added to the World coordinate system. To continue the airplane analogy, the
world coordinate system could be defined as spherical in nature with the centre of the
coordinate system at the centre of the earth (using a polar coordinate system); or more
possibly it could be considered to be a flat surface10, going to infinity in all directions, with
the centre of the coordinate system at the “centre” of an xy plane, with z representing
height into the sky (a Cartesian coordinate system). The OpenGL API doesn’t really have
a World space.

View space (Camera space)

The View space or Camera space is the virtual camera view of the World space. In
camera space, the camera is at the origin with the +x pointing to the right, +y pointing
up and the +z pointing forward in the direction that the camera is facing (this can differ
with implementation, sometimes pointing the opposite direction). View space has several
properties, such as a viewing point, a viewing direction and a view volume. The viewing
point defines the location of the observer in the world space; the viewing direction describes
the orientation of the viewer; and the view volume is the pyramid of space that is in front
of the camera in the viewing direction - also called the view frustum. Figure 1.29 illustrates
several different representations of the view space. Lighting, culling and back-face culling
can be performed in view space.

If we describe a view as being the combination of a view coordinate system the minimal
system required is illustrated in Figure 1.29 (a-d), where the view coordinate system,
UV N , has N coincident with the viewing direction and U , V in a plane parallel to the
view plane. The virtual camera can be placed at any location C and can be pointed in any
direction using the viewing direction ~n. To transform points in world coordinate space to
points in view space we have to apply a change of coordinate systems, using a translation
and rotation. Therefore, to get the view point equivalent of a point in world space we can

10In the good old days when the world was assumed to be flat, OpenGL programming was mathematically
much more straightforward; this was particularly the case when developing flight simulators.

56 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

C
View Volume/Frustum

Near Clipping Plane

Far Clipping Plane

Cn
zw

ywxw

C

n d

view plane

(a)

(c)

(b)

(d)

C
n

uv

Figure 1.29: Several different representations of the View plane illustrating (a) the view
frustum with the near and far clipping planes formed by the view point C and the view
plane window; (b) the view point C and viewing direction ~n; (c) the view plane normal to
the view direction ~n a distance d from C; and, (d) the View point C and UV axes parallel
to the view plane.

use11:
xv

yv

zv

1

 = Tview

xw

yw

zw

1

 , (1.67)

where Tview = RT describes the rotation and translation components, where:

T =

1 0 0 −Cx

0 1 0 −Cy

0 0 1 −Cz

0 0 0 1

 R =

Ux Uy Uz 0
Vx Vy Vz 0
Nx Ny Nz 0
0 0 0 1

 (1.68)

Choosing the position of C in the world coordinate system is relatively straightforward,
but choosing the viewing direction is much more intuitive if we use two angles in a spherical
coordinate system (ρ, φ, θ) 12 (3D form of the polar coordinate system) - I suppose this is
similar to the human head, looking up and down, or left to right. This is more formally
know as:

• θ the azimuth angle (looking left and right, using the +x axis as the reference)

• φ the elevation angle (looking up and down, using the +z axis as the reference)

11The notation used in this document is: Scalar variables are represented by lowercase letters in ital-
ics, e.g. a, b, x, y; Vector variables are lowercase letters with an arrow, e.g. ~a,~b, ~x, ~y; and Matrices are
represented using uppercase letters e.g. A, B, I, M

12The spherical coordinate system is a coordinate system for representing geometric figures in three
dimensions using three coordinates, (ρ, φ, θ), where ρ represents the radial distance of a point from the
origin, φ represents the angle from the positive z-axis and θ represents the azimuth angle from the positive
x-axis. To plot a point from its spherical coordinates, go ρ units from the origin along the positive z-axis,
rotate φ about the y-axis in the direction of the positive x-axis and rotate θ about the z-axis in the direction
of the positive y-axis.

1.6. OPENGL SHADING 57

viewer Transparent
Surface

Reflection

Light Source

Figure 1.30: An example of the global effects that can occur when there are several objects
with different shading properties in a scene. There can be multiple scattering from object
to object and we can have other effects such as shadowing of one object on another (not
illustrated).

To convert from the spherical coordinate system to the Carthesian coordinate system
we can use:

x = ρ sinφ cos θ

y = ρ sinφ sin θ

z = ρ cos φ

Therefore, ~n can be described as:

~nx = sin φ cos θ

~ny = sin φ sin θ

~nz = cos φ

1.6 OpenGL Shading

At this stage we have shown how OpenGL can be used to create primitive objectives from
arrays of vertices. We have also shown how to add colour to an object; however, the colour
that we have added so far has been relatively simple as it assumes that the object is lit in
such a way that the colour appears uniform from all directions. This is not that realistic,
as in the real-world objects will appear shaded, depending on the direction of light and
the position of the observer. It is possible for an object to emit light (self-emission), such
as a glowing object, or for an object to be highly reflective, like a mirror - Now, if two such
objects are close together, there will be recursive effects when the light source emits light
rays on the mirror, which will then be reflected back onto the light source itself, or indeed
any other object in the scene. We can also describe this as having some light scattered
and some absorbed, as in 1.30.

Light that strikes an object is partially absorbed and partially scattered; the amount
of light reflected determines the colour and brightness of the object. A surface with a red
material appears red under a white light because the red component of the light is reflected
and the rest is absorbed. The reflected light is scattered in a manner that depends on the
smoothness and orientation of the surface.

We shall begin by defining different terms to describe shaded surfaces:

58 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

• Specular surfaces - These surfaces appear shiny as the light that is reflected is main-
tained within a narrow range of angles, close to the angle of reflection. Mirrors are
perfect specular surfaces.

• Translucent surfaces - These surfaces allow some of the light to penetrate the surface
and to emerge from some other location on the object. For example, refraction in
glass or water would cause the light to emerge from another location on the object.

• Diffuse surfaces - These surfaces are characterised by having light scattered in all
directions; for example, walls painted with a matte paint are diffuse reflectors.

All of these shaded surfaces will appear differently depending on the wavelength of
the light that strikes the surface and the orientation of the surfaces of the objects, which
is characterised by the normal vector at each point. We can characterise a light source
by a 6-variable illumination function: I(x, y, z, θ, φ, λ), where each point on the surface
(x, y, z) can emit light by the direction of emission (θ, φ) and intensity of energy at each
wavelength λ. For this module, we will consider four types of source: ambient light, point
sources, spotlights and distant lights. These types are sufficient for most applications.

• Ambient light - In a large room, such as a classroom the lights are placed on the roof
in such a way as to try to uniformly distribute the light across every surface, creating
a uniform light level. Ambient illumination can be characterised by an intensity Ia

that is identical at every point in the scene - Our ambient source will have three

colour components (red, green, blue) and can be given as: Ia =
[

Ir
a Ig

a Ib
a

]T

• Point sources - A point source emits light equally in all directions and can be charac-

terised by a three component colour matrix: I(P0) =
[

Ir
a(P0) Ig

a(P0) Ib
a(P0).

]T

The intensity of light received from the point source is proportional to the inverse
square of the distance between the light source and the surface. Therefore, at a
point P the intensity of light received from the point source is given by the matrix:
i(P, P0) = 1

|P−P0|2
I(P0). Point sources are quite simple sources of light and tend

to result in very high-contrast harsh renderings; however, the combination of point
sources and ambient light reduces these effects.

• Spotlights - Spotlights are characterised by a narrow range of angles through which
light is emitted. Typically we represent a spotlight as a cone with apex at Ps which
points in the direction ~ls and whose cone radius is determined by the angle θ (a
spotlight with θ = 180 is a point source). More realistic spotlights have a more
complex distribution of light within the cone, usually with light concentrated at the
centre of the cone, often given by a function cose φ, where 0 ≤ φ ≤ θ and where the
exponent e determines how quickly the light intensity falls off.

• Distant lights - If a light source is far from the surface that it is illuminating then
the light vector does not change much as we move across the surface (like the sun
illuminating objects on the earth). This distant light in effect replaces a point
source with a parallel source of light. A distant light source can be described by a

direction vector as follows P =
[

x y z 0
]T

. OpenGL can carry out rendering
calculations for distant light sources more efficiently that it can for near ones.

1.6.1 The Phong Model

The reflection model that we present here was introduced by Phong and later modified by
Blinn. It provides a good approximation to physical reality, producing good renderings
under varying lighting conditions and materials. The Phong model uses four vectors to
calculate the colour at a particular point P on a surface; these are ~n, the normal vector

1.6. OPENGL SHADING 59

(a) (b)

viewer

Light
Source

P

n

l
v r

normal

reflection

n

θl θr

rl

Figure 1.31: (a) illustrates the Phong model and (b) illustrates an ideal reflector.

at that point on the surface; ~v, which is in the direction from point P to the viewer (or
centre of projection);~l, the direction of a line from P to a point light source; and ~r is the
direction that a perfectly reflected ray from ~l would take. 1.31(a) illustrates the Phong
Model. The Phong model is a simple model that can be computed rapidly.

1.31(b) illustrates an ideal reflector, where the normal is determined by the orientation
of the local polygon, and the angle of incidence θl equals the angle of reflection θr. The
ideal reflector can be described as ~r = 2(~l · ~n)~n−~l.

The Phong model supports the three types of material-light interaction of ambient,
diffuse and specular. OpenGL works by assuming that if there is a set of point sources
that each source can have separate red, green and blue ambient, diffuse and specular
components. Therefore, at an point on a surface P for the ith light source we can use:

Li =

 Lr
ia Lg

ia Lb
ia

Lr
id Lg

id Lb
id

Lr
is Lg

is Lb
is

 (1.69)

which has the first row for the ambient intensities, the second row for the diffuse intensities
and the last row for the specular intensities. We assume that we can calculate how much
incident ligh t is reflected at P based on the material properties, the orientation of the
surface, the direction of the light source and the distance between the point on the surface
and the viewer. Therefore, we can give the reflection in the form:

Ri =

 Rr
ia Rg

ia Rb
ia

Rr
id Rg

id Rb
id

Rr
is Rg

is Rb
is

 (1.70)

and therefore, we can obtain the total intensity by adding the contribution of all the
sources, giving for the red intensity:

Ir
i = Lr

iaR
r
ia + Lr

idR
r
id + Lr

isR
r
is

If we simplify this to assume that the computations are the same for each primary colour,
but differ depending if we are considering ambient, diffuse or specular terms, we can write:

I = LaRa + LdRd + LsRs

60 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

n

θl

rl

v

h

θ

Ψ

Figure 1.32: ~h is the halfway vector, half way between light vector ~l and the view vector ~v

The intensity of ambient light is the same at every point on the surface, where some
of the light is absorbed and some is reflected depending on some coefficient ka, where
0 ≤ ka ≤ 1 as only a positive fraction of the light can be reflected, so Ia = kaLa.

We can add up all of the components, allowing the Phong model to be written without
the distance terms as (referring to 1.31(a)):

I = kdId(~l · ~n) + ksIs(~v · ~r)α + kaIa (1.71)
(1.72)

For each colour component we can add contributions from all sources.
The specular term in the Phong model causes problems because it requires the cal-

culation of a new reflection vector and view vector for each vertex. Blinn suggested an
approximation which uses the halfway vector that is more efficient. Figure 1.32 illustrates
the halfway vector ~h, which is half way between the light vector ~l and the view vector ~v.
This can be described as: ~h = (~l +~v)/

∣∣∣~l + ~v
∣∣∣. We can then replace the (~v ·~r)α component

in our Phong model by (~n · ~h)β to give:

I = kdId(~l · ~n) + ksIs(~n · ~h)β + kaIa (1.73)
(1.74)

Where β is chosen to match the shininess of the surface. This is known as the modified
Phong or Blinn lighting model. The vectors ~l and ~v are easy to calculate as they are
specified by the application; we can compute ~r using ~l and ~n, but it is not so easy to
determine ~n - we will discuss this slightly later.

1.6.2 Lambertian Surfaces

As previously mentioned, diffuse reflections are characterised by rough surfaces, where
rays of light that strike the surface are reflected back at quite different angles. Perfectly
diffuse surfaces are called Lambertian Surfaces and can be modelled by Lambert’s law,
which states that:

Rd ∝ cos θ (1.75)

where θ is the angle between the normal at the point of interest ~n and the direction of the
light source ~l. If only a fraction of incoming light is reflected we can add in a reflection
coefficient kd (where 0 ≤ kd ≤ 1) we can write:

Rd = kdLd cos θ (1.76)

1.6. OPENGL SHADING 61

The amount of light is proportional to the vertical component of the incoming light. If
we used only the ambient and diffuse properties our materials would appear dull as we
are missing the highlights on the surface. The highlights that we see on a reflective
surface are usually different from the colour of the ambient and diffuse light, for example
a silver shiny metal ball viewed under white light will reflect a white highlight in the
direction of the viewer. This is the specular property of the surface and is associated with
a smooth surface, rather than the rough surface associated with a diffuse model. Modelling
realistic specular surfaces is complex because the pattern by which light is scattered is not
symmetric and depends on the reflection angle. Phong proposed an approximate model
for specular surfaces, which assumes that the surface is smooth for the specular reflection.
The Phong model uses the equation:

Is = ksLscos
αφ (1.77)

which gives the specular light that a viewer sees at a particular point on the surface,
where the coefficient ks (where 0 ≤ ks ≤ 1) is the faction of incoming specular light that
is reflected, the exponent α is the shininess coefficient (where when α is increased the
light is concentrated on a narrower region centered on the angle of a perfect reflector, i.e.
as α → ∞ (typically values of 200 to 500) we get a perfect mirror), and α is the angle
between ~r a perfect reflector and ~v, the direction of the viewer.

1.6.3 The Normal Vector

With smooth surfaces the vector normal to the surface exists at every point and gives the
local orientation of the surface. A surface normal, or just normal to a flat surface is a three-
dimensional vector which is perpendicular to that surface (orthogonal). For a polygon, the
surface normal can be calculated as the vector cross product of two (non-parallel) vector
edges of the polygon. For a plane given by the equation ax+by+cz +d = 0; this equation
can be rewritten in terms of the normal to the plane as:

~n · (P − P0) = 0 (1.78)

where P is any point on the plane. If we have three non-colinear points P0, P1 and P2

(and therefore a plane) then the vectors P1 −P0 and P2 −P0 can be used to calculate the
normal as:

~n = (P2 − P0)× (P1 − P0) (1.79)

Figure 1.33 illustrates the calculation of the normal vector for a plane.
In OpenGL a normal can be associated with a vertex through:

0 glNormal3f(Nx, Ny, Nz);
glNormal3fv(pointerToNormal);

Normals are state variables that can be associated with all the vertices and can be used for
the lighting calculations at all of the vertices. Unfortunately, we are expected to calculate
these normals ourselves.

