

DUBLIN CITY UNIVERSITY

SCHOOL OF ELECTRONIC ENGINEERING

Java Server side development
of a XML based

assessment system

Sławomir Gruca
August 2002

MASTER OF ENGINEERING
IN

TELECOMMUNICATIONS

Supervised by Dr Derek Molloy

 ii

Acknowledgements
I would like to thank my supervisor Dr Derek Molly for his guidance, enthusiasm and
commitment to this project. While I was working on it, Dr Molloy was always there, ready
to offer me his advice and help.
I also wish to express my gratitude to Dr Noel Murphy, the coordinator of the student
exchange between DCU and my Polish school – Poznań University of Technology. Despite
the fact that Dr Murphy was often busy, he always had time for me and I could always count
on his helping hand.
Finally thanks are also due to all DCU stuff, who was always friendly, sincere and helpful.

Declaration
I hereby declare that, except where otherwise indicated, this document is entirely my own
work and has not been submitted in whole or in part to any other university.

Signed: ..Date:

 iii

Abstract
The general idea of this project is to devise the means, which allow web based on-line
testing for distance learning purposes. The goal of this work is not only inventing a way that
it may be accomplished but also constructing a working system. The system is supposed to
be integrated and fully featured. Moreover, it should be trustworthy and ready to use right
away. Another issue is accessibility of the system for end users, which has to be taken into
consideration. Ideally, the final product should be flexible, compact, robust and user
friendly. Those are contradictory aims and dealing with needs them is not necessarily
straightforward.

This project explores several modern technologies. The software is written in Java
programming language and uses s new Servlet API. The project’s data storage involves
SQL database and a young standard for data description called XML. This standard is
accompanied by some others, like DTD, XML Schema, XSL, and many of them are tackled
and discussed. Finally, a brand new, just emerging technology, namely JAXB, constituting a
bridge between XML and Java is an essential part of this project.

The crown of a done work is a compilation of above stated assumptions about the system.
The final application is complete and can possibly be used in a real life distance learning
system.

