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EE550 – SEMICONDUCTOR SCIENCE & TECHNOLOGY 
Assignment No. 1 – Due: 26 April 2004 @ 17.00 

 
Question 1 
Heisenberg’s Uncertainty Principle states that the simultaneous product consisting of the 
uncertainty of my knowledge of the position of a quantum particle multiplied by the 
uncertainty in my knowledge of its momentum is bounded, i.e. 
 

∆x.∆p ≥ ћ/2 
 
where ћ = h/2π. In other words, I can never know the exact position of a particle, without 
driving my uncertainty about its momentun to infinity! 
 
(a) Suppose that you want to measure the position of an electron to an accuracy of 1 Å. 

What then is the minimum measurement error in a simultaneous measurement of its 
speed? 

 
(b) Suppose that a proton is placed in a narrow box of length 1 cm at 25oC. The kinetic 

energy of a particle confined in one dimension is approximately ½kBT, where kB is 
Boltzmann’s constant. Compute the quantum number n of a proton in a box at this 
kinetic energy. Then calculate the energy necessary for this particle to make a 
transition from your computed value of n to n+1. Do you expect quantum mechanical 
effects to be important in this system. 

 
Proton mass = 1.6726 x 10-27 kg. 
Boltzmann’s Constant =kB = 1.38062 x 10-23 JK-1. 
Planck’s Constant =h = 6.62620 x 10-34 Js. 
1 Å = 10-10 m 

For a particle in a one-dimensional box of length L, the quantum wavefunction is given by 







=

L
xn

L
xn

πψ sin2)(  

and the possible energies allowed to the particle are 2
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Question 2  
(a) Show that for a simple square lattice (i.e. a two-dimensional lattice) that the kinetic 

energy of a free electron (V(x)=0) at a corner of the 1st Brillouin Zone is higher than 
that of an electron at the midpoint of a side face of the zone by a factor of two. Recall 

that for a square lattice the 1st BZ consists of akaaka yx
ππππ ≤<−≤<− ,  . 

(b) What is the corresponding factor for a simple cubic lattice (i.e. a three-dimensional 
lattice)? 

 
(c) What bearing might the result of (b) have on the conductivity of divalent metals, i.e. 

metals with two valence electrons? 
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Question 3 
Consider a solid crystal constructed by bringing together atoms such that there is a single 
valence electron per unit cell. If the atoms are very far apart, the electron wavefunctions will 
be localized about each ionic core, extended band states (i.e. energy states which exist 
throughout the bulk of the material) will not form, and the material will be an insulator. If the 
atoms are close together, the localized wavefunctions will overlap leading to the formation of 
band states and non-zero electrical conductivity. 
 
We can estimate the density at which this occurs by recalling that for a free electron gas, the 
potential for an isolated charge is screened to yield an exponentially decaying potential. In 
particular, for a singly charged ion in a free electron gas of density n, the potential energy 
will be 
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=   and εo =8.85 x 10-12 Fm-1 is the permittivity of free space, e 

= 1.6 x 10-19 C is the electron charge and m = 9.11 x 10-31 kg is the electron rest mass, and 
Planck’s Constant =h = 6.62620 x 10-34 Js. 
 
This potential is called a screened Coulomb potential and ks is called the Thomas-Fermi 
screening length. 
 
Considering that the lowest bound state of the Coulomb potential given above has a radius 
given by 
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estimate the density above which the electronic states will not be tightly bound to the ionic 
cores. Below this density, the atoms are too far apart and the wavefunctions will be highly 
localized. Above this density, band states will form and the crystal will become a conductor. 
The transition between these states is called the Mott transition. 
 
 
Question 4  
(Ashcroft & Mermin Ch.5, Q2) Though not a Bravais lattice, the hexagonal close-packed 
(hcp) structure ranks in importance with the bcc and fcc Bravais lattices; about 30 elements 
crystallise in the hcp form. Underlying the hcp structure is a simple hexagonal Bravais lattice, 
given by stacking two-dimensional triangular nets directly above each other: 
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The direction of stacking (a3, above) is known as the c-axis. The primitive vectors are 
 

zcayaxaaxaa ˆ,ˆ
2
3ˆ

2
,ˆ 321 =+== rrr  

 
[Check these for yourself]. 
 