The OpenGL Red Book gives an example of the use of normals with the creation of a
icosahedron.

0 void drawGLIcosahedron() // From the red book
{

GLfloat x,y,z, c = 3.14159f/180.0f;
#define X .525731112119133606
#define Z .850650808352039932

5
static GLfloat vdata[12][3] = {

{−X, 0.0, Z}, {X, 0.0, Z}, {−X, 0.0, −Z}, {X, 0.0, −Z},
{0.0, Z, X}, {0.0, Z, −X}, {0.0, −Z, X}, {0.0, −Z, −X},
{Z, X, 0.0}, {−Z, X, 0.0}, {Z, −X, 0.0}, {−Z, −X, 0.0}

10 };
static GLuint tindices [20][3] = {

{0,4,1}, {0,9,4}, {9,5,4}, {4,5,8}, {4,8,1},
{8,10,1}, {8,3,10}, {5,3,8}, {5,2,3}, {2,7,3},

62 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

P

n

u

v P

n

P2

P1

P0

(a) (b)

Figure 1.33: (a) Illustrates the calculation of the normal ~n from two vectors ~u and ~v, using
~n = ~u×~v and (b) illustrates the calculation of the normal using three non-colinear points
as ~n = (P2 − P0)× (P1 − P0).

{7,10,3}, {7,6,10}, {7,11,6}, {11,0,6}, {0,1,6},
15 {6,1,10}, {9,0,11}, {9,11,2}, {9,2,5}, {7,2,11} };

int i ;
glBegin(GL TRIANGLES);

for (i = 0; i < 20; i++) {

20 GLfloat d1[3], d2 [3], norm[3];
for (int j = 0; j < 3; j++) {

d1[j] = vdata[tindices[i][0]][j] − vdata[tindices[i][1]][j];
d2[j] = vdata[tindices[i][1]][j] − vdata[tindices[i][2]][j];

}
25 normcrossprod(d1, d2, norm);

glNormal3fv(norm);

glVertex3fv(&vdata[tindices[i][0]][0]);
glVertex3fv(&vdata[tindices[i][1]][0]);

30 glVertex3fv(&vdata[tindices[i][2]][0]);
}

glEnd();
}

35 void normalize(float v[3]) {
GLfloat d = sqrt(v[0]∗v[0]+v[1]∗v[1]+v[2]∗v [2]);
if (d == 0.0) {

return;
}

40 v[0] /= d; v[1] /= d; v[2] /= d;
}

void normcrossprod(float v1[3], float v2 [3], float out [3])
{

45 GLint i, j ;
GLfloat length;
out[0] = v1[1]∗v2[2] − v1[2]∗v2[1];
out[1] = v1[2]∗v2[0] − v1[0]∗v2[2];
out[2] = v1[0]∗v2[1] − v1[1]∗v2[0];

50 normalize(out);
}

Example1k illustrates this example... see 1.34. As stated, Gouraud proposed the use
of the normals around a mesh vertex. Gouraud shading finds the average normal at each
vertex and applies the modified Phong model at each vertex. It then Interpolates vertex
shades across each polygon. Phong shading finds the vertex normals; interpolates the
vertex normals across the edges; interpolates edge normals across the polygon and then
applies the modified Phong model at each fragment.

If the polygon mesh approximates a surface with a high curvature then Phong shading
tends to look much smoother, while Gouraud shading tends to show up edges. Phong
shading requires much more computational effort than Gouraud shading - It was not until
recently that Phong shading was available in real-time, by using fragment shaders. Both
of these shading schemes need data structures to represent the mesh, by which shading
calculations can be performed.

1.6. OPENGL SHADING 63

Figure 1.34: These images give examples of the calculation of normals for an icosahedron.

n

n1 n3

n2 n4

Figure 1.35: Smooth Shading - Normals at vertices

1.6.4 Shading

One of the problems with the calculation of these normals is that it is computationally
intensive. OpenGL uses the efficiencies possible for rendering flat surfaces, by decomposing
curved surfaces into many small flat polygons. We will look at the different shading models
used in OpenGL.

Flat Shading

The three vectors ~l (light), ~v (viewer) and ~n (normal) vectors which describe how an object
should appear. If the light source and viewer are distant (or simply far away relative to the
size of a polygon) and if we assume a flat polygon, then ~n is constant over the polygon, then
the shading calculation need only be carried out once for each polygon and each polygon
is given the same shade. With OpenGL we can set flat (constant) shading through a call:

0 glShadeModel(GL FLAT);

OpenGL will use the normal associated with the first vertex of a polygon for all vertices
of that polygon if flat shading is enabled. This shading method is not very attractive as
humans are very good at noticing shading intensity changes at linear boundaries (e.g. a
square of different shaded paint on a wall painted with a similar shade of paint).

Smooth Shading

OpenGL also provides us with a smooth shading model, which can be enabled using:

0 glShadeModel(GL SMOOTH);

64 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

Figure 1.35 illustrates the normals at four connected polygons. Mathematically speak-
ing, the calculation of a normal at a vertex should cause concern, as it is discontinuous
at this point. However, Gouraud showed that by defining a normal at a vertex that
smoother shading could be achieved over an object by using interpolation. In this figure
we can calculate the normal ~n at this vertex by using:

~n =
~n1 + ~n2 + ~n3 + ~n4

|~n1 + ~n2 + ~n3 + ~n4|
(1.80)

This should not be very difficult from an OpenGL as all we have to do is specify the
normals at the vertices and let OpenGL do the interpolation; however, it is not that
simple as we do not tend to store the polygons in an order that allows us to average these
polygons together. We would have to set up a data structure to store our models that
puts the vertices first, i.e. stores four polygons for each vertex.

The default setup is to shade only front faces of objects, which is fine for convex objects;
however, if we need to allow back faces to be seen, then we can set two sided shading to
be enabled, using the glMaterialf() function with the properties GL FRONT, GL BACK and
GL FRONT AND BACK.

1.6.5 Lighting

As previously discussed, OpenGL supports four types of light sources, ambient, point,
spotlight and distant. We can set up the position of a light using a call to:

0 glLightfv(GLenum source, GLenum parameter, GLfloat ∗pointer to array);

Shading calculations are enabled using a call to glEnable(GL LIGHTING) we still have
to enable each light source individually using glEnable(GL LIGHTi), where i = 0, 1, . . . n,
where n is defined by your graphic card.

Allows us to create a light, where we first have to set up the required parameters, such
as:

0 GLfloat light pos [] = {−1.0f, 1.0f , 2.0f , 1.0f};
GLfloat light Ka[] = {0.0f, 0.0f , 0.0f , 1.0f};
GLfloat light Kd[] = {1.0f, 1.0f , 1.0f , 1.0f};
GLfloat light Ks [] = {1.0f, 1.0f , 1.0f , 1.0f};

5 glLightfv(GL LIGHT0, GL POSITION, light pos);
glLightfv(GL LIGHT0, GL AMBIENT, light Ka);
glLightfv(GL LIGHT0, GL DIFFUSE, light Kd);
glLightfv(GL LIGHT0, GL SPECULAR, light Ks);

10 glEnable(GL LIGHTING);
glEnable(GL LIGHT0);

Where the light position is specified using a homogeneous co-ordinate system. The
fourth parameter of Ka, Kd and Ks calls specify the alpha property of the ambient,
diffuse and specular components of the light source. We then associate the arrays with
the GL POSITION, GL AMBIENT, GL DIFFUSE and GL SPECULAR properties of the light source
GL LIGHT0. Finally, we have to enable the GL LIGHT0 and if necessary enable lighting on
the OpenGL machine. The light position is given in homogeneous co-ordinates, where the
4th parameter is 1.0f if we are specifying a finite location, or 0.0f if we are specifying a
parallel source with the given direction vector. The coefficients in the distance terms are
given by default as a = 1.0, the constant terms; b = c = 0.0f , the linear and quadratic
terms. If we wish to change these values we can do this by:

0 glLightfv(GL LIGHT0, GL CONSTANT ATTENUATION, 0.50f);
//Also have GL LINEAR ATTENUATION and GL QUADRATIC ATTENUATION

1.6. OPENGL SHADING 65

Figure 1.36: The Nate Robins Tutorial Example on Light Positioning

Figure 1.36 demonstrates the positioning of light in a scene. If we wished to have ambient
light we can use:

0 GLfloat ambient light [] = {0.1, 0.1, 0.1, 1.0};
glLightModelfv(GL LIGHT MODEL AMBIENT, ambient light);

Example1j illustrates the use of point lights and ambient lights.
We can convert a point source to a spotlight by setting up a spotlight direction property

GL SPOT DIRECTION, the exponent GL SPOT EXPONENT and the angle GL SPOT CUTOFF. We
use the same glLightfv() method to set these properties up. Depending on the graphic
card we are limited in the number of light sources that may be present.

1.6.6 OpenGL code for Shading

The Nate Robins’ Tutorial gives an excellent example of the use of OpenGL code for
specifying light and material properties. See Figures 1.36 and 1.38.

66 CHAPTER 1. OPENGL - THE GRAPHICS PIPELINE

Figure 1.37: This figure illustrates the use of a point light and an ambient light. The
image on the left shows the three spheres lit by the ambient light only and the image on
the right shows the spheres having rotated into the beam of the light and view of observer.

Figure 1.38: The Nate Robins Tutorial on Light and Materials in OpenGL (lightmate-
rial.exe). You can right click the various parameters to change their values.

Chapter 2

Scene Graph Theory

2.1 Introduction

In a previous section of this module you have experienced the use of the Java3D API
and its associated scene-graph. In this section of the module we are going to examine
scene graphs in more detail, in particular examining how we can build our own type of
scene graph, which suits our particular application. To do this we are going to have to
understand how we can organise a scene into a tree structure, how we can traverse this
tree and how we can use this tree to represent complex concepts such as describing the
relationship between objects, lights and cameras.

So, what is a scene graph? Well, the scene graph we are concerned with is a collection
of nodes ordered into a graph or tree structure. Each node can have many children, but
usually each child has only one parent. This is quite similar to the object-oriented trees
that you would have seen in EE553 - object-oriented programming - in fact, more closely
associated with the inheritance trees found in Java. Within a scene graph, operations
that are applied to an object are propagated to the child nodes. As such, scene graphs are
very useful for representing complex geometries, and operations such as transformation,
selections etc. which can be applied to all components of the object.

For example, a car could have a body and four rotating wheels; the wheels are posi-
tioned and rotate relative to the body of the car, so a translation applied to the car body
should have an equivalent translation effect on the four wheels. This allows us to treat the
car with wheels as a single object and reduces the complexity of our application. Further-
more, as memory and performance are always concerns in 3-D graphics, a well structured
scene graph would allow us to create reference nodes to geometries. In the example of the
car, this would allow us to define the geometry of the car’s wheel only once and use three
references to position three ‘copies’ of the wheel that have been rotate and translated to
the correct location. To do this we would use a directed acyclic graph (DAG), which is a
generalisation of a tree in which certain subtrees can be shared by different parts of the
tree, greatly reducing the memory footprint of our scene when there is repetition of scene
objects - a Java3D Scene Graph is a DAG.

It should be clear at this stage that the concept of a scene graph is a clear candidate
for an object-oriented approach. This is certainly the case, but a word of warning at
this stage - OpenGL has a state-machine structure, which does not sit very well with the
object-oriented structure that we are going to impose on our scenes. It is worth mentioning
that scene graphs have found use in non-3D applications where there is a requirement to
manage the contents of spatially oriented data; in particular, MPEG4 uses a scene graph
programming model for multimedia scene composition.

67

68 CHAPTER 2. SCENE GRAPH THEORY

2.2 A Simple Scene Graph Implementation

There are many scene graphs available including the Java3D API, Virtual Reality Modeling
Language (VRML) and indeed Open Scene Graph and they have specific tasks in mind.
For this module we are going to create our own simple scene graph to demonstrate how
they work.

The simplest type of scene graph would use an array data structure to store the objects
of the scene graph. We would iterate over the array to display the object in the scene,
simply traversing from the first element in the array to the Nth element whenever we need
to update the display. For small scenes this would be fine, but when we have a large scene,
which may contain thousands of scene objects, this linear display will become noticeably
slow. Larger scene graphs tend to use tree structures to contain the scene objects as the
hierarchical relationship it provides allows significant performance efficiencies. For the car
example, if we decided not to draw the car, then we could skip the scene objects which
contained the four wheels etc.

A scene graph is an organised hierarchy of nodes; an n-ary tree, where a node can
contain any number of children, which can inherit the transformations and states of the
parent objects. To organise a scene into a tree we generally use nodes such as group
nodes and leaf nodes. Group nodes usually have many nodes attached and can often
have a transformation or switching function. Leaf nodes usually contain renderable scene
objects, such as graphical geometry objects, or non-graphical scene objects such as images,
lights, cameras, materials and even sounds.

The reason that we use an object-oriented programming approach is so that we can
build a future-proofed extensible core engine for our visualisation systems. From EE553
object-oriented programming, you are probably aware that the features that are impor-
tant to our scene graph design are inheritance and polymorphism. Inheritance allows us
to define scene objects from other scene objects, and to extend or replace some of the
functionality of the base class. Polymorphism allows us to use the virtual keyword to
call methods of derived classes using pointers that have a static type of the base class.
The object-oriented structure is also very useful in managing the data in our scene, in
particular avoiding memory leaks as our visualisation system must be capable of running
for a long period of time.

As stated, the n-ary tree is used to contain scene objects and the idea of an array was
discussed. A more appropriate method would be to use the ANSI/ISO C++ Standard
Template Library (STL). STL is a collection of container classes, with associated iterator
mechanisms and algorithms. It provides classes for stacks, queues, linked-lists, deques
(double ended queues), maps, sets and vector storage containers. All of these containers
are useful in building our tree structures. We have chosen the vector class container for
our implementation as it provides a simple to use random access container; in effect it is
an advanced random access dynamic array. Iterators are used to move through the data
structure and access its information.