 iv

Table of Contents

ACKNOWLEDGEMENTS ... II

DECLARATION .. II

ABSTRACT .. III

TABLE OF CONTENTS ..IV

TABLE OF FIGURES ..VI

1. INTRODUCTION ... 1

1.1. XML ... 3

1.1.1. XML applications .. 5

1.1.2. XML basics .. 7

1.1.3. XML companion standards.. 9

1.2. JAXB .. 13

1.2.1. Working with JAXB ... 14

1.2.2. JAXB Summary .. 17

1.3. SERVLETS .. 18

1.3.1. Applications of servlets.. 19

1.3.2. Overview of servlets .. 21

1.3.3. HTTP Support.. 23

1.3.4. Saving client state.. 25

1.3.5. Servlet Summary.. 26

1.4. RELATIONAL DATABASE AND SQL ... 27

2. THE SYSTEM ... 28

2.1. THE SYSTEM’S DESCRIPTION.. 29

2.1.1. The question format ... 29

2.1.2. The system’s basics.. 30

2.2. THE IMPLEMENTATION... 41

2.2.1. The XML test’s structure ... 41

2.2.2. DTD and XML Schema.. 44

2.2.3. JAXB .. 46

 v

2.2.4. XSL .. 49

2.2.5. The database and SQL... 52

2.2.6. The servlets .. 55

2.2.7. Other technologies incorporated into the project ... 65

3. INSTALLATION AND CONFIGURATION... 67

3.1. SOFTWARE... 67

3.1.1. Microsoft Windows98.. 67

3.1.2. Sun Java 2 SDK ... 67

3.1.3. Sun Java Architecture for XML Binding ... 67

3.1.4. Apache Tomcat web server.. 67

3.1.5. MySQL Database... 68

3.2. HARDWARE ... 68

4. CONCLUSIONS.. 69

REFERENCES .. 71

REFERENCES .. 71

APPENDIX .. 73

A.1. ESSENTIAL PROJECT FILES... 73

A.1.1. XML Schema for the project’s XML data format (test.xsd) 73

A.1.2. DTD for the project’s XML data format (test.dtd).. 75

A.1.3. JAXB binding schema for the project’s XML data format (test.xjs) 76

A.1.4. XSL style sheet for the project’s XML data format (test.xsl) 77

A.1.5. CSS style sheet for HTML’s display formatting (style.css) 80

A.1.6. The project’s web deployment descriptor (web.inf).. 81

A.2. OTHER FILES ... 84

A.2.1. XML file containing a sample test (test.xml)... 84

A.2.2. The index page (index.html).. 85

A.2.2. The forbidden page (forbidden.html) .. 86

A.3. A FLOPPY DISK WITH ALL PROJECT’S FILES ... 87

 vi

Table of Figures
FIGURE 1. JAXB – GENERATION OF CLASSES ... 14

FIGURE 2. JAXB - UNMARSHALLING .. 15

FIGURE 3. JAXB - MARSHALLING... 16

FIGURE 4. LIFECYCLE OF THE SERVLET... 22

FIGURE 5. DISPATCHING OF HTTP REQUEST .. 24

FIGURE 6. THE WELCOME PAGE .. 30

FIGURE 7. THE FORBIDDEN PAGE .. 30

FIGURE 8. THE LOGIN SUBSYSTEM.. 31

FIGURE 9. THE LOGIN PAGE .. 32

FIGURE 10. THE LOGOUT/RELOGIN PAGE .. 32

FIGURE 11. THE MANAGER MENU ... 32

FIGURE 12. THE MANAGER SUBSYSTEM.. 33

FIGURE 13. THE TEST EDITOR ... 34

FIGURE 14. THE STRING MATCH QUESTION EDITOR... 35

FIGURE 15. THE SINGLE AND MULTIPLE CHOICE QUESTION EDITOR .. 35

FIGURE 16. THE RESULTS CHECKER.. 36

FIGURE 17. THE RESULT CHECKER – AN EXTERNAL EVALUATION TYPE QUESTION 36

FIGURE 18. THE TESTING SUBSYSTEM... 37

FIGURE 19. THE SAMPLE OF GENERATED TEST’S INTRODUCTORY PART 38

FIGURE 20. THE SAMPLE OF GENERATED SINGLE CHOICE QUESTION FORM (WITH THE NOTICE)

... 38

FIGURE 21. THE SAMPLE OF GENERATED MULTIPLE CHOICE QUESTION FORM......................... 38

FIGURE 22. THE SAMPLE OF GENERATED STRING MATCH QUESTION FORM 39

FIGURE 23. THE SAMPLE OF GENERATED EXTERNAL EVALUATION QUESTION FORM (WITH THE

NOTICE) .. 39

FIGURE 24. THE SUBMIT AND RESET BUTTONS.. 39

FIGURE 25. REDISPLAYED SAMPLE MULTIPLE CHOICE QUESTION.. 40

FIGURE 26. REDISPLAYED SAMPLE STRING MATCH QUESTION .. 40

FIGURE 27. THE CONFIRMATION PAGE.. 40

FIGURE 28. THE RESULTS PAGE .. 40

FIGURE 30. UNFORMATTED HTML PAGE. .. 65

FIGURE 31. HTML PAGE FORMATTED BY THE CSS STYLE SHEET... 65

 1

Chapter 1

1. Introduction
The idea of on-line examination through the Internet is becoming more popular these days,

since the global network has become easily accessible by almost everyone. There is

plethora of courses available on the web - they are offered by schools, universities and

different kinds of companies. Most of those courses are yet limited to only presentation of

some information in, hopefully, interactive form. Even this task can sometimes be awkward

to be accomplished, if many different courses are to be presented through a single web site.

Moreover, users may use different kinds of web browser or may want to ask for notes in

some specific format, like for example PDF. In those cases there have to be some means

available which help to prepare the notes in a unified format and data prepared in that

format should be accessible through different devices. The Y-box developed in DCU is an

exemplary solution to those problems. It uses XML for notes storage and makes them

available to the most popular web browsers and PDAs.

On-line knowledge testing is a nice form of extending e-learning application. It is a next,

natural step after presentation of notes. The idea is relatively simple – a user after reading

notes is being presented a form with questions. He/she fills in the form and submits it. The

form is then processed and a result of evaluation is put into a database and probably

displayed to the user. Although it appears to be easy, in fact many issues arise when one

wants to construct such system.

The first problem, which has to be addressed is questions preparation and their storage. A

potential tutor, who wants to extends his course notes by a test, has to be given a

specification of a test format and what is the most important, the format must be easy to

understand and compact but flexible at the same time. Here is where XML comes to rescue.

A properly and carefully designed XML structure can be almost a perfect storage for the

tests.

The next problem arising is connected to presentation of questions to a user. One can

assume that it is done through a web browser, but it does not solve the problem. Still, there

is a need for conversion between the format used for storage (XML in the case of this

 2

project) and the format accepted by a web browser which happens to be HTML. This

project makes use of XSL for that conversion.