The first two generate a triangular lattice in the x-y plane, and the third stacks the planes at a 
distance c above one another. The hcp structure consists of two interpenetrating simple 

hexagonal Bravais lattices, displaced horizontally from one another by 
333
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++  and 

displaced vertically from one another by 
2
c , as shown below: 

 

 
 
 
(a) Using the above primitive lattice vectors and the construction 
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show that the reciprocal of the simple hexagonal Bravais lattice is also simple hexagonal, 
with lattice constants c

π2  and 
a3

4π  , rotated through 30o about the c-axis with respect to 

the direct lattice. 
 
(b) For what value of c/a does the ratio have the same value in both direct and reciprocal 
lattices?  
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Question 5 
(Ashcroft & Mermin Ch5, Q4) Prove that any reciprocal lattice vector K is an integral 
multiple of the shortest parallel reciprocal lattice vector Ko. Hint: Assume the contrary, and 
deduce that, since the reciprocal lattice is a Bravais lattice, there must be a reciprocal lattice 
vector parallel to K shorter than Ko. 
 
 
Question 6 
We discussed the crystal of silicon in detail. It has the crystal structure of diamond. The basis 
consists of 8 atoms if the cell is taken as the conventional simple cube. 
 
(a) What is the structure factor S of this basis? 
 
(b) Find the zeros of S and show that the allowed x-ray reflections of the silicon/diamond 

structure satisfy h+k+l = 4n, where all indices are even and n is any integer, or else 
all indices are odd. 

 
Remember S=Σfjexp[G.rj] where j runs over the s atoms of the basis, fj is the 
appropriate atomic form factor, rj = positions within the unit cell of the basis atoms 
and G=hp+kq+lr, with (hkl) = Miller indices. 
 
 

Question 7 
In the Drude model, as well as in other scattering models, the probability that one electron 
suffers a collision in a small time interval dt is dt/τ. 
 
(a) Show that the probability that an electron picked at time t=0, will on the average have 

no collision during the next time t is given by 
 

P(T) = exp[-t/τ]  . 
 
(b) Show that the mean time between two successive collisions is τ. 
 
(c) What is the mobility of electrons in a sample of GaAs where τ  is calculated to be 1 ps 

according to the Drude model? Give your results in cm2V-1s-1. 
 
(d) What is the length of a GaAs sample, using the value of  τ from part (c), that an 

electron can traverse without scattering with a 90% probability. Assume that there is 
an electric field of 10 kVcm-1 and that the electron is injected into the sample with 
zero velocity. 
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Question 8 (ee550 1996) 
Consider the body centred cubic lattice (bcc) shown below: 

 
If ji ˆ,ˆ  and k̂  are three orthogonal unit vectors, then a set of primitive lattice vectors for the 
bcc lattice could be: 
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A more symmetric set for the bcc lattice is: 
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as shown below 

Calculate the reciprocal lattice of this bcc lattice. 
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Question 9  
In a simplified model, assume germanium has a single valence band and a single conduction 
band, with a gap of 0.670 eV. The effective masses are mh = 0.370mO and me = 0.550mO, 
respectively, where mO = 9.11 x 10-31 kg is the free electron rest mass. We also know that 
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Calculate: (a) the Fermi energy relative to the top of the valence band 

(b) the chemical potential (i.e. Efi-EF) at 300 K, relative to the Fermi 
energy 

(c) the occupation probability at 300 K for a state at the bottom of the 
conduction band 

(d) the probability at 300 K that a state at the top of the valence band is 
empty 

  (e) the electron concentration in the conduction band at 300 K. 
 
Boltzmann’s Constant =kB = 1.38062 x 10-23 JK-1. 
Planck’s Constant =h = 6.62620 x 10-34 Js. 
Electron charge = e = q = 1.6 x 10-19 C. 
 