Example Scene Graph Object Class

Here is our first design of our generic Scene Object base class:

0 // SceneObject.h− This is the base object of all objects in
// the scene graph.
//

#if !defined SCENEOBJECT H
5 #define SCENEOBJECT H

#include<vector> // Use the STL Vector as our container

enum RTTI OBJECT TYPE

2.2. A SIMPLE SCENE GRAPH IMPLEMENTATION 69

10 {
RTTI CAMERA, //does not exist yet
RTTI LIGHT, //does not exist yet
RTTI DUMMY,

};
15

class SceneObject
{

protected:
20 SceneObject∗ parentObject;

std :: vector<SceneObject∗> childrenObjects;

public:
SceneObject();

25 virtual ˜SceneObject();

// assessors/mutators
void setParent(SceneObject∗ parent) { parentObject = parent; }
void addChild(SceneObject∗ child);

30 std :: vector<SceneObject∗>∗ getChildrenObjects() { return &childrenObjects; }
virtual RTTI OBJECT TYPE getType() const = 0;

// Force every child to have a render and update methods
virtual void render(float timeElapsed) = 0;

35 virtual void update(float timeElapsed) = 0;
};

#endif // SCENEOBJECT H

And its associated C++ file:

0 // SceneObject.cpp: implementation of the SceneObject class.
//
//

#include <iostream>
5 #include ”SceneObject.h”

SceneObject::SceneObject() {}

SceneObject::˜SceneObject() {}
10

void SceneObject::addChild(SceneObject ∗child)
{

if (! child) { std :: cerr << ”Attempt to add invalid child to scene graph.”; }

15 child−>setParent(this);
childrenObjects.push back(child);

}

Before this class begins we can see the RTTI OBJECT TYPE enumeration. As discussed,
we will use polymorphism extensively. So a pointer with a static type of SceneObject
will sometimes need to know what kind of object this pointer is actually pointing to (i.e.
the dynamic type). This enumeration allows us to “name”’ the current object type. The
list that is here is an example list for a camera, a light and a dummy object. We will
extend this list later. In effect, an enum call simply numbers the list of constants. If you
have studied Java you will be aware of a Class class, which performs the same operation.
This implementation of run-time type information (RTTI) allows a constant to define
exactly what kind of object we are dealing with at run-time. We can then simply use the

70 CHAPTER 2. SCENE GRAPH THEORY

getType() method to extract the dynamic type of the object that is currently pointed to.

Example Dummy Object Class

We can create various different scene objects. For now, we will just us a Dummy object
that does not involve any 3-D graphics; rather, it will just output the name of the object
to the standard output stream (std::cout).

0 // DummyObject.h: interface for the DummyObject class.
//
//

#if !defined DUMMYOBJECT H
5 #define DUMMYOBJECT H

#include <iostream>
#include <string>
#include ”SceneObject.h”

10

class DummyObject : public SceneObject
{
protected:

std :: string name;
15

public:
DummyObject(std::string dummyName);
virtual ˜DummyObject();

20 virtual RTTI OBJECT TYPE getType() const { return RTTI DUMMY; }

virtual void render(float timeElapsed) {}
virtual void update(float timeElapsed)

{
25 std :: cout << ”Updating [” << name << ”] scene object ” << std::endl;

}
};

#endif // DUMMYOBJECT H

And its associated C++ file:

0 // DummyObject.cpp: implementation of the DummyObject class.
//
//

#include <string>
5 #include ”DummyObject.h”

DummyObject::DummyObject(std::string dummyName)
{

name = dummyName;
10 }

DummyObject::˜DummyObject() {}

2.2.1 Traversing the Scene Graph

Once we have our scene graph structure of choice in place it is important that we are able
to interact with its information. The most basic operation is traversing the scene graph;
that is, moving from one scene graph item to the next scene graph item. In the case of a

2.2. A SIMPLE SCENE GRAPH IMPLEMENTATION 71

Root

A B

AA AB AC

ABA

Figure 2.1: The example scene graph that we are creating.

basic array scene graph structure, this would involve iterating over the array one element
at a time, probably from the 0th to the nth element in the array.

In the case of a tree structure, a traversal usually involves starting at some arbitrary
node of the graph, usually the root node and rendering the scene or applying some other
form of operation to the nodes. For the tree, this usually involves visiting a node, then
recursively moving down the tree to the child nodes until a leaf node is met. After this we
traverse back up the tree until we reach the next node that provides another downward
path. With the tree structure it is important to realise that we have the facility to rebuild
the scene graph into a more efficient order, perhaps a spatial ordering or an application
specific oder. For example, in 3-D systems it is more efficient to draw the closest objects
first, since objects that are further away may not need to be rendered as they may be
occluded by the closest objects.

Example Scene Graph Class with Traversal

Now we will carry out an implementation of traversing our scene graph. To do this we
will have to use recursion. Recursion is the much feared technique whereby a method calls
itself. The classic example of a recursive function is given by the factorial function (i.e. a
call to factorial(5) will give 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 120)

0 int factorial (int n)
{

if (n <= 1) return 1;
else return (n ∗ factorial (n−1));

}

This function will call itself until the number 1 is reached. Often recursion is misun-
derstood; for example, the not-so-funny joke where you look up recursion in the dictionary
to find: “recursion: see recursion”. This brings up an important point; there must be
an exit condition in our recursive function, otherwise it is a simple infinite loop. In the
code segment above, when we reach a value of n<=1 (it would have been sufficient to say
n==1) the return value of 1 means that we are no longer calling the recursive function;
therefore, the evaluation of factorial(n-1) will return the value of 1, the previous call
will return n times 1 etc. until we get back to the original call to factorial(5) and the
cycle terminates. Recursion for our scene graph structure is straightforward and necessary.

We can traverse a tree in two ways, breadth first or depth first. Breadth first traversal
moves from left to right on the same level, before going to the next lower level on the
tree. Depth first traversal moves down the tree until it cannot go down anymore, then it
moves up the tree until the next “lateral” path becomes available. For our scene graph
we will use depth first traversal as it makes more sense to render entire objects together;

72 CHAPTER 2. SCENE GRAPH THEORY

for example, in the case of the car discussed earlier, to render the body and then the four
wheels, rather than move directly to the next object in the scene.

Here is a very basic Scene Graph Class:

0 // SceneGraph.h: interface for the SceneGraph class.
//
//

#if !defined SCENEGRAPH H
5 #define SCENEGRAPH H

class SceneObject; //avoid a circular definition

class SceneGraph
10 {

public:

SceneGraph();
virtual ˜SceneGraph();

15

void updateScene(SceneObject∗ sceneObject, float timeElapsed);
};

#endif // SCENEGRAPH H

And its associated C++ file which includes the code for traversal:

0 // SceneGraph.cpp: implementation of the SceneGraph class.
//
//

#include ”SceneGraph.h”
5 #include ”SceneObject.h”

#include <vector>
#include <iostream>

SceneGraph::SceneGraph() {}
10

SceneGraph::˜SceneGraph() {}

void SceneGraph::updateScene(SceneObject∗ sceneObject, float timeElapsed)
{

15 if (! sceneObject)
{

std :: cerr << ”Attempt update of object not on the scene graph.”;
return;

}
20 else

{
sceneObject−>update(timeElapsed);
// and call all the children
std :: vector<SceneObject∗>::iterator it =

25 sceneObject−>getChildrenObjects()−>begin();
for (; it !=sceneObject−>getChildrenObjects()−>end(); ++it)
{

updateScene(∗it, timeElapsed);
}

30 }
}

In this code segment we have the SceneGraph::updateScene() method which takes a
sceneObject and recursively calls the update() method on each of the object’s children

2.2. A SIMPLE SCENE GRAPH IMPLEMENTATION 73

using a depth first tree traversal. We use the STL vector iterator, so the vector of child
objects has a starting point, provided by begin() and an ending point, provided by end();
we simply move the iterator over this range by using the ++it call in the for loop.

Here is an example of the construction of an example scene graph using the classes
above. In this example we pass a root node pointer to the SceneGraph::updateScene()
method, so that all scene objects are updated.

0 /∗∗
∗ EE563 Example Project 4 − Scene Graph Example
∗ by: Derek Molloy
∗∗/

5 #include <windows.h> // Header File For Windows
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include ”vec3.h”
#include ”Matrix.h”

10 #include ”vec4.h”
#include ”Quat.h”
#include ”SceneGraph.h”
#include ”DummyObject.h”
#include <iostream>

15 using namespace std;

int main()
{

SceneGraph ∗sg = new SceneGraph;
20

std :: cout << ”Creating Scene Objects \n”;

DummyObject ∗root = new DummyObject(”Dummy Root”);
DummyObject ∗dummya = new DummyObject(”Dummy A”);

25 DummyObject ∗dummyb = new DummyObject(”Dummy B”);
root−>addChild(dummya);
root−>addChild(dummyb);
DummyObject ∗dummyaa = new DummyObject(”Dummy AA”);
DummyObject ∗dummyab = new DummyObject(”Dummy AB”);

30 DummyObject ∗dummyac = new DummyObject(”Dummy AC”);
DummyObject ∗dummyaba = new DummyObject(”Dummy ABA”);
dummya−>addChild(dummyaa);
dummya−>addChild(dummyab);
dummya−>addChild(dummyac);

35 dummyab−>addChild(dummyaba);
sg−>updateScene(root, 0.0f);

std :: cout << ”Scene Updated \n”;

40 system(”pause”);
return 0;

}

The output of this application is:

Creating Scene Objects
Updating Dummy Root scene object
Updating Dummy A scene object
Updating Dummy AA scene object
Updating Dummy AB scene object
Updating Dummy ABA scene object
Updating Dummy AC scene object

74 CHAPTER 2. SCENE GRAPH THEORY

Root

A B

AA AB AC

ABA

Figure 2.2: The depth first traversal that has taken place on this scene graph.

Updating Dummy B scene object
Scene Updated

Press any key to continue . . .

2.2.2 Putting it Together: The Scene Graph with OpenGL

Now, we will take this scene graph structure and apply it to the 3-D world. To do this we
will need to add more concepts to our scene graph. The previous code example provides a
template for adding any type of scene graph structure. We will begin with a Primitive type,
which will allow us to describe primitives such as spheres, cubes etc. The implementation
for this discussion is Example 5.

0 #if !defined PRIMITIVE H
#define PRIMITIVE H

#include ”SceneObject.h”

5 enum PRIMITIVE TYPE
{

SPHERE,
CUBE

};
10

class Primitive : public SceneObject
{
private:

PRIMITIVE TYPE type;
15 float size ;

float divisions ;

public:
Primitive(PRIMITIVE TYPE, float, float);

20 virtual ˜Primitive();

virtual RTTI OBJECT TYPE getType() const { return RTTI PRIMITIVE; }

// Force every child to have a render and update methods
25 virtual void render(float timeElapsed);

virtual void update(float timeElapsed);

2.2. A SIMPLE SCENE GRAPH IMPLEMENTATION 75

protected:
virtual void drawSphere();

30

};

#endif // PRIMITIVE H

The Primitive extends the SceneObject class and so can be added directly to the scene
graph and can even have child nodes below it - maybe this is not ideal? but, this is our
scene graph structure, so we can do what we want.

Now, we must also describe a Transformation. Once again, this has been designed as
a child of SceneObject so that it can be added directly to the scene graph, and can have
further children - this is very important in the case of a transform node, as it would be
meaningless as a leaf node. The Transform class really just encapsulates a single matrix;
we could provide much more advanced functionality here. The render method simply
applies this matrix as described below:

0 #if !defined TRANSFORM H
#define TRANSFORM H

#include ”SceneObject.h”
#include ”Matrix.h”

5

class Transform : public SceneObject
{
private:

Matrix matrix;
10

public:
Transform(Matrix);
virtual ˜Transform();

15 virtual RTTI OBJECT TYPE getType() const { return RTTI TRANSFORM; }

// Force every child to have a render and update methods
virtual void render(float timeElapsed);
virtual void update(float timeElapsed);

20 };

#endif // TRANSFORM H

And a segment of the C++ file:

0 void Transform::render(float timeElapsed)
{

glMultMatrixf(matrix.ptr());
}

We can put this all together to give:
0 /∗∗

∗ EE563 Example Project 5 − Scene Graph Example with Graphics
∗ by: Derek Molloy
∗∗/

5 #include <windows.h> // Header File For Windows
#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include ”vec3.h”
#include ”Matrix.h”

10 #include ”vec4.h”
#include ”Quat.h”
#include ”SceneGraph.h”
#include ”DummyObject.h”
#include ”Primitive.h”

15 #include ”Transform.h”
#include <iostream>
using namespace std;

76 CHAPTER 2. SCENE GRAPH THEORY

20 HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application
GLfloat fov = 60.0f;

25 int downX = 0, downY = 0;
float xOffset = 0.0f, yOffset = 0.0f;
SceneGraph ∗sg;

// Function Declarations
30

LRESULT CALLBACK WndProc (HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam);

void enableOpenGL (HWND hWnd, HDC ∗hDC, HGLRC ∗hRC);
int initGL(GLvoid);

35 int drawGLScene(float theta);
void disableOpenGL (HWND hWnd, HDC hDC, HGLRC hRC);
void defineGLSphere(GLfloat, GLfloat);
void increaseFOV();
void decreaseFOV();

40 void setFOV(GLfloat);

// WinMain − the starting point of our application

int WINAPI WinMain (HINSTANCE hInst, HINSTANCE hPrevInstance,
45 LPSTR lpCmdLine, int iCmdShow)

{
WNDCLASS wc;
HGLRC hRC;
hInstance = hInst;

50 MSG msg;
BOOL bQuit = FALSE;
float theta = 0.0f;

// register window class
55 wc.style = CS OWNDC;

wc.lpfnWndProc = WndProc;
wc.cbClsExtra = 0;
wc.cbWndExtra = 0;
wc.hInstance = hInstance;

60 wc.hIcon = LoadIcon (NULL, IDI APPLICATION);
wc.hCursor = LoadCursor (NULL, IDC ARROW);
wc.hbrBackground = (HBRUSH) GetStockObject (BLACK BRUSH);
wc.lpszMenuName = NULL;
wc.lpszClassName = ”EE553GLExample”;

65 RegisterClass (&wc);

// create main window
hWnd = CreateWindow (”EE553GLExample”, ”EE553 Example 5”,

WS CAPTION | WS POPUPWINDOW | WS VISIBLE,
70 0, 0, 256, 256,

NULL, NULL, hInstance, NULL);

// enable OpenGL for the window
enableOpenGL (hWnd, &hDC, &hRC);

75 initGL();

// program main loop
while (!bQuit)
{

80 // check for messages
if (PeekMessage (&msg, NULL, 0, 0, PM REMOVE))
{

// handle or dispatch messages
if (msg.message == WM QUIT)

85 {
bQuit = TRUE;

}
else
{

90 TranslateMessage (&msg);
DispatchMessage (&msg);

}
}
else

95 {
drawGLScene(theta);
SwapBuffers (hDC);
theta += 1.0f;
Sleep (1);

100 }
}
// shutdown OpenGL
disableOpenGL (hWnd, hDC, hRC);
// destroy the window explicitly

105 DestroyWindow (hWnd);
return msg.wParam;

}

110 // Window Callback Process

LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam)
{

switch (message)
115 {

case WM RBUTTONDOWN: // if the right button is down
setFOV(60);
xOffset=0.0f;
yOffset=0.0f;