Beside the fact that there is a necessity of dealing with conversion form storage to display

format, another conversion is necessary – from storage to application data, to be more exact,

to objects in a computer memory. Without that, automatic evaluation of user answers was

not possible. A brand new standard JAXB is designed to do that conversion for us. It acts as

a link between XML and Java objects. Since JAXB is an essential part of this project, a

substantial part of the report is devoted to it.

Another thing that one has to consider is communication between an application and a web

client. Also some environment to run the actual application is needed. Java servlets are a

very convenient solution that can be used here. They extend functionality of a web server

and give elegant solutions to many problems connected to communication between server

and client through HTTP interface. Servlets are actually small programs themselves and

they work on the server side. The whole system described in this report is based on several

servlets which constitute functionality of the final application.

Finally, the system has to cope with different, sometimes strange user’s behaviours. It is not

supposed to crash even if a user fills in a test form in wrong way. Those issues are discussed

in the chapter about the system itself.

All those techniques that are used for this project are relatively new and this is the main

reason of the shape of the references. They are mostly links to web resources and those web

sites have contributed the most to the project. Frankly speaking, since I have gone through

plenty of web pages devoted to XML, servlets and other things I have mentioned before, it

is virtually impossible to list all of them.

 3

1.1. XML

XML stands for the eXtensible Markup Language. It is a relatively new markup language,

developed by the World Wide Web Consortium (W3C), mainly to overcome limitations in

HTML.

HTML is an immensely popular markup language. It is supported by thousands of

applications, including browsers, editors, email software, databases, and many more.

Originally, the Web was a solution to publish scientific documents. Today it has grown into

a full-fledged interactive medium, supporting applications such as online shops, electronic

banking, and trading forums. To accommodate this phenomenal popularity, HTML has been

extended over the years. Many new tags have been introduced. The first dozen HTML tags

eventually have been extended by almost hundred new ones. Furthermore, a large set of

supporting technologies also has been introduced, namely: DHTML, JavaScript, Java

Applets, CCS, Flash, CGI and more. Some of these technologies were developed by the

W3C, whereas others were introduced by vendors.

HTML has ended up becoming a complex language. At almost 100 tags, it is definitively

not a small one. The combinations of tags are almost endless and the result of a particular

combination of tags might be different from one browser to another. However, despite all

these tags already included in HTML, considering electronic commerce applications, even

more tags are needed, like tags for product references, prices, name, addresses, and so forth.

Streaming needs tags to control the flow of images and sound, search engines need more

precise tags for keywords and description, security needs tags for signing.

The list of applications that need new HTML tags is literally endless. However, adding even

more tags to an overblown language is hardly a satisfactory solution. It appears that HTML

is already on the verge of collapsing under its own weight. Worse, although many

applications need more tags, some applications would greatly benefit if there were fewer

tags. Machines, which are not powerful as PC, like personal digital assistants, cannot

process a complex language like HTML. Another, problem is that, it is often the case, when

pages have more markup than content, which make them slow to download and display.

 4

In conclusion, even though HTML is a successful markup language, it has some major

shortcomings. XML was developed to address these shortcomings. Moreover, one can say

that XML exists because HTML was successful, therefore, XML incorporates many positive

features of HTML. XML also exists because HTML could not live up to new demands and

breaks new ground where it is appropriate. Anyway, it is difficult to change a successful

technology like HTML, so XML has raised some level of controversy.

XML is unlikely to replace HTML in the near feature since XML does not threaten the Web

but introduces new possibilities. Work is already under way to combine XML and HTML in

XHTML, an XML version of HTML. Some of the areas where XML will be useful in the

near feature include:

• large web sites site maintenance. XML would work behind the scene to simplify

the creation of HTML documents,

• exchange of information between organizations,

• databases offloading and reloading,

• electronic commerce applications where different organizations collaborate to

serve a customer,

• scientific applications with new markup languages for mathematical and chemical

formulas,

• electronic books with new markup languages to express rights and ownership,

• handheld devices and smart phones with new markup languages optimized for

these portable devices.

 5

1.1.1. XML applications

XML is not just for web site publishing. This language goes far beyond the scope of it and,

in general, its applications are classified as being:

• document applications manipulate information that is primarily intended for human

consumption,

• data applications manipulate information that is primarily intended for software

consumption.

The difference between the two types of application is a qualitative one. It is the same XML

standard, but it serves different goals. This is important because one can reuse tools and

experience across a large set of applications. Furthermore, XML integrate in some way,

those two exclusive areas. With XML it is possible to create documents which are easily

understandable by humans and still useful for automated data processing.

Document applications

The first application of XML is document publishing. Since XML is about structure of the

document, it makes the document independent of the delivery medium. That makes possible

to edit and maintain documents in XML and use some means to automatically publish them

on different kinds of media. The ability to target multiple media is important these days

when many publications are available online. Other factor, which makes XML very useful is

connected to continuously changing appearance of majority of web sites. When one needs to

reformat his site regularly, XML gives a painless way to do that. Finally, some Web sites

are optimized for specific viewers, what often leads to development of two or more versions

of the same site, which is usually very costly when done manually. For all these reasons, it

makes sense to maintain a common version of the documentation in a media-independent

format, such as XML, and to automatically convert it into desired format such as HTML,

PostScript, PDF, RTF, and so forth.

Data Applications

In the 1986 the Standard Generalized Markup Language (SGML) was published by

International Standard Organization as ISO 8879. SGML is based on the early work done by

a IBM’s employee, Dr. Charles Goldfarb. He was the inventor of the concepts behind

SGML.

 6

The two main characteristics of SGML are that its markup:

• describes the document’s structure, not the document appearance,

• conforms to a model, which is similar to a database schema, which means that it

can be processed by software or stored in a database.

SGML does not standardized structure that every document needs to follow, so it does not

define what a title or a paragraph is. In fact, it is unrealistic to assume that a single

document structure could satisfy the needs of all authors. The SGML approach is not to

impose its own tag set but to propose a language to describe the structure of documents and

mark them accordingly. The strength of SGML is that it is a language to describe documents

- in many respects similar to programming languages. It is therefore flexible and open to

new applications. The document structure is written in a Document Type Definition (DTD).

It specifies a set of elements, their relationships, and tags to mark the document.

XML inherits the original goals of SGML, which is one of its predecessors. SGML was

created to give document management access to the software tools that had been used to

manage data, such as databases. XML goes even further, bringing a publishing kind of

distribution to data. This leads to the concept of no difference between documents and

applications. Indeed, if the structure of a document can be expressed in XML, so can the

structure of a database. XML may then be used to exchange information between parties.

One can think of XML web as of a large database on which applications can tap and extract

data.

 7

1.1.2. XML basics

XML may be viewed as a standard for exchanging and publishing information in a

structured manner. XML is a language used to describe and manipulate structured

documents. XML offers the tree structure and, what is important, does not dictate or enforce

the specifics of this structure. XML is a flexible mechanism that accommodates the

structure of specific applications. It provides a mechanism to encode both the information

manipulated by the application and its underlying structure.

The idea behind XML is straightforward. It aims at answering the conflicting demands that

arrive at the future of HTML. On one hand, more tags are needed; on the other hand,

developers want fewer tags since HTML is already so complex. XML resolves this

dilemma, by introducing following two concepts:

• no predefined tags,

• it is strict.

Those concepts are virtually non-existent in HTML.

No Predefined Tags

Since in XML there are no predefined tag, a developer can create the tags that satisfy his/her

needs. Those tags can also contain additional attributes. This is the extensibility of XML. It

is extensible because it predefines no tags but lets the author create tags that are needed for

the application. Although the concept is simple, it opens many questions, mainly:

• how to inform processing software how to interpret tags,

• how to extract information from XML data,

• what kind of software use for processing XML,

• does it simplify the real life task?

Fortunately, there are answer for all those questions. Many standards accompanying XML

have been developed and those most important for this project are described in the next

section.

 8

Strict Syntax

One of the strongest sides of HTML is that it has a very forgiving syntax. This means that

the syntax does not necessarily have to correspond to the specification. This is great for

developers who can be as lazy as they want, and who are not obliged to be very careful

about how they prepare the code. This great advantage of HTML is also the major drawback

when it comes to data extraction from HTML documents. Basically, such extraction is often

impossible to be done automatically by computer software. The other issue is that the

browsers are growing in size to cope with imperfect HTML code and because of that fact

they are becoming generally slower and more processor-power-consuming, which makes

them unsuitable for PDAs.

 9

1.1.3. XML companion standards

The real value of XML is that is a fully standardized markup language. As a matter of fact,

XML is more than a markup language. It is a whole range of tools that may be put to work

in application environment. In particular, the W3C has developed a number of standards that

complement XML and they are referred to as XML companion standards. Those standards

give true strength to XML as they let developers to explore all XML’s features. The list of

those standards is open as new standards are regularly being introduced. The standards that

are essential or connected to this project are listed here.