120 return 0;
case WM LBUTTONDOWN:

2.2. A SIMPLE SCENE GRAPH IMPLEMENTATION 77

downX = (int)(short)LOWORD(lParam);
downY = (int)(short)HIWORD(lParam);

case WM MOUSEMOVE: // if the mouse is moved
125 if (wParam == MK LBUTTON) // and the left mouse button is down

{
int xPos = (int)(short)LOWORD(lParam);
int yPos = (int)(short)HIWORD(lParam);
int diffx = xPos − downX;

130 int diffy = yPos − downY;
xOffset+= ((float)diffx)/10;
yOffset+= ((float)diffy)/10;

}
return 0;

135 case WM CREATE:
return 0;

case WM CLOSE:
PostQuitMessage (0);
return 0;

140 case WM DESTROY:
return 0;

case WM KEYDOWN:
switch (wParam)
{

145 case VK ESCAPE:
PostQuitMessage(0);
return 0;

case VK LEFT:
xOffset−=0.1f;

150 return 0;
case VK RIGHT:

xOffset+=0.1f;
return 0;

case VK UP:
155 yOffset−=0.1f;

return 0;
case VK DOWN:

yOffset+=0.1f;
return 0;

160 case VK F1: //F1 key pressed
return 0;

}
return 0;

case WM CHAR:
165 switch(wParam)

{
case ’a’ :

decreaseFOV();
return 0;

170 case ’s ’ :
increaseFOV();
return 0;

}
return 0;

175 default:
return DefWindowProc (hWnd, message, wParam, lParam);

}
}

180
//Enable OpenGL

void enableOpenGL (HWND hWnd, HDC ∗hDC, HGLRC ∗hRC)
{

185 PIXELFORMATDESCRIPTOR pfd;
int iFormat;
// get the device context (DC)
∗hDC = GetDC (hWnd);

190 // set the pixel format for the DC
ZeroMemory (&pfd, sizeof (pfd));
pfd.nSize = sizeof (pfd);
pfd.nVersion = 1;
pfd.dwFlags = PFD DRAW TO WINDOW | PFD SUPPORT OPENGL | PFD DOUBLEBUFFER;

195 pfd.iPixelType = PFD TYPE RGBA;
pfd.cColorBits = 24;
pfd.cDepthBits = 16;
pfd.iLayerType = PFD MAIN PLANE;
iFormat = ChoosePixelFormat (∗hDC, &pfd);

200 SetPixelFormat (∗hDC, iFormat, &pfd);

// create and enable the render context (RC)
∗hRC = wglCreateContext(∗hDC);
wglMakeCurrent(∗hDC, ∗hRC);

205 }

// Setup our GL Scene
int initGL(GLvoid)
{

210 glShadeModel(GL SMOOTH); // Enable Smooth Shading
glClearColor(1.0f , 1.0f , 1.0f , 1.0f);// White Background
glClearDepth(1.0f); // Depth Buffer Setup
glEnable(GL DEPTH TEST); // Enables Depth Testing
glDepthFunc(GL LEQUAL); // The Type Of Depth Testing To Do

215 glHint(GL PERSPECTIVE CORRECTION HINT, GL NICEST);
// Really Nice Perspective Calculations

sg = new SceneGraph;
DummyObject ∗root = new DummyObject(”Root”);

220 sg−>bindRoot(root);

DummyObject ∗dummya = new DummyObject(”Dummy A”);
DummyObject ∗dummyb = new DummyObject(”Dummy B”);
root−>addChild(dummya);

78 CHAPTER 2. SCENE GRAPH THEORY

225 root−>addChild(dummyb);

Primitive ∗p = new Primitive(SPHERE, 1.0f, 36.0f);
root−>addChild(p);

230 Matrix m1, m2;
m1.makeTranslate(2.0f, 0.0f, 0.0f);
Transform ∗t1 = new Transform(m1);
root−>addChild(t1);
Primitive ∗p1 = new Primitive(SPHERE, 2.5f, 20.0f);

235 t1−>addChild(p1);

m2.makeTranslate(−2.0f, 0.0f, 0.0f);
Transform ∗t2 = new Transform(m2);
root−>addChild(t2);

240 Primitive ∗p2 = new Primitive(SPHERE, 2.5f, 10.0f);
t2−>addChild(p2);

return TRUE; // Initialization Went OK
}

245
void increaseFOV() {

if (fov<180.0f) fov+=1.0;
}

250 void decreaseFOV(){
if (fov>0.0f) fov−=1.0;

}

void setFOV(GLfloat f){
255 if (f>0.0f && f<180.0f) fov = f;

}

// Called to update the scene − give us the animation
int drawGLScene(float theta) // Draw the scene;

260 { // theta is amount to rotate
glClear (GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT); // Clear Screen
glPolygonMode(GL FRONT AND BACK, GL LINE); // display all mesh lines of the sphere

glMatrixMode(GL PROJECTION);
265 glLoadIdentity();

gluPerspective(fov, 1.0, 0.1, 100.0);

glMatrixMode(GL MODELVIEW);
glLoadIdentity();

270 gluLookAt(0.0, 0.0, 10.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glTranslatef (xOffset, yOffset, 0);

glColor3f(0.0 f , 1.0f , 0.0f); // green
sg−>renderScene(0.0f);

275
return TRUE; // Keep Going

}

// Disable OpenGL
280 void disableOpenGL (HWND hWnd, HDC hDC, HGLRC hRC)

{
wglMakeCurrent (NULL, NULL);
wglDeleteContext (hRC);
ReleaseDC (hWnd, hDC);

285 }

Where, the most important part is:

0 sg = new SceneGraph;
DummyObject ∗root = new DummyObject(”Root”);
sg−>bindRoot(root);

DummyObject ∗dummya = new DummyObject(”Dummy A”);
5 DummyObject ∗dummyb = new DummyObject(”Dummy B”);

root−>addChild(dummya);
root−>addChild(dummyb);

Primitive ∗p = new Primitive(SPHERE, 1.0f, 36.0f);
10 root−>addChild(p);

Matrix m1, m2;
m1.makeTranslate(2.0f, 0.0f, 0.0f);
Transform ∗t1 = new Transform(m1);

15 root−>addChild(t1);
Primitive ∗p1 = new Primitive(SPHERE, 2.5f, 20.0f);
t1−>addChild(p1);

m2.makeTranslate(−2.0f, 0.0f, 0.0f);
20 Transform ∗t2 = new Transform(m2);

root−>addChild(t2);

2.2. A SIMPLE SCENE GRAPH IMPLEMENTATION 79

Figure 2.3: Putting it Together: The Scene Graph with OpenGL

Primitive ∗p2 = new Primitive(SPHERE, 2.5f, 10.0f);
t2−>addChild(p2);

The output of this segment of code is displayed in figure 2.3 where we can see three
spheres; a small one in the centre with a very high resolution (36 divisions); a bigger one
to the right (20 divisions); and, the same size one again at the centre with (10 divisions).
This comes back to problems that we had before, where a transform of (2, 0, 0) applied to
the second sphere places it to the right, but a subsequent transform by (-2, 0, 0) returns
the next object back to the origin.

This current implementation has a few problems:

• All transforms are relative to the previously drawn object on the scene graph, rather
than the object above it on the scene graph - Not ideal!

• All primitives are the same colour

2.2.3 Making it Better: The Scene Graph with OpenGL

Now, we will improve the scene graph by adding transformations relative to the parent,
rather than some previously drawn object - which we may not entirely be aware of. First
we have to address the transform issues - we do this as follows:

• Push and Pop matrices, so that when we move through the scene graph from parent
to child we push the current matrix; when we move from child to parent we pop the
current matrix.

• We also need to alter our recursive algorithm to add a postRender() method so that
we can trigger an event on a move from child to parent.

0 void Transform::render(float timeElapsed)
{

glPushMatrix();
glMultMatrixf(matrix.ptr());

}
5

void Transform::postRender(float timeElapsed)
{

glPopMatrix();
}

80 CHAPTER 2. SCENE GRAPH THEORY

And the recursive algorithm now becomes:

0 void SceneGraph::renderScene(SceneObject∗ sceneObject, float timeElapsed)
{

if (! sceneObject)
{

std :: cerr << ”Attempt update of object not on the scene graph.”;
5 return;

}
else
{

sceneObject−>render(timeElapsed);
10 // and call all the children

std :: vector<SceneObject∗>::iterator it =
sceneObject−>getChildrenObjects()−>begin();

for (; it !=sceneObject−>getChildrenObjects()−>end(); ++it)
{

15 renderScene(∗it, timeElapsed);
}

sceneObject−>postRender(timeElapsed); /∗∗∗∗ HERE ∗∗∗∗/
}

20 }

To create a Material class, we can use:

0 // Material.h
//

#if !defined MATERIAL H
#define MATERIAL H

5

#include ”SceneObject.h”
#include ”Vec4.h”

class Material : public SceneObject
10 {

private:
Vec4 ambient;
Vec4 diffuse ;
Vec4 specular;

15 Vec4 emission;
float shininess ;

public:
Material();

20 virtual ˜Material();

virtual RTTI OBJECT TYPE getType() const { return RTTI MATERIAL; }

// Force every child to have a render and update methods
25 virtual void render(float timeElapsed);

virtual void update(float timeElapsed);

virtual void setAmbient(Vec4 v) { ambient = v; }
virtual void setDiffuse(Vec4 v) { diffuse = v; }

30 virtual void setSpecular(Vec4 v) { specular = v; }
virtual void setEmission(Vec4 v) { emission = v; }
virtual void setAmbient(float f) { shininess = f; }

};

35 #endif // MATERIAL H

2.2. A SIMPLE SCENE GRAPH IMPLEMENTATION 81

And the C++ file:

0 #include ”Material.h”
#include ”gl/gl.h”

Material ::Material()
{

5 ambient = Vec4(0.11f, 0.06f, 0.11f , 1.0f);
diffuse = Vec4(0.43f, 0.47f , 0.54f , 1.0f);
specular = Vec4(0.33f, 0.33f , 0.52f , 1.0f);
emission = Vec4(0.00f, 0.00f , 0.00f , 0.0f);
shininess = 10;

10 }

Material ::˜Material() {}

void Material::render(float timeElapsed)
15 {

glMaterialfv(GL FRONT, GL AMBIENT, ambient.ptr());
glMaterialfv(GL FRONT, GL DIFFUSE, diffuse.ptr());
glMaterialfv(GL FRONT, GL SPECULAR, specular.ptr());
glMaterialfv(GL FRONT, GL EMISSION, emission.ptr());

20 glMaterialfv(GL FRONT, GL SHININESS, &shininess);
}

void Material::update(float timeElapsed)
{

25 std :: cout << ”Updating a Material ” << std::endl;
}
#endif // MATERIAL H

So, now we can create a scene graph as follows:

0 sg = new SceneGraph;
DummyObject ∗root = new DummyObject(”Root”);
sg−>bindRoot(root);

Light ∗l = new Light();
5 root−>addChild(l);

Primitive ∗p = new Primitive(SPHERE, 1.0f, 36.0f);
p−>getMaterial()−>setDiffuse(Vec4(0.18f, 0.81f, 0.31f, 1.0f)); //green
root−>addChild(p);

10

Matrix m1, m2, m3;
m1.makeTranslate(2.0f, 0.0f, 0.0f);
Transform ∗t1 = new Transform(m1);
root−>addChild(t1);

15 Primitive ∗p1 = new Primitive(SPHERE, 2.5f, 20.0f); //blue by default
t1−>addChild(p1);

m2.makeTranslate(−2.0f, 0.0f, 0.0f);
Transform ∗t2 = new Transform(m2);

20 root−>addChild(t2);
Primitive ∗p2 = new Primitive(SPHERE, 2.5f, 10.0f);
p2−>getMaterial()−>setDiffuse(Vec4(0.89f, 0.25f, 0.14f, 1.0f)); //red
t2−>addChild(p2);

This is coded in Example 6, which gives the output as displayed by figure 2.4(a). It
can then be altered easily, such as:

0 sg = new SceneGraph;

82 CHAPTER 2. SCENE GRAPH THEORY

Figure 2.4: Making it Better: The Scene Graph with OpenGL

...

m3.makeTranslate(0.0f, 1.25f, 0.0f);
Transform ∗t3 = new Transform(m3);

5 p2−>addChild(t3);
Primitive ∗p3 = new Primitive(SPHERE, 0.5f, 10.0f);
p3−>getMaterial()−>setDiffuse(Vec4(0.89f, 0.25f, 0.14f, 1.0f)); //red
t3−>addChild(p3);

Which gives the output as displayed by figure 2.4(b).

2.3 Constructive Solid Geometry (CSG)

Constructive Solid Geometry (CSG) is a technique whereby a complex model can be
created by using Boolean operations to combine a set of primitive shapes (spheres, cubes,
cylinders etc.). It is generally used for rigid CAD type models of machinery and equipment,
where it is possible that these complex models will be manufactured from such primitives.
Figure 2.5 should illustrate the main concepts behind CSG - In this example we have the
equation (A−B) ∪ (C ∩D), which is represented as a CSG tree in the same figure, with
the final output displayed in figure 2.6.

CSG does suffer from problems: The tree representation is quite straightforward, but
the computation time required to produce the final model is significant as 3-D Boolean

2.3. CONSTRUCTIVE SOLID GEOMETRY (CSG) 83

A B C D

A-B

C D

U

A B C D

-

U

U

Figure 2.5: CSG Example illustrating the shapes A, B, C, D; the result of A−B and of
C ∩D; and the associated CSG Tree.

Figure 2.6: CSG Example illustrating the result of (A− B) ∪ (C ∩D), in both solid and
wireframe form (with hidden lines visible.)

84 CHAPTER 2. SCENE GRAPH THEORY

A

B

C

D

(a)

Db

(b) root

AAB

C DADa

Db

Ca

Ca

Da

Figure 2.7: An illustration of the bounding volume hierarchy constructed using circles
(spheres for 3-D).

operations are computationally expensive, especially as the shape becomes more complex.
The number of operations available is also quite restrictive: there is the union of two
shapes A ∪ B giving the set of vertices that are in either A and B; intersection A ∩ B
giving the set of all vertices that are in both shapes; difference A − B giving the set of
vertices that are in A, but not in B. CSG is a good methodology for CAD modelling
as there is a strong relationship between primitives and industrial processes; for example,
subtracting a cylinder from an object is equivalent to drilling a hole in that object.

2.4 Scene Graphs and Bounding Volume Hierarchies

Bounding volumes such as bounding spheres and boxes can be used as stand-in primitives
for objects with complex geometries. If we have such an object that is contained within a
bounding box, and we wish to determine if the object is within a specific region of space -
Rather than test if any part of the object is within the region of space, we can test if the
bounding box is within that region of space. If the bounding box is not in that region of
space we can ignore the entire object, but if it is, then we can examine the object in more
detail. The bounding volume of each object is calculated the first time the objects are
added to the scene graph; This means that it is very efficient to use the bounding volume
rather than examine each object independently, especially with operations such as culling
and collision detection. A bounding box is also quite easy to calculate as we simply iterate
through the vertices of the shape to find the minimum and maximum x and y values.

A Bounding Volume Hierarchy (BVH) is a tree of bounding volumes where the root
node includes every object in the scene and at the leaf nodes each bounding volume is just
large enough to contain each scene object. The tree takes on the same hierarchical shape
as the scene graph. Once again, we can quickly determine if an object is in a particular
region of space using its bounding volume, but the hierarchy also allows us to determine
if the segmented objects’ bounding volumes contained in the child nodes are also within
this region of space. The tree like structure allows all these tests to be performed very
quickly. It is common practice for us to use the same object-oriented tree structure for
the scene graph and also for the bounding volume hierarchy. Figure 2.7(b) illustrates the
creation of a bounding volume hierarchy from the scene in figure 2.7(a).

As can be seen in figure 2.7(b), the BVH structure is a tree, where leaf nodes contain
the geometry and each group node can have n children. Each parent node has a bounding
volume that encloses the geometry in its entire subtree; therefore, the root node’s bounding
volume encloses the entire scene. The BVH is excellent for performing queries such as “does
a raytracing ray intersect with objects in the scene”. The first test will take place at the
root node, if this node’s bounding volume is missed by the ray then the ray has missed
the entire subtree; otherwise testing will continue recursively.

2.5. SPACE SUBDIVISION STRUCTURES 85

A B

A A

B

E

D

C C

A

B C

D E

Figure 2.8: A 2-D axis-aligned BSP Example, illustrating the segmentation of 2-D space
A by a line that splits the space into two; the BSP tree is given on the right hand side

If the scene is dynamically changing then we can update the tree at runtime. If a
particular BV node has moved, we can very quickly check if it is still contained within its
parent BV. If it is then the BVH is valid, but if not, the node can be removed and the
parent’s BVH must be recomputed. This can have implications further up the tree also.

2.5 Space Subdivision Structures

We have examined Scene Graph implementations that use trees to describe the high-level
relationships between the various scene objects, and we have discussed CSG which uses
trees to create the scene objects themselves. Now we will examine another use of the tree
structure for describing the 3-D world itself in terms of its geometry, which will allow us
to improve the real-time performance of our applications. The techniques to be discussed
here are used in a wide range of real-time applications, such as culling, collision detection
and ray tracing. Once again the relationships that we are going to represent with a tree
structure are hierarchical, where the parent object in the hierarchy will enclose the child
object below it.

2.5.1 Binary Space Partitioning Trees

CSG Trees were used to describe the relationships between component parts of an object
and previously in our scene graph we used trees to represent the hierarchical relationship
between objects in a scene. Trees can also be used to capture the spatial relationship
between objects in a scene. This is particularly important when performing visibility tests
on the scene; if objects cannot be seen by the camera then from an efficiency perspective
there is no point in rendering them to the scene.

Binary Space Partition Trees (or BSP trees for short) where introduced by Fuchs,
Kedem, and Naylor around 1980 (?). The first ever computer game to use BSP trees was
Doom1, created by John Carmack and John Romero; since then all first person shooting
games have used this technique.

Binary Space Partitioning (BSP) is a technique for recursively subdividing a 3-D space
into two non-overlapping regions using a plane, referred to as a hyperplane2. Any point
in 3-D space lies within only one of these regions. BSP is a hierarchal approach where
the space that is divided can be further subdivided using the same space partitioning
approach until some condition is met, resulting in a space-partitioning tree, which is
particularly useful when building techniques for dealing with hidden surface removal. The
basic properties of BSPs are that objects on one side of a hyperplane cannot intercept an
object on the other side; and given a particular view point objects on the same side of the
hyperplane are closer than objects on the other side.

The algorithm to build a BSP tree is fairly straightforward:
1http://www.idsoftware.com
2A hyperplane in n-dimensional space is an n − 1-dimensional object that can be used to divide the

n-dimensional space into two n-dimensional spaces - e.g. in 2-D a line is used

http://www.idsoftware.com

86 CHAPTER 2. SCENE GRAPH THEORY

0

0

0

1f 1b

1f 1b

0

0

0

1f 1b

1f 1b

2f

2b

2f 2b

0

0

1f 1b

1f 1b

2f

2b

2f 2b

3f
3b

3f 3b

(a)

(c) (d)

(b)

Figure 2.9: This 2-D example illustrates the sample creation of a BSP Tree using lines
to create the tree. Each line represents a partition plane (a) creates the partition plane
and thus the root node, (b) through (d) illustrates the addition of further planes, with f
representing the front side and b representing the back side.

• Select a partition plane - The choice of planes is application dependent, but often
axis aligned. In an ideal situation this will result in a balanced tree, but a poor choice
will result in a large number of splits and an increase in the number of polygons.
There is usually a trade-off between a well-balanced tree and a large number of splits.

• Segment the current set of polygons using the chosen plane - If a polygon lies entirely
to one side or other of the plane then it is not modified and is added to the partition
set for the side that it is on. If the polygon spans the partition plane then it is split
into two pieces, which are added to the set on the correct side of the plane.

• Repeat again using the new sets of polygons - The termination condition is a ap-
plication specific, often based on a maximum number of nodes in a leaf node, or
maximum tree depth.

Figure 2.9 illustrates the core idea behind the creation of a non-axis aligned BSP tree
in the 2-D case. It takes a set of lines (polygons in the 3-D case) that is a part of a scene
and divides them into smaller sets, where each subset is a convex set of lines (i.e. each line
is in-front-of every other line in the same set. In this example we choose an arbitrary plane
in space and divide the lines, by putting the lines in the positive side of the plane in the
left subtree and the lines on the negatives side in the right sub tree. Where the partition
planes intersect we divide the line (again, polygon in 3-D) according to the plane that the
line defines. We can therefore split a line into two parts f(in front) and b(behind). As
can be seen from this straightforward example, it will be difficult to balance the tree. If
there are too many polygons created in the tree then there will be a computational cost
in maintaining and rendering the tree, but if the tree is unbalanced it will be expensive to
traverse.

2.5. SPACE SUBDIVISION STRUCTURES 87

Here is the C++ pseudo code on how you might code a BSP Tree3:

0 struct BSP tree
{

plane partition ;
list polygons;
BSP tree ∗front , ∗back;

5 };

This struct stores the partitioning plane for the node, the list of polygons coincident
with the partitioning plane and the pointers to its children. For this example, there will
always be at least one polygon in the coincident list and the child pointers will be initialised
to NULL.

0 void Build BSP Tree (BSP tree ∗tree, list polygons)
{

polygon ∗root = polygons.Get From List ();
tree−>partition = root−>Get Plane();
tree−>polygons.Add To List(root);

5 list front list , back list ;
polygon ∗poly;

while ((poly = polygons.Get From List ()) != 0)
{

10 int result = tree−>partition.Classify Polygon (poly);
switch (result)
{

case COINCIDENT:
tree−>polygons.Add To List (poly);

15 break;
case IN BACK OF:

back list .Add To List(poly);
break;

case IN FRONT OF:
20 front list .Add To List(poly);

break;
case SPANNING:

polygon ∗ front piece , ∗back piece;
Split Polygon (poly, tree−>partition, front piece , back piece);

25 back list .Add To List (back piece);
front list .Add To List (front piece);
break;

}
}

30 if (! front list .Is Empty List())
{

tree−>front = new BSP tree;
Build BSP Tree (tree−>front, front list);

}
35 if (! back list .Is Empty List())

{
tree−>back = new BSP tree;
Build BSP Tree (tree−>back, back list);

}
40 }

This routine recursively constructs a BSP tree using the above algorithm. It takes the
first polygon from the input list and uses it to partition the remainder of the set. The
routine then calls itself recursively with each of the two partitions. This implementation

3Pseudo code modified from: http://www.opengl.org/resources/code/samples/bspfaq/

http://www.opengl.org/resources/code/samples/bspfaq/

88 CHAPTER 2. SCENE GRAPH THEORY

(A) (B)

viewer

A A

B

C

D
E

Figure 2.10: (a) Illustrates a viewer looking at 2-D objects in a scene; (b) Illustrates the
actual objects that are seen by the viewer in this scene.

Figure 2.11: A simple test scene and the z-buffer representation

assumes that all of the input polygons are convex. Probably the most common application
of BSP trees is hidden surface removal in 3-D. BSP trees provide an elegant, efficient
method for sorting polygons via a depth first search . This fact can be exploited in a back
to front “Painter’s Algorithm” approach to the visible surface problem, painting close
objects first. The BSP Tree is particularly computationally efficient as the calculation can
be carried out in the pre-processing of the map and not at run-time.

2.6 Hidden Surface Removal

Visibility Testing is an important problem in 3-D Computer Graphics as it impacts on the
efficiency of our algorithms: Very simply put, if an object is not visible then we should not
display it. So, figure 2.10(a) assumes we have a set of objects in our scene graph which
are in front of a viewer - should we display all these figures using OpenGL? Well no, if
we look closely at the viewer and examine its field of view, we can see that only object A
is visible to the viewer. We wish to generate the image that the viewer would see and so
judging from 2.10(b) we would only have to render object a.

The simple solution would be to use a z-buffer (depth buffer), a buffer that stores the
z-depth of each pixel currently at each point on the 2-D screen. If another object in the
scene is to be rendered, the algorithm compares the depth value of the object’s rendering
to the current screen z-buffer value at that pixel, and will choose the closer pixel. It update
the z-buffer with the closest pixel (as demonstrated in 2.11).

The z-buffer approach was traditionally a very computationally expensive solution to
the depth test problem. It requires additional memory to store the z-buffer 2-D array and
extra computational cost in performing the depth test at every pixel. A software algorithm
was developed to reduce this cost; the Painter’s Algorithm.

2.6. HIDDEN SURFACE REMOVAL 89

2
3

4

1

1 2

3

Figure 2.12: The simple Painters’s Algorithm shown on the LHS with the numbers rep-
resenting the order in which the different regions are painted; 1 is painted first and 4 is
painted last. The RHS illustrates a situation where the Painter’s Algorithm fails as there
are no planes separating the objects in the scene.

2.6.1 The Painter’s Algorithm and BSP

The Painter’s Algorithm is a fairly simple algorithm for determining the visibility of poly-
gons in 3-D computer graphics. The algorithm refers to a painter that paints the distant
parts of the scene first and then paints this over with parts that are nearer (See figure
2.12). The Painter’s Algorithm sorts all the polygons in the scene by their depth and
then paints them in the same order as the painter, from furthest to closest. This very
simple algorithm solves the visibility problem, but it has incurred the computational cost
of painting distant regions that will be painted over by closer regions. One condition for
a successful painter’s algorithm is that there be a single plane which separates any two
objects. This means that it might be necessary to split polygons in certain configurations.
For example, the RHS of figure 2.12 illustrates a case that cannot be drawn correctly when
using the painter’s algorithm.

One reason that BSP trees are appropriate for the Painter’s Algorithm is that splitting
difficult polygons can be an automated part of tree construction. To draw the contents of
the tree you can perform a back to front tree traversal, which begins at the root node and
classifies the eye point with respect to its partition plane. We draw the subtree at the far
child from the eye, then the polygons in this node, followed by the near subtree. This is
repeated recursively for each subtree.

It is just as easy to traverse the BSP tree in front-to-back order as it is for the back-
to-front order just discussed. We can use this to our advantage in a scan line renderer by
using a write mask which will prevent pixels from being written more than once. This
will produce significant speedups if a complex lighting model is evaluated for each pixel,
because the painter’s algorithm will blindly evaluate the same pixel many times. The trick
to making a scan line approach successful is to have an efficient method for masking pixels.
One way to do this is to maintain a list of pixel spans which have not yet been written to
for each scan line. For each polygon scan converted, only pixels in the available spans are
written, and the spans are updated accordingly. [add reference]

When building a BSP tree specifically for hidden surface removal, the partition planes
are usually chosen from the input polygon set. However, any arbitrary plane can be used
provided there are no intersecting or concave polygons, as in figure 2.12. Here is a simple
C++ pseudo code example of a back to front tree traversal:

0 void Draw BSP Tree(BSP tree ∗tree, point eye)
{

real result = tree−>partition.Classify Point(eye);
if (result > 0)
{

90 CHAPTER 2. SCENE GRAPH THEORY

5 Draw BSP Tree(tree−>back, eye);
tree−>polygons.Draw Polygon List();
Draw BSP Tree(tree−>front, eye);

}
else if (result < 0)

10 {
Draw BSP Tree(tree−>front, eye);
tree−>polygons.Draw Polygon List();
Draw BSP Tree(tree−>back, eye);

}
15 else // result is 0

{
// the eye point is on the partition plane ...
Draw BSP Tree(tree−>front, eye);
Draw BSP Tree(tree−>back, eye);

20 }
}

If the eye point is classified as being on the partition plane, the drawing order is
unclear. This is not a problem if the Draw Polygon List routine is smart enough not to
draw polygons that are not within the viewing frustum. The coincident polygon list does
not need to be drawn in this case, because those polygons will not be visible to the user.
It is possible to substantially improve the quality of this example by including the viewing
direction vector in the computation. You can determine that entire subtrees are behind
the viewer by comparing the view vector to the partition plane normal vector. This test
can also make a better decision about tree drawing when the eye point lies on the partition
plane. It is worth noting that this improvement resembles the method for tracing a ray
through a BSP tree, which is discussed in another section of the notes. Front to back tree
traversal is accomplished in exactly the same manner, except that the recursive calls to
Draw BSP Tree occur in reverse order.

As we have seen, the idea behind having a pre-calculated BSP tree is that it allows
us to get the correct depth order of polygons in the scene for any point in space. Figure
2.13 illustrates the core operations on a BSP. In figure 2.13(a) a scene with 5 objects
has been partitioned using a simple polygon-aligned BSP Tree algorithm. In this scene,
object E has been split by the partition lines into two separate objects, the larger part
on the forward side of L3 and the larger part on the behind side of L3. 2.13(b) shows
the calculated BSP tree, where circular nodes represent the partition lines and square
nodes represent the leaf geometry nodes. In this example E∗ represents a partial object
E and f is the forward and b is the behind side of each partition line. Now, in 2.13(c)
an observer enters the scene and we wish to calculate the nearest object. We can do this
by traversing the tree (rather than calculating the Euclidean distance to every object in
the scene). Starting at the root node, is the observer in front of, or behind L1? In this
case the observer is behind L1, so in 2.13(d) we travel down the b side of the tree to L3,
repeating this for L3 we find that the observer is again behind L3 and finally we find that
the observer is in front of L5. At this point we find that the closest object to the observer
is D. In 2.13(e) we see that we can then use this point to find the visibility order of all the
objects in the tree. Starting at D we traverse to the previous circular node, and then down
the tree, finding E∗ to be the next closest object. The path is traversed as illustrated in
(e) until the visibility order is determined (in this case as, D, E∗, E∗, C, B, A, where A
is the most distant).