XML Namespace

XML Namespace is often an overlooked standard, although it is a major one considering its

importance. Namespace associates elements with their owners. It lets write an XML

document that uses two or more sets of XML tags in modular fashion. This enables

extensibility because it means that an organization can add new tags to existing elements

and clearly label who is responsible for the extension. This prevents name conflicts and is

the only way to enable reuse of standard structures.

DTD

The Document Type Definition (DTD) specification is actually part of the XML

specification, rather than a separate entity. On the other hand, it is optional since it possible

to write an XML document without it. A DTD specifies the kinds of tags that can be

included in a XML document, and the valid arrangements of those tags. It can be used to

verify if a XML structure is valid or not. It allows making sure that the XML structure that

is being read (being received from the net) is indeed valid. A DTD can exist at the front of

the document, as part of the prolog; it can also exist as a separate entity, or it can be split

between the document prolog and one or more additional entities. DTD has some major

drawbacks. It is difficult to specify a DTD for a complex document in a way that prevents

all invalid combinations and allows all the valid ones. However, while the DTD is the first

method defined for specifying valid document structure, there are several newer schema

specifications and one of them, XML Schema is described next. This project makes use of

DTD by the occasion of JAXB.

 10

XML Schema

A DTD makes it possible to validate the structure of relatively simple XML documents. It

cannot restrict the content of elements and it cannot specify complex relationships. Finally,

DTD uses syntax which substantially different from XML, so it cannot be processed with a

standard XML parser. XML Schema is one of the proposals that have been made to address

shortcomings of a DTD. XML Schema is a large and complex standard that has two parts.

One part, Schema for Structures, specifies structure relationships and those relationships can

be of any kind. It is a great advantage but is occupied by complex implementation. The

other part of XML Schema specifies mechanisms for validating the content of XML

elements by specifying a data type for each element and, what is important, those data types

may be even pretty sophisticated. Lastly, XML Schema uses XML syntax.

CSS and XSL as Style Sheets

Style sheets play an important role for XML. The XML standard specifies how to identify

data, not how to display it. HTML, on the other hand, tells how things should be displayed

without identifying what they are. The style sheets complement XML specifying how

documents should be rendered on given media. In other words, they specify the

transformation from XML to screen, paper, and so forth. XML is supported by Cascading

Style Sheet (CSS) and Extensible Stylesheet Language (XSL). CSS is widely implemented,

since it has been used for some time as completion to HTML. XSL, on the other hand, is a

newer thing and so is more powerful. Considering this project, XSL is an important part of

it, whereas CSS is used but only to format HTML display and not directly XML.

XSL includes two parts, the transformation language (XSLT, described in the next caption)

and the part that covers formatting objects, also known as flow objects (XSL-FO). The

transformation language provides elements that define rules for how one XML document is

transformed into another XML document. The transformed XML document may use the

markup and DTD of the original document, or it may use a completely different set of

elements. In particular, it may use the elements defined by the second part of XSL, the

formatting objects. XSL-FO gives the ability to define multiple areas within a document and

then link them together. When a text stream is directed at the collection, it fills the first area

and then flows into the following ones when the first area is filled.

 11

XSLT and XPath

The Extensible Stylesheet Language for Transformations (XSLT) standard is essentially a

translation mechanism that allows specifying conversion from an XML tag to another tag or

instruction used for information displaying. Different XSL formats can then be used to

display the same data in different ways, on different media types, for different uses. The

XPath standard is an addressing mechanism that is used within XSLT when constructing

transformation instructions, in order to specify the parts of the XML structure to be

transformed.

XHTML

The XHTML specification is a way of making XML documents that look and act like

HTML documents. This is a linking and presentation standard which aims at preserving the

benefits of HTML in the XML arena, and to adding additional functionality, as well. Since

an XML document can contain any tags, it can have a set of tags that look like HTML ones.

That is the main idea of the XHTML specification. The result of this specification is a

document that can be displayed in browsers, still being treated as XML data. The data may

not be quite as identifiable as pure XML, but it will be a much easier to manipulate than

standard HTML, since XML specifies a good deal more regularity and consistency. In the

case of this project the XHTML is not used directly. It is rather a product of XSL

transformation of XML data.

SAX

Simple API for XML (SAX) can be thought of as the serial access protocol for XML. This

is a fast mechanism, that may be used to read and write XML data when efficiency and

small memory requirements are the priorities. It is also called an event-driven protocol,

because the technique is to register a handler with a SAX parser, after which the parser

invokes user defined callback methods whenever it sees a new XML tag, encounters an

error, or, maybe wants to tell something else.

 12

DOM

The Document Object Model (DOM) protocol converts an XML document into a collection

of objects in computer memory. One can then manipulate the object model in any way that

is needed. This mechanism is also known as the random access protocol, because it allows

accessing any part of the data at any time. One can then modify the data, remove it, or insert

new data. Although it offers much greater flexibility than SAX, the in-memory data

structure slows down the application and so is not suitable for applications that require fast

XML-data processing.

JAXB

The Document Object Model provides a lot of power for document-oriented processing, but

it does not provide a lot of object-oriented simplification. For data-oriented processing

purposes, rather than handling fully-fledged articles, it is more convenient to use a brand

new technique, Java Architecture for XML Binding (JAXB). It is totally object-oriented

standard, which allows automatic two-way mapping between XML documents and Java

objects. JAXB plays so important role in this project that the next entire section is devoted

exclusively to it.

 13

1.2. JAXB

JAXB is a technique for simplifying creation and maintenance of XML-enabled Java

applications. It provides a schema compiler and a runtime framework to support mapping

between XML documents and Java objects. The schema compiler translates XML’s DTD

into one or more Java classes without necessity of writing complex parsing code. Generated

classes contain code to perform error and validity checking of incoming and outgoing XML

documents, thereby ensuring that only valid, error-free messages are accepted, processed,

and generated by a system. Those classes allow manipulating or even creating XML

documents without writing any logic to process XML elements. In other words, the

generated code provides an abstraction layer that allows access to the XML data without

any specific knowledge about the underlying data structure. Moreover, JAXB is a fast

mechanism and its speed matches up the SAX’es one. Anyway, as in the case of DOM,

processing with JAXB is memory-consuming. A next advantage of JAXB is its

extensibility. The generated classes can be extended, like ordinary Java objects, to provide

additional application specific functionality. Building a JAXB application is a process that

involves several steps which are discussed next.

 14

1.2.1. Working with JAXB

JAXB has potentially wide scope of application, especially when considering data sharing.

On the whole, since JAXB provides an easy way to work with data in general, it may be

appreciated in many situations. Constructing a JAXB based application contains a few

distinct stages.

Create or Obtain a DTD

In order to generate XML processing codes, the JAXB compiler requires a DTD, which

defines simple constraints on structure and contents of a XML document. It is assumed that

future versions of JAXB will add support for other schema languages, mainly for XML

Schema.

Define a Binding Schema

The DTD constraints on structure of a XML document are often not precise enough and the

results of the schema compiler processing may be not satisfactory for a developer. That is

why a Binding Schema is useful. One can say that it compensates lacks of DTD when

necessary. A syntax of Binding Schema in some way resembles shape of the XML Schema.

Generate Processing Codes

Generation of the processing codes is done by the Schema Compiler. As the result one gets

Java classes that reflect XML document’s structure. The classes are then compiled in a

traditional way with one exception only. For obvious reasons, this compilation process

needs to have access to the JAXB libraries.

Figure 1. JAXB – generation of classes

 15

Unmarshal from an XML Document

Unmarshaling is a process of populating a JAXB generated class object with a

corresponding XML document. To unmarshal a XML document, one has to call the

unmarshal method in a JAXB generated class object with a parameter that contains contents

of a corresponding XML document.

Figure 2. JAXB - unmarshalling

Instantiation

In some cases there is no existing XML document to work with or a new XML document is

needed. In such circumstances one simply creates a new instance or instances of generated

by Schema Compiler classes.

Working with Data

In addition to the methods of creating new instances of JAXB generated classes, there are

also other methods available to work with data. Those methods allow retrieving data and its

changing.

Validation

Validation is the process of verifying that the Java object representation of a XML

document conforms with the DTD. Validation is required prior to marshalling, if content has

been added or modified within the Java object representation. The content validation is a

simple method call.

 16

Marshal to a XML document

Marshaling is the process of producing an XML document from Java objects. Marshaling

the objects to a XML document follows a similar process to unmarshaling, but this time the

marshal method takes a parameter that reflects where the constructed XML representation is

to be put.

Figure 3. JAXB - marshalling

 17

1.2.2. JAXB Summary

JAXB provides a convenient way of dealing with processing of XML. The most important

reason to use JAXB is that JAXB applications are written in the Java programming

language and can process XML data. Essentially, JAXB provides a bridge between these

two complementary technologies.