OpenGL achieves hidden surface removal through the use of a depth buffer and depth
testing. Depth buffering must be enabled with the command glEnable(GL DEPTH TEST).
Before drawing a scene the depth buffer should be cleared with the command glClear(GL
DEPTH BUFFER BIT). The command glCullFace(GLenum mode) indicates which polygons
should be discarded (culled) before they are converted to screen coordinates. The param-
eter mode is either GL FRONT, GL BACK, or GL FRONT AND BACK to indicate front-facing,

2.6. HIDDEN SURFACE REMOVAL 91

(a)

viewer

A

B

C

D
E

L1

L2

L3

L4

L5

(b)
L1

L2 L3

L4 L5A B

D EC E

f b

f bf

f f

b

b b

(c)

A

B

C

D
E

L1

L2

L3

L4

L5

(d)
L1

L2 L3

L4 L5A B

D EC E

f b

f bf

f f

b

b b

(e)
L1

L2 L3

L4 L5A B

D EC E

1st

2nd
3rd

4th

5th
6th

* *

* *

* *

Figure 2.13: An illustration of the operations on a BSP Tree; (a) illustrates a simple scene
which has been partitioned, (b) illustrates the creation of a BSP tree from (a), (c) shows a
viewer entering the scene, (d) illustrates the algorithm for finding the closest object, and
(d) illustrates a search to find the visibility order of all the objects.

92 CHAPTER 2. SCENE GRAPH THEORY

back-facing, or all polygons. To take effect, the state variable for culling, GL CULL FACE
must be enabled.

In OpenGL every polygon has a front and a back side. Each side can be drawn
in the same mode or in different modes to allow cut-away views of solid objects. The
command glPolygonMode(GLenum face, GLenum mode) controls the drawing mode for
a polygon’s front and back faces. The parameter face can be GL FRONT, GL BACK, or
GL FRONT AND BACK. The mode can be GL POINT, GL LINE, or GL FILL to indicate whether
the polygon should be drawn as points, outlined, or filled. By default, both the front and
back faces are drawn filled:

0 glEnable(GL DEPTH TEST); // enable depth testing; required for z−buffer

glClear(GL DEPTH BUFFER BIT); // clears the depth buffer
RenderScene(); // render the scene

Also, to draw the scene with back-face culling enabled (as it is more efficient), use:

0 glEnable(GL DEPTH TEST); // enable depth testing ; required for z−buffer
glEnable(GL CULL FACE); // enable polygon face culling
glCullFace(GL BACK); // tell opengl to cull the back face

glClear(GL DEPTH BUFFER BIT); // clears the depth buffer
5 RenderScene(); // render the scene

Chapter 3

Real-Time 3D Computer Graphics
Techniques

3.1 Introduction

This chapter will introduce various 3D Computer Graphics Techniques that we can use to
accelerate the systems that we build for real-time visualisation.

3.2 Texture Mapping in OpenGL

In 3D texture mapping a 2D image is attached to the surface of a polygon. This process can
be invaluable in creating realistic scenes within gaming and virtual reality environments.
Texture mapping has evolved over the years to include features such as bump mapping,
where the surface normals can be irregular to give the impression of texture changes on
an object.

OpenGL uses raw RGB image data for texture mapping. The thing you have to do
before OpenGL can use the raw texture data is upload it to the video memory. Once a
texture is uploaded to the video memory it can be used throughout the time in which your
application is running.

Before a texture can be uploaded to the video memory there is some setup that must
take place so OpenGL knows what to do with the image data that is passed to it. First we
need a texture name. This is essentially a number that OpenGL uses to index all the differ-
ent textures. To get a texture name, all we need do is call the function glGenTextures().

0 GLuint texture;
glGenTextures(1, &texture); // only one texture id

where glGenTextures() has the form void glGenTextures(GLsizei n, GLuint *textures
) where n is the number of texture ids to provide and the second parameter specifies the
array in which to store the ids (in my example here I only need one variable as I require
only one texture).

Once the texture name is assigned we can then switch between our different textures
using the glBindTexture() call - you can think of this in the same way that we switch
colours for painting.

0 glBindTexture(GL TEXTURE 2D, texture);

states that we wish to select our 2D texture that has the name texture. There are
1D and 2D textures but we are concerned with 2D textures here. Remember that this
value is just an integer and we could probably have made the same call by something like
glBindTexture (GL TEXTURE 2D, 0).

93

94 CHAPTER 3. REAL-TIME 3D COMPUTER GRAPHICS TECHNIQUES

If we then wish to allow our texture to be mixed with colour for shading we can set the
GL TEXTURE ENV MODE value, where GL MODULATE takes the colour and alpha value from
the texture and multiplies it by the color data from our colour and lighting values:

0 glTexEnvf(GL TEXTURE ENV, GL TEXTURE ENV MODE, GL MODULATE);

If the value parameter is GL TEXTURE ENV MODE then the different texture functions that
are defined are GL MODULATE, GL DECAL, GL BLEND, GL REPLACE, GL ADD or GL COMBINE.
The default value is GL MODULATE. Each of these values describes how the texture and
colour/light values should be combined: Replace replaces the original surface colour with
the texture colour, removing any lighting computed for the surface (unless the texture has
provided it); Decal is like replace as the image is blended with the surface colour value but
the α value is not modified (in Ireland we called them transfers - see through stickers);
and, modulate is where we multiply the texture by the surface colour giving a shaded
textured surface.

The glTexParameteri then sets the various parameters for this OpenGL texture.
These parameters allow us to describe how the texture should appear on the objects that
we are texture mapping. For example we could do something like:

0 glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP S, GL REPEAT);
glTexParameteri (GL TEXTURE 2D, GL TEXTURE WRAP T, GL REPEAT);
glTexParameteri (GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL LINEAR);
glTexParameteri (GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL LINEAR);

glTexParameteri() is where we can decide on effects such as texture filtering and
mipmapping. We also can setup whether the texture wraps over at the edges or is clamped
at the ends.

In this example above the first two lines of the example states that we are going to re-
peat the texture over our mapped object. In each case we are working with GL TEXTURE 2D
and the first example GL TEXTURE WRAP S is the value that we are about to set - in this
case we wish the texture to repeat over the mapped object so we use GL REPEAT but an
alternative would have been GL CLAMP. This is only being performed for the s coordinates,
which describes the ‘x’ coordinate of the texture. GL CLAMP will clamp the s coordinates
to the range [0, 1] and will prevent artifacts. When we use GL REPEAT the integral value
is ignored causing the texture to repeat over and over again. GL TEXTURE WRAP S is by
default set to GL REPEAT. We repeat this again for the t coordinates on the next line.

The next lines set the GL TEXTURE MAG FILTER and GL TEXTURE MIN FILTER values.
When OpenGL maps a texture to a surface it is unlikely that one pixel on a texture
(often called a texel) is mapped to one pixel in the screen space. It is possible that
this texel will be mapped to several screen pixels, or that several texels will be mapped
to one screen pixel. This value allows you to control how OpenGL magnifies or mini-
fies a texel. We can set the texture magnification function to either GL NEAREST or
GL LINEAR; and, we can set the texture minification filter to one of GL NEAREST, GL LINEAR,
GL NEAREST MIPMAP NEAREST, GL NEAREST MIPMAP LINEAR, GL LINEAR MIPMAP NEAREST and
GL LINEAR MIPMAP LINEAR. Each one of this values has a different trade off between per-
formance and viewing quality.

We need to enable and select textures for our scene. We can turn on/off texture
mapping by calling glEnable() or glDisable() and passing the GL TEXTURE 2D value to
each.

0 glEnable(GL TEXTURE 2D);

Finally, we need to specify the texture coordinates that describe the coordinates on
the texture itself and how it should be mapped to the object in our scene. In OpenGL we
use the s and t coordinates for this description and where a texture image is described in
the range [0, 1] but going outside of this range is possible where the texture is repeated or

3.2. TEXTURE MAPPING IN OPENGL 95

Figure 3.1: The Nate Robins’ Tutorial on Texturing in OpenGL (texture.exe). You can
right click the various parameters to change their values.

clamped. For a repeated texture the values [1, 2] will describe the exact same image. So
for example:

0 glBegin(GL QUADS);
glTexCoord2d(0.0f,0.0f); glVertex2d(0.0f ,0.0 f);
glTexCoord2d(1.0f,0.0f); glVertex2d(1.0f ,0.0 f);
glTexCoord2d(1.0f,1.0f); glVertex2d(1.0f ,1.0 f);
glTexCoord2d(0.0f,1.0f); glVertex2d(0.0f ,1.0 f);

5 glEnd();

Will map the entire texture image to a single polygon.
There is a good tutorial on texture mapping in the Nate Robins’ tutors set. Figure

3.1 illustrates this tutorial in action.
In the case of the polygon above we specified the texture coordinates for each vertex.

This is not too difficult as there are only four texture coordinates for the polygon and
they align with those of a standard image. It can become more difficult when the texture
coordinates are on more complex objects. On a sphere with 36 subdivisions in longitude
and latitude for example we could divide the image into these sections and calculate how
these relate to the 2D texture image, for example breaking the image into a 36 x 36 grid.
A more straightforward way to map the image is to use the glTexGen*() methods that
automatically calculate the texture coordinates for the object.

Figure 3.2, illustrates a textured cube and a textured sphere in this example. The cube
has been textured by providing the texture coordinates at each vertex and the sphere has
used automatic calculation of texture coordinates. The code for texturing the sphere is as
follows:

0 void Primitive::drawSphere()
{

GLfloat step = 360.0/divisions;
GLfloat radius = size/2;

96 CHAPTER 3. REAL-TIME 3D COMPUTER GRAPHICS TECHNIQUES

Figure 3.2: Texture Example 7 illustrating a textured cube and a textured sphere.

GLfloat x,y,z, c = 3.14159f/180.0f;
5

float splaneCoefficients [] = {0.25, 0, 0, 0};
float tplaneCoefficients [] = {0, 0.5, 0, 0};

// can change to GL EYE LINEAR and GL SPHERE MAP
10 glTexGeni(GL S, GL TEXTURE GEN MODE, GL OBJECT LINEAR);

glTexGeni(GL T, GL TEXTURE GEN MODE, GL OBJECT LINEAR);
glTexGenfv(GL S, GL OBJECT PLANE, splaneCoefficients);
glTexGenfv(GL T, GL OBJECT PLANE, tplaneCoefficients);
glEnable(GL TEXTURE GEN S);

15 glEnable(GL TEXTURE GEN T);

for (GLfloat phi=−80.0f; phi<80.0; phi+=step)
{

...
20 for (GLfloat theta=−180.0f; theta<=180.0f; theta+=step)

{
...
glVertex3f(x,y,z);
...

25 glVertex3f(x,y,z);
}
glEnd();

}

30 // Close one end

GLfloat closeRing rad = c ∗ 80.0;
glBegin(GL TRIANGLE FAN);

...
35 glEnd();

// Close the other

glBegin(GL TRIANGLE FAN);
40 ...

glEnd();

glDisable(GL TEXTURE GEN S);
glDisable(GL TEXTURE GEN T);

45 }

3.2. TEXTURE MAPPING IN OPENGL 97

Figure 3.3: Examples of the modifications of the s plane and t plane coefficients: In (a)
we have s = [0.25, 0, 0, 0] and t = [0, 0.25, 0, 0], (b) we have have s = [0.125, 0, 0, 0] and
t = [0, 0.125, 0, 0] and (c) we have s = [0.125, 0.125, 0, 0] and t = [0, 0.125, 0.125, 0].

Figure 3.4: Examples of the modifications to the texture generation mode. Figure 3.3(b)
illustrates the situation when the GL TEXTURE GEN MODE is GL OBJECT LINEAR: In (a) we
change this to GL EYE LINEAR and in (b) to GL SPHERE MAP.

98 CHAPTER 3. REAL-TIME 3D COMPUTER GRAPHICS TECHNIQUES

Figure 3.5: Mipmapping examples: (a) illustrates several mipmaps of the same texture,
starting with a 16x16 size, reducing to 8x8, 4x4 and a 2x2 version. (b) is not using
mipmaps and (c) is using mipmaps.

3.2.1 Mipmapping

When a scene is rendered in OpenGL textured objects are drawn at varying distances
from the viewpoint, some close and some distant. As a textured object moves away from
the viewer the texture must be scaled down so it can be applied to the smaller object. The
problem that arises from scaling the texture down is that as objects move further away
from the viewpoint the texture map may flicker due to this filtering. The solution to this
problem is mipmapping. Mipmapping is the process by which a set of scaled texture maps
of decreasing resolution are generated from a single high resolution image and used to
improve accuracy during texture mapping. Each individual mipmap is a distinct texture
that looks like the original but is a down scaled version of the previous mipmap level.
Mipmapping allows OpenGL to apply the appropriate level of detail for a texture when
rendering rather than involving shrinking the original image.

To generate and use these mipmaps we first generate each mipmap by taking half the
size of the previous mipmap and then scaling it. If we have a base image that is 64x64
in size, the lower levels of detail will be 32x32, 16x16, 8x8, 4x4, 2x2 and 1x1. There
are two ways to calculate the mipmaps and use them in OpenGL: by hand, or through
the gluBuild2DMipmaps() function. If mipmaps are generated using your own algorithm,
the glTexImage2D() function would be used with an increasing level parameter for each
successive level of detail, with level 0 being the base texture level. More often than not,
the gluBuild2DMipmaps() utility function will be used to generate a set of mipmaps for a
given texture. gluBuild2DMipmaps() will take care of scaling and uploading the mipmaps
to memory. This utility function is the same as glTexImage2D(), except for the fact that
it builds mipmaps.

Once the different levels of detail have been generated they can be used to improve the
quality of a textured object as OpenGL will automatically select the best level of detail
to use for the texture without the involvement of the programmer. The mipmap that is
selected can be defined with the glTexParameter() function. The trade off with mipmaps
is that they will require additional texture memory and some extra computation must be
made to generate them.