JAXB includes a compiler that maps a schema to a set of Java classes. Once having classes,

it is possible to build Java object representations of the XML data that follow the rules that

the schema defines. Just as an XML document is an instance of a schema, a Java object is an

instance of a class. Thus, JAXB allows creating of Java objects at the same conceptual level

as the XML data. Representing data in this way allows manipulating it in the same manner

as manipulating Java objects, making it easier to create applications processing XML data.

Having data in the form of Java objects it is easy to access and process it. In addition, after

working with the data, one can write the Java objects to a new XML document. With the

easy access to XML data that JAXB provides, the only concern that a developer faces is

only using the data, rather than spending time writing code to access it.

 18

1.3. Servlets

Servlets are Java modules that run inside request/response-oriented servers and extend them

providing a powerful mechanism for developing server side application. The traditional way

of adding functionality to a web server is the Common Gateway Interface (CGI), a

language-independent interface that allows a server to start an external process which gets

information about a request through environment variables, the command line and its

standard input stream and writes response data to its standard output stream. Each request is

answered in a separate process by a separate instance of the CGI program or the CGI script.

Although CGI played a major role in the explosion of the Internet, its performance,

scalability and reusability issues make it less than optimal solutions. Servlets are an

effective substitute for CGI scripts as they provide a way to generate dynamic documents

that is both easier to write and faster to run. They also address the problem of doing server-

side programming with platform-specific APIs since they are developed with the Java

Servlet API, which is a standard Java extension.

Servlets have several advantages over CGI. Firstly, a servlet does not run in a separate

process. This removes the overhead of creating a new process for each request. Secondly, a

servlet stays in memory between requests, whereas a CGI program needs to be loaded and

started for each CGI request. Moreover, there is only a single instance of a servlet which

answers all requests concurrently. This saves memory and allows easy managing of

persistent data. Finally, a servlet can be run by a servlet Engine in a restrictive sandbox

which allows secure use of untrusted and potentially harmful servlets.

Servlets are not tied to a specific client-server protocol but they are most commonly used

with HTTP. They make use of the Java standard extension classes in the packages

javax.servlet (the basic Servlet framework) and javax.servlet.http (extensions of the servlet

framework for servlets that answer HTTP requests). Since servlets are written in the

portable Java language and follow a standard framework, they provide a means to create

sophisticated server extensions in a server and an operating system independent way.

 19

1.3.1. Applications of servlets

The scope for servlets’ uses is really broad. Since a servlet is essentially a Java application,

it is capable of doing things that typical Java application can do except for one thing - there

is no graphical interface for the servlet.

Middle-Tier Processing

In many systems a middle tier serves as a link between clients and back-end services. Using

a middle tier is a way of off-loading both clients and servers. Another advantage of middle

tier processing is simply connection management. A set of servlets could handle

connections with hundreds of clients, if not thousands, while recycling a pool of expensive

connections to database servers. Other middle tier roles include tasks like mapping clients to

a redundant servers and supporting different types of clients such as pure HTML and Java

enabled clients.

Proxy Servers

Servlets can act as proxies for applets. This can be important since Java security

mechanisms allow applets only to make connections back to the server from which they

were loaded. If an applet needs a connection to a server located on a different machine, a

servlet can make this connection on behalf of the applet.

Protocol Support

The Servlet API provides a tight link between a server and servlets. This allows servlets

adding new protocol support to a server. Essentially, any protocol that follows a

request/response model can be implemented by a servlet. This could include SMTP, POP,

FTP.

Processing data posted over HTTP

This includes processing data from HTML forms. A servlet can be part of an order-entry

and processing system, working with product and inventory databases, and perhaps an on-

line payment system.

Providing dynamic content

A servlet may return as the result of some processing a HTML page or another data stream.

 20

Managing state information on top of the stateless HTTP

A servlet can keep state information when client needs it. Considering an online shopping

system, which manages shopping carts for many concurrent customers, a servlet may map

every request to the right customer.

Forwarding requests

Servlets can forward requests to other servers and servlets. Thus, servlets can be used to

balance load among servers that mirror the same content, and to partition a single logical

service over several servers.

Allowing collaboration between people

A servlet can handle multiple requests concurrently, and can synchronize those requests.

This allows servlets to support systems such as on-line conferencing.

Being a community of active agents

A servlet give a way for distributed processing. It is possible to define active agents that

share work among themselves. Each agent is a servlet, and the agents could pass data

between each other.

 21

1.3.2. Overview of servlets

The central abstraction in the Servlet API is the Servlet interface. All servlets implement this

interface, either directly or by extending a class that implements it such as HttpServlet. This

interface provide methods that manage the servlet and its communication with clients.