3.3 Level of Detail (LOD)

The Level of Detail concept is that we can use more simple version of an object to represent
that object when it is distant from the camera/viewer. Why would we do this? Well, one
reason would be to preserve our frame rate... more triangles generally equates to a lower
frame rate. For example, if we were representing a person in a scene who was made up
of 50,000 triangles, it would be possible to represent that person with a lot less triangles

3.3. LEVEL OF DETAIL (LOD) 99

Figure 3.6: LOD Example of a sphere with 40, 20, and 10 subdivisions

if they were only occupying 20-30 pixels of screen space - perhaps we could represent the
distant person by 1,000 triangles or less. A dodecahedron that we used before looks like a
sphere from a large enough distance and so can be used to replace it so long as it is viewed
from this or a greater distance. However, if it must ever be viewed more closely, it will
look like a dodecahedron. If we decide to use the dodecahedron to stand in for a sphere
then as the dodecahedron travels closer to the camera we must swap the dodecahedron
with a higher detailed sphere.

It is also possible to use other techniques such as fog to limit the depth of field and
to allow us to ignore objects when we know that they will not be visible due to the foggy
conditions. It is also more representative of the real-world, where a slight fog/haze limits
our viewing depth. In general LOD algorithms consist of three separate parts, which are
generation, selection and switching.

Generation: One mechanism to generate different LOD models of the same object
would be to do it manually by hand. However, the quality of the different models could
lead to noise when the different models are switched. Automated polygonal simplification
tools can be used for levels of detail generation. They removes primitives from an original
mesh in order to produce simpler models which retain the key visual characteristics of the
original object. The result is typically a series of simplifications (as shown in 3.6), which
can be used in various conditions, such as in order to maintain a constant frame rate. A
good balance can be determined between the richness of the models and the time it takes
to display them.

An alternative to LOD generation in certain cases is to use procedural modelling,
which allows real-time detail to be added to a model as it is approached. One example of
this is the use of fractals to model terrain, trees, plants within a scene. Such models are
generated on-the-fly according to our procedural algorithm.

Selection is when we select which LOD is appropriate based on some criteria, such as
distance from the object or the area that the object will appear on the screen. A metric,
called the benefit function, is evaluated for the current viewpoint and the currently location
of the object and the value of this function allows us to choose an appropriate LOD. There
are different benefit functions, such as range-based that uses a user-defined distance value
to the object to decide if the object is visible and to what level of detail. An alternative
approach is to use a project area-based LOD selection that often uses a bounding box to
determine the screen space coverage.

Switching is when we change from one LOD to another and is prone to sudden changes
(called popping). The most straightforward switching mechanism is Discrete Geometry
LOD where the different representations of the same object contain different numbers of
primitives. The different LODs can be stored as indexed triangle strips and when required
the higher/lower level LOD is simply swapped into the next rendered frame. An alternative
approach is to use a Blend LOD which performs a blend operation over a number of frames

100 CHAPTER 3. REAL-TIME 3D COMPUTER GRAPHICS TECHNIQUES

to smooth the transition. It is however much more computationally expensive.
One LOD implementation could be as follows:

0 class Range
{

float range;
SceneObject∗ child;

public:
5 Range(SceneObject∗ s, float r) { child = s; range = r; }

float getRange() { return range; }
SceneObject∗ getChild() { return child; }

};

10 class LOD : public SceneObject
{

private:
std :: vector<Range> ∗rangeList;
SceneObject ∗selectedChild;

15

public:
LOD();
virtual ˜LOD();
virtual RTTI OBJECT TYPE getType() const { return RTTI LOD; }

20 void addChild(SceneObject∗ child, float range);

// Force every child to have a render and update methods
virtual void render(float timeElapsed);
virtual void postRender(float timeElapsed);

25 virtual void update(float timeElapsed);
virtual void switchChild(float distance);

};

Where we have a Range class that contains a single scene object with a single range
value, i.e. the model that should be used at this range. The LOD class then contains a
vector of Range objects, again each object with its associated range value. The LOD class
is a child of the SceneObject class so that it can be added as usual to the scene graph.
There is a slight problem though - if we just add the different child objects as per usual
then how will the recursive tree parsing algorithm know which child to render and which to
ignore. It won’t, so for this (my) implementation we will have the LOD children separated
from the recursive tree parsing algorithm. This will allow the LOD object to still have its
own non-LOD children. Importantly, this is only one possible implementation and it may
not be suitable for all scene graph designs.

The implementation of the addChild() and switchChild(float) methods are as follows:

0 void LOD::addChild(SceneObject∗ child, float range)
{

Range r(child, range);
rangeList−>push back(r);
selectedChild = child;

5 }

void LOD::switchChild(float distance)
{

float curDist = 999999.0f;
10 for(int i=0; i<rangeList−>size(); i++)

{
// find object with smallest r that is greater than distance
Range range = rangeList−>at(i);
float r = range.getRange();

15 SceneObject ∗o = range.getChild();

3.4. BILLBOARDING 101

if ((r <= curDist) && (r >= distance))
{

curDist = r;
selectedChild = o;

20 }
}

}

The addChild() method over-rides the parent addChild() method, but has different
arguments. This is due to the different organisational structure of the scene graph, allowing
the child object being added to the RangeList vector. The default selected child is the
last child that was added to the rangeList. The switchChild(float) method switches to the
child that is the most appropriate for the current distance between the viewer (camera)
and the LOD object. This method implementation iterates through the rangeList vector
and finds the object with the smallest range that is closer than the distance between the
viewer and the LOD object.

3.4 Billboarding

Billboarding is a technique by which we can render an image onto a polygon (the billboard)
that is always facing the viewer. As the view changes the polygon orientation changes, but
the position remains the same (unless it changes for some other reason). Billboarding can
be used to represent effects such as smoke, fire, explosions, clouds etc. The data structure
of a billboard is a polygon (usually a quadrilateral), a surface normal and an up direction.
These two vectors (surface normal and up direction) are sufficient to describe the rotation
required to place the polygon at its required orientation. The position of the billboard is
then described by a single point - possibly the centre of the polygon.

It would be usual for the surface normal ~n and the up vector ~u. One of these vectors
must be maintained in the given direction. To create an orthonormal basis for the rotation
matrix we have to establish a set of three mutually perpendicular vectors to orient the
billboard. We have the normal direction ~n and the up vector ~u and can use these to
calculate a ’right’ vector by getting the cross-product of ~r = ~n × ~u. But, because the ~n
and the up vector ~u are not necessarily orthogonal we can then use the new ~r vector with
the ~n vector to calculate the third orthogonal basis vector, using: ~u′ = ~r × ~n.

The new up vector can then be used to form a rotation matrix with the form: M =
(~r, ~u′, ~n). A translation matrix can then be used to place this polygon in the required
location. We still need to determine the method of calculating the up vector and surface
normal for the billboard. There are several different types of billboard techniques:

• Screen-aligned billboard - The polygon that is used for the billboard is always parallel
to the screen, the billboard’s normal vector is the negative of the view plane normal,
and it has a constant up vector which is the same as the camera’s up vector.

• W orld-oriented billboard - Due to the nature of perspective projection objects that
are away from the view direction axis appear warped. This appears quite regular;
however, it does not work well for screen-aligned billboarding as it does not distort
correctly. World-oriented (viewpoint) billboarding makes the desired normal equal
the vector from the centre of the billboard to the viewer’s position and will distort
the billboard the same way as real geometry does.

• Axial billboard - Commonly used to represent trees axial billboarding has a fixed
world up vector in line with the trunk of the tree, but the texture normals do not
face directly at the viewer, rather rotate around the trunk to align itself so as to face
the viewer as much as possible.

102 CHAPTER 3. REAL-TIME 3D COMPUTER GRAPHICS TECHNIQUES

Figure 3.7: Billboarding example: (a) illustrates screen aligned and viewpoint oriented
billboarding and (b) illustrates the use of billboards

Figure 3.8: Bump Mapping Example (a) Original Model (b) Simplified Mesh (c) Result
when using Simplified Mesh and Bump Mapping where the shape detail itself is enhanced.
Each texel of the bumpmap contains some information about the physical shape of the
object at the corresponding point.

• Impostors - A billboard that is rendered to stand in for a rendered complex object,
which is then mapped onto the billboard. They can be used to display rendered
buildings in the distance, or to fill in for a few frames when the viewpoint has not
changed much.

3.5 Mappings

3.5.1 Bump Mapping

Bump Mapping was introduced by Jim Blinn in 1978 and was originally applied to
grayscale images. With ’bump mapping’ a perturbation to the surface normal of the
object being rendered is looked up in a height map and applied before the illumination
calculation is performed, i.e. bump mapping means that you take the surface normal from
a surface texture. The result is a richer, more detailed surface representation that more
closely resembles the details present in the natural world. Bump mapping is also referred
to as per pixel lighting, a technique that allows the programmer to specify a surface nor-
mal for each pixel rather than just the geometric primitive (which will usually have many
pixels associated with it). Bump mapping provides us with a way of creating the illusion of
complex geometry without having to create and process complex geometry. Interestingly,
if we examine the specifications for the computer graphic card GPUs you will see that the

3.5. MAPPINGS 103

Figure 3.9: Emboss Bump Mapping

number of texels (texture elements) per second possible is roughly an order of magnitude
larger than the number of vertices per second possible. Figure 3.8 demonstrates the use of
bump mapping on a simplified mesh to illustrate that a similar level of detail can still be
represented on a greatly simplified geometric object. The visual illusion of the presence
in the surface of small bumps, holes, irregularities, carvings, engraving, scales, and so on;
if managed efficiently, this can be achieved at a very small fraction of the rendering time
that would be necessary for an object with similar characteristics modelled as geometry.
Bump mapping does have drawbacks - in particular, bump mapping will lead to poor
rendering of the silhouette as the object will still have a smooth geometry (rather than
the perceived bumpy surface). There are two main techniques for Bump mapping:

• Emboss bump mapping

• Normal Mapping

Emboss bump mapping uses texture maps to generate bump mapping effects without
requiring a custom renderer. This multi-pass algorithm is an extension and refinement
of texture embossing. The algorithm itself consists of: Render the image as a texture;
Shift the texture coordinates at the vertices; and then Re-render the image as a texture,
subtracting from the first image. In effect it duplicates the first texture, shifts it over the
desired amount of bump, darken the texture underneath, cut out the appropriate shape
from the texture on top, and blend the two textures into one. This is called a two-pass
emboss bump mapping because it requires two textures. It is fairly simple to implement,
but is applied to the diffuse lighting only and so displays poorly from certain angles. It is
a good choice for planar surfaces (like the bricks in figure 3.9) and for 3D text displays.

Both bump maps and normal maps work by modifying the normal angle. Where Bump
maps are textures that store an intensity, the relative height of pixels from the viewpoint of
the camera (See figure 3.9) - Normal maps are images that store a direction, the direction
of normals directly in the RGB values of an image (See figure 3.10)

Normal maps are also generated from heightmaps. It is the most common bump
mapping used today. Per pixel normals are represented in tangent space using a second
RGB texture (like on the RHS of figure 3.10).

However, we are combining (one representing normals, the other a conventional tex-
ture) in a more sophisticated way. The tangent space refers to a co-ordinant system that
is relative to the current plane. That is, in tangent space, the normal vector (0,0,1) is
coincident with the normal of the geometry on which we are placing the the bump map.

You can think of bump maps as perturbing the direction of the geometric normal at
each pixel. The per pixel normals are encoded in an RGB texture map as described by
table 3.1.

To do bump mapping use an OpenGL 1.4 feature called texture combiners which pro-
vide a texture environment for more sophisticated mixing of textures. Texture combiners
allow multiple texture fragments to be combined. By default, you can simply choose one
of the texture environment modes (GL DECAL, GL REPLACE, GL MODULATE, or

104 CHAPTER 3. REAL-TIME 3D COMPUTER GRAPHICS TECHNIQUES

Figure 3.10: Normal Bump Mapping

RGB Encoding Tangent Space Comment
127 127 127 0 0 0 The origin
127 127 255 0 0 1 Straight up in the direction of geometric normal
127 127 0 0 0 -1 Straight down, opposite of the geometric normal
0 127 127 -1 0 0 -X direction in the plane
255 127 127 1 0 0 +X direction in the plane
127 0 127 0 -1 0 -Y direction in the plane
127 255 127 0 1 0 +Y direction in the plane

Table 3.1: Encoding Texture Maps

GL ADD) for each texture unit, and the results of each texture application are then
added to the next texture unit. Texture combiners add a new texture environment,
GL COMBINE, that allows you to explicitly set the way texture fragments from each
texture unit are combined. To use texture combiners, you call the glTexEnv function in
the following manner:

0 glTexEnvi(GL TEXTURE ENV, GL TEXTURE ENV MODE, GL COMBINE);

Texture combiners are controlled entirely through the glTexEnv function. You need to
select which texture combiner function you want to use, which can be either GL COMBINE RGB
or GL COMBINE ALPHA. The third argument is the texture environment function that
you want to employ (for either RGB or alpha values). For example, to select the GL REPLACE
combiner for RGB values, you would call the following function:

0 glTexEnvi(GL TEXTURE ENV, GL COMBINE RGB, GL REPLACE);

This combiner does little more than duplicate the normal GL REPLACE texture en-
vironment. The following steps are required to perform bump mapping:

• Set up texture environment for the bump map (texture combiners).

• Set up texture environment for a second texture (if desired).

• Disable lighting.

• Calculate the light direction at each vertex and transform into RGB tangent space
at each vertex of the geometry.

• Colour the vertex with this colour.

Set up texture environment for bump map (texture combiners):

0 glActiveTextureARB(GL TEXTURE0 ARB);
glBindTexture(GL TEXTURE 2D,mybumptex);
glEnable(GL TEXTURE 2D);
glTexEnvf(GL TEXTURE ENV, GL TEXTURE ENV MODE,GL COMBINE EXT);
glTexEnvf(GL TEXTURE ENV, GL COMBINE RGB EXT, GL DOT3 RGB EXT);

3.6. SHADOWS 105

Calculate the Light Direction: After the geometry to be bump mapped has been
transformed into place do:

0 glGetFloatv(GL MODELVIEW MATRIX, mv mat)
glGetLightfv(GL LIGHT0, GL POSITION, lp vec)
//gives us the position of the light in eye coordinates)

3.5.2 Displacement Mapping

Displacement mapping is a computer graphics technique in contrast to bump mapping
that uses a texture map to cause an effect where the actual geometric position of points
over the textured surface are displaced along the local surface normal, according to the
value the texture function evaluates to at each point on the surface. It gives surfaces a
greater sense of depth and detail, permitting self-occlusion, self-shadowing and silhouettes.
It is computationally expensive due to the large amount of additional geometry.

3.6 Shadows

Shading is a process used in drawing for depicting levels of darkness on paper by applying
media more densely or with a darker shade for darker areas, and less densely or with a
lighter shade for lighter areas. It is the process of altering a colour based on its angle to
lights and its distance from lights to create a photorealistic effect. In contrast, shadowing
is the process of creating a shadow by testing whether a pixel is visible from the light
source, by comparing it to a z-buffer or depth image of the light source’s view, stored in
the form of a texture.

Umbra is the darkest part of a shadow where the source of light is completely concealed
by the occluding object. Penumbra is the region where only a portion of the occluding
body is obscuring the light source (the outer part of the shadow).

3.6.1 Algorithms for Computing Shadows

z-buffer algorithm

This method follows directly from the idea that shadow points are hidden from light. In
other words, shadows are hidden surfaces from the point of view of a light. If we pretend
that the light point is the centre of projection (i.e. an eye point), we can render the scene
from the light’s point of view, using a Z-buffer to compute surfaces visible to the light.
The Z-buffer resulting from this will record all of the points that are closest to the light.
Any point that has a further value at a given pixel is invisible to the light and hence is in
shadow. The algorithm involves 1:

Pre-computing phase: (for each light source)

• Make light point the centre of projection.

• Calculate the transformation matrices.

• Transform object using light point matrices.

• Render object using z-buffer - lighting is skipped

• Save computed zbuffer depth info

Object rendering phase:

• Make eye point be centre of projection.
1This discussion on shadows is modified from: http://web.cs.wpi.edu/~matt/courses/cs563/talks/

shadow/shadow.html

http://web.cs.wpi.edu/~matt/courses/cs563/talks/shadow/shadow.html
http://web.cs.wpi.edu/~matt/courses/cs563/talks/shadow/shadow.html

106 CHAPTER 3. REAL-TIME 3D COMPUTER GRAPHICS TECHNIQUES

L

S

P

(A) (B)

Figure 3.11: Shadows

• Recalculate transformation matrices.

• Transform object using eye point matrices.

• Render object using zbuffer.

• For every pixel visible from eye:

– Transform world point corresponding to pixel to shadow coordinates.

– For every light source:

∗ Sample saved zbuffer for that light.
∗ if shadow coordinates ≤ zbuffer value - pixel is in shadow

Transforming Polygons to Ground Plane

The equations for transforming a polygon onto the z = 0 plane, opposite the direction that
the light is shining from. Jim Blinn describes two primary cases for calculating shadows
where the light is at infinity or there is a local light source. Figure 3.11 (a) illustrates the
general form of transformation of polygons to the ground plane and (b) shows an example
output.

This method uses the geometric relationship of light sources and polygons, i.e. similar
triangles, to calculate each polygon’s projection onto the z = 0 plane. The shadow polygon
generated in this way should be generated for every light source. So for N lights there
will be N projections of each polygon.

This computes the projected shadow points of the polygon, which we can fill, producing
a shadow polygon. Ray casting was introduced as a method for visibility calculation and
shadow determination. A ray is cast from the eye to each pixel, ray surface intersections
are performed and the surface with the minimum hit distance is declared the visible
surface. This technique also models reflection and refraction and generates shadows. The
principle behind ray tracing for hard shadow determination is very simple a shadow ray
is shot from the intersection point to the light source. If the ray intersects any object
between its origin and the light source then it is in shadow, otherwise it is not. Ray
tracing requires no additional storage and pre-processing for shadow determination; it
is evaluated as needed. However, shadow determination complexity is very expensive
and uses no coherence information with a cost of O(En) per ray shot, since ray surface
intersections are required for all surfaces. The main advantage of ray tracing is that
shadow determination is handled in the almost identical manner for cast, reflected and
refracted rays. The ray tracing process is very floating point intensive. Thus, the visibility
and shadow tests might give incorrect results due to numerical errors. This is usually seen
as little holes in the images.

Pros and Cons of the two Algorithms:
The Ground Transformation Algorithm

• Requires no extra memory, and easily handles any number of light sources.

3.6. SHADOWS 107

• However, it only shadows onto ground plane, so it cannot handle objects which
shadow other complex objects.

• Every polygon is rendered N times, where N is number of light sources.

The Z-Buffer Algorithm

• Can shadow any scene which can be rendered using Z-buffer.

• However, it requires a separate memory buffer for each light source.

• Again, every polygon is rendered N times, where N is number of light sources, but
N − 1 views do not need lighting calculations.

The Z-buffer algorithm is more versatile, with its ability to add shadows to scenes of
arbitrary complexity. Also, the precomputed shadow buffers can be used to render views
from any eye point as long as the relative positions of the lights and objects are constant
between these views. However, if memory resources are limited, the ground transformation
algorithm produces pleasing results if only ground shadowing is required.

108 CHAPTER 3. REAL-TIME 3D COMPUTER GRAPHICS TECHNIQUES

Chapter 4

Appendices

4.1 Installing Dev C++

4.2 Exercise Solutions

4.2.1 Solution: A Rotating Colour Solid

The exercise requested that you write the code to generate a rotating colour solid which
demonstrates the range of RGB colours that has a variable diameter. Please use the
structure as illustrated in figure 4.1, where (a) illustrates the colour cube, and (b),(c)
show screen grabs of my solution. Figure 4.1(a) illustrates the solution used, where the
red dashed lines go from 0 to 7 and back to 0 and 1 to draw a quad strip and the two
faces are drawn by connecting nodes 0,2,4,6 and 1,3,5,7 as individual quads.

The long verbatim solution is to use something like:
0 void drawGLColorCube1(GLfloat dia)

{
// The long verbatim Solution

GLfloat colours [8][3] = {
5 {1.0, 0.0, 1.0}, {1.0, 0.0, 0.0}, //magenta ,red

{1.0, 1.0, 1.0}, {1.0, 1.0, 0.0}, //white, yellow
{0.0, 1.0, 1.0}, {0.0, 1.0, 0.0}, //cyan ,green
{0.0, 0.0, 1.0}, {0.0, 0.0, 0.0} //blue, black
};

10 GLfloat vertices [8][3] = {
{−dia, dia, dia}, {−dia, −dia, dia},
{ dia, dia, dia}, { dia, −dia, dia},
{ dia, dia, −dia}, { dia, −dia, −dia},
{−dia, dia, −dia}, {−dia, −dia, −dia}

15 };

//edges first
glBegin(GL QUAD STRIP);

glColor3fv(colours [0]);

(a) (b) (c)

Green

Blue

Red

Yellow

White

Red

Magenta

Cyan

Blue

Green

Black

1

2

0

3

4

5

6

7

Figure 4.1: The Colour Cube Exercise (a) Colour Cube ;(b),(c) Screen Grabs of my
solution.

109

110 CHAPTER 4. APPENDICES

20 glVertex3fv(vertices [0]);

glColor3fv(colours [1]);
glVertex3fv(vertices [1]);

25 glColor3fv(colours [2]);
glVertex3fv(vertices [2]);

glColor3fv(colours [3]);
glVertex3fv(vertices [3]);

30
glColor3fv(colours [4]);
glVertex3fv(vertices [4]);

glColor3fv(colours [5]);
35 glVertex3fv(vertices [5]);

glColor3fv(colours [6]);
glVertex3fv(vertices [6]);

40 glColor3fv(colours [7]);
glVertex3fv(vertices [7]);

glColor3fv(colours [0]);
glVertex3fv(vertices [0]);

45
glColor3fv(colours [1]);
glVertex3fv(vertices [1]);

glEnd();

50 // then top
glBegin(GL QUADS);

glColor3fv(colours [0]);
glVertex3fv(vertices [0]);

55 glColor3fv(colours [2]);
glVertex3fv(vertices [2]);

glColor3fv(colours [4]);
glVertex3fv(vertices [4]);

60
glColor3fv(colours [6]);
glVertex3fv(vertices [6]);

glEnd();

65 //then bottom
glBegin(GL QUADS);

glColor3fv(colours [1]);
glVertex3fv(vertices [1]);

70 glColor3fv(colours [3]);
glVertex3fv(vertices [3]);

glColor3fv(colours [5]);
glVertex3fv(vertices [5]);

75
glColor3fv(colours [7]);
glVertex3fv(vertices [7]);

glEnd();
}

which can be called by drawGLColorCube(0.5f);, but we could also introduce arrays
of arrays as look up tables strip, which draws the four sides of the cube as a quad strip
and topandbottom which draws two separate quads.

0 void drawGLColorCube2(GLfloat dia)
{

// The long verbatim Solution
GLfloat colours [8][3] = {

{1.0, 0.0, 1.0}, {1.0, 0.0, 0.0}, //magenta ,red
5 {1.0, 1.0, 1.0}, {1.0, 1.0, 0.0}, //white, yellow

{0.0, 1.0, 1.0}, {0.0, 1.0, 0.0}, //cyan ,green
{0.0, 0.0, 1.0}, {0.0, 0.0, 0.0} //blue, black
};

GLfloat vertices [8][3] = {
10 {−dia, dia, dia}, {−dia, −dia, dia},

{ dia, dia, dia}, { dia, −dia, dia},
{ dia, dia, −dia}, { dia, −dia, −dia},
{−dia, dia, −dia}, {−dia, −dia, −dia}
};

15 int strip [10] = {0, 1, 2, 3, 4, 5, 6, 7, 0, 1};
int topandbottom[8] = {0, 2, 4, 6, 1, 3, 5, 7 };

//edges first
glBegin(GL QUAD STRIP);

20 for(int i=0; i<10; i++)
{

glColor3fv(colours [strip [i]]);
glVertex3fv(vertices [strip [i]]);

}
25 glEnd();

// then top and bottom
glBegin(GL QUADS);

for(int i=0; i<8; i++)
{

30 glColor3fv(colours [topandbottom[i]]);
glVertex3fv(vertices [topandbottom[i]]);

}
glEnd();

}

4.2. EXERCISE SOLUTIONS 111

There is a more advanced solution to this problem that uses Vertex Arrays, which
allow us to encapsulate the information in our cube structure and draw it using only a
small number of function calls. When using this approach it first has to be enabled using
the glEnableClientState() function to enable the arrays that we wish to use. These
arrays reside on the client side (rather than in the OpenGL state machine). We then
must identify where the arrays are using the glVertexPointer() and glColorPointer()
functions. The parameters in these functions specify (in order) the number of dimensions,
the type of the data, that the elements are contiguous in memory and finally the pointer
to the array of data. Finally we need to draw the elements themselves: Here we use
GL POLYGON to draw the six faces of the cube, where the vertex indices are given in the
cubeIndex array. This array has 24 elements, broken into 6 groups of 4 vertices. The
glDrawElements() function can be called to draw each face, where the parameters specify,
the way to draw GL POLYGON, the number of elements that we wish to draw (4 in the case
of GL POLYGON), the type of data contained in the index array and finally a pointer that
points to the next index to use (in this case we wish to use 4 vertices then skip to the next
4 etc.).

0 void drawGLColorCube3(GLfloat dia)
{

// enable the arrays on the client side
glEnableClientState(GL COLOR ARRAY);
glEnableClientState(GL VERTEX ARRAY);

5
GLfloat colours [8][3] = {

{1.0, 0.0, 1.0}, {1.0, 0.0, 0.0}, //magenta ,red
{1.0, 1.0, 1.0}, {1.0, 1.0, 0.0}, //white, yellow
{0.0, 1.0, 1.0}, {0.0, 1.0, 0.0}, //cyan ,green

10 {0.0, 0.0, 1.0}, {0.0, 0.0, 0.0} //blue, black
};

GLfloat vertices [8][3] = {
{−dia, dia, dia}, {−dia, −dia, dia},
{ dia, dia, dia}, { dia, −dia, dia},

15 { dia, dia, −dia}, { dia, −dia, −dia},
{−dia, dia, −dia}, {−dia, −dia, −dia}
};

// identify where the arrays are
20 glVertexPointer(3, GL FLOAT, 0, vertices);

glColorPointer(3, GL FLOAT, 0, colours);

GLubyte cubeIndex[24] = { 0, 1, 3, 2,
2, 3, 5, 4,

25 4, 5, 7, 6,
6, 7, 1, 0,
0, 2, 4, 6, //top
1, 3, 5, 7}; //bottom

for(int i=0; i<6; i++)
30 {

// Draw the cube elements
glDrawElements(GL POLYGON, 4, GL UNSIGNED BYTE, &cubeIndex[4∗i]);

}
}

We can even make this section of code shorter; the creation of the arrays and the
intialisation of the state do not need to be called each time the cube is rotated and drawn,
hence it would be possible to place these lines of code in the intialisation phase of the
program and only call the glDrawElements() function 6 times in the drawGLColorCube3()
function. And to be perfectly correct as each face of the cube is a quadrilateral it is possible
to use GL QUADS rather than GL POLYGON to draw the cube using this line of code:

0 glDrawElements(GL QUADS, 24, GL UNSIGNED BYTE, cubeIndex);

because GL QUADS starts a new quadrilateral after each four vertices.

	OpenGL - The Graphics Pipeline
	Introduction
	What is the OpenGL API?
	Introduction to OpenGL Programming
	OpenGL Primitives and Attributes
	OpenGL Full Source Code Example
	OpenGL Colour
	Exercise: A Rotating Colour Solid
	OpenGL Viewing
	OpenGL Display Lists
	OpenGL Stack
	Input Events
	Double Buffering

	Some Math
	3-D Math Notation
	Vectors - Math summary
	A Vector Class
	Matrices
	A Matrix Class

	Transformations
	Translation
	Rotation
	Scaling
	Shearing
	Inverse Operations
	Combination and Other Operations
	The OpenGL Current Transformation Matrix (CTM)
	Coordinate Spaces in the Graphics Pipeline

	OpenGL Shading
	The Phong Model
	Lambertian Surfaces
	The Normal Vector
	Shading
	Lighting
	OpenGL code for Shading

	Scene Graph Theory
	Introduction
	A Simple Scene Graph Implementation
	Traversing the Scene Graph
	Putting it Together: The Scene Graph with OpenGL
	Making it Better: The Scene Graph with OpenGL

	Constructive Solid Geometry (CSG)
	Scene Graphs and Bounding Volume Hierarchies
	Space Subdivision Structures
	Binary Space Partitioning Trees

	Hidden Surface Removal
	The Painter's Algorithm and BSP

	Real-Time 3D Computer Graphics Techniques
	Introduction
	Texture Mapping in OpenGL
	Mipmapping

	Level of Detail (LOD)
	Billboarding
	Mappings
	Bump Mapping
	Displacement Mapping

	Shadows
	Algorithms for Computing Shadows

	Appendices
	Installing Dev C++
	Exercise Solutions
	Solution: A Rotating Colour Solid