A servlet is initialized by a server’s servlet engine which instantiates a servlet and perhaps

other classes which are referenced by the servlet. Then it calls the servlet's init method. The

servlet performs setup procedures within this method and store the ServletConfig object.

This object can be accessed later by calling the getServletConfig method and it contains

parameters of the servlet and a reference to the ServletContext. The init method is called

only once during the servlet's lifecycle. It does not need to be thread-safe since other

servlet’s methods have to wait until this method has finished its job.

After a loading and an initialization the servlet is able to handle client requests. The service

method is called for every request to the Servlet. The method is called concurrently so it

should be implemented in a thread-safe manner. If that is not possible a servlet may

implement SingleThreadModel which makes the service method not be called concurrently.

The service method receives the ServletRequest and ServletResponse objects. The

ServletRequest class encapsulates the communication from the client to the server. It allows

the servlet accessing information such as the names of the parameters passed in by the

client, the protocol being used by the client, and the names of the remote host that made the

request and the server that received it. It also provides the servlet with access to the input

stream, through which the servlet may get data from the client. HttpServletRequest is a

subclass ServletRequest and contains methods for accessing HTTP-specific header

information. The ServletResponse class encapsulates the communication from the servlet

back to the client. It gives the servlet methods for replying to the client. It allows the servlet

to set the content length and mime type of the reply, and provides an output stream and a

writer through which the servlet can send the reply data. Subclass of the ServletResponse

class, HttpServletResponse contains methods that allow the servlet to manipulate HTTP-

specific header information.

 22

The destroy method is called when a servlet is to be unloaded. It usually happens after all

service calls have been completed, or when a server-specific number of seconds have

passed, whichever comes first. If the servlet handles any long-running operations, the

service methods might still be running when the server calls the destroy method, so this

method has to be thread-safe. All resources which were allocated in init should be released

in destroy one. This method is guaranteed to be called only once during the servlet's

lifecycle.

Figure 4. Lifecycle of the servlet

 23

1.3.3. HTTP Support

Most of servlets use the HTTP protocol for communication purposes. Support for handling

the HTTP protocol is provided in a separate package, javax.servlet.http. HTTP stands for the

Hyper Text Transfer Protocol. It defines a protocol used by web browsers and servers to

communicate with each other. This protocol defines a set of text-based request messages

called HTTP methods. They include GET, HEAD, POST, PUT, DELETE, TRACE,

CONNECT and OPTIONS. The first three are the most important and they are discussed.

The GET Method

The HTTP GET method requests information from a web server. This information could be

a file, output from a device on the server, or output from a program, in particular a servlet.

Parameters that may be passed to the servlet by this method are a part of the URL. Anyway,

the GET request has an important limitation since most web servers limit how much data

can be passed as part of the URL. If more than a few hundred bytes have to be sent to the

server, the HTTP POST method should be used instead. It is important that the handling of a

GET method is expected to be safe and idempotent. This means that a GET method will not

cause any side effects, such as changing some data on the server side, and that it can be

executed repeatedly without penalty. Finally, a server sends a HTTP response message

back.

The HEAD Method

The HEAD method is very similar to the HTTP GET method. Its request looks the same but

the server only returns the header information. This method is used to check parameters of a

document prior to downloading. Those parameters include last-modified date, size and type

of the document, and information about the server type. The HEAD method is expected to

be safe and idempotent.

The POST Method

The POST request allows sending data to the server. It is especially useful when there is a

need to send more information than the GET request allows. Since the POST method passes

all of its parameter data in an input stream, not as a part of URL, there is no special limit on

a data size. The POST method is not expected to be safe nor idempotent, so that it can

perform modification of some persistent data, and it is not required to be repeatable.

 24

The HttpServlet class dispatches a request to different Java methods for different HTTP

request methods. These Java methods include doGet, doHead, doDelete, doOptions, doPost

and doTrace. The class also detects which methods are overridden in a subclass and can

report back to a client on the capabilities of the server

Figure 5. Dispatching of HTTP request

The doOptions and doTrace methods have suitable default implementations and are usually

not overridden. The HEAD method is by default executed by calling doGet and ignoring

any output that is written by this method. Default implementations of doGet, doPut, doPost

and doDelete return a Bad Request HTTP error. A subclass of HttpServlet may override one

or more of these methods to provide the desired implementation. Usually doGet and doPost

are overridden.

The doGet method is usually supposed to read input parameters, set response headers and

then write the response data. The doPost method should be overridden when one needs to

process an HTML form posting or to handle a large amount of data being sent by a client. It

should also be applied, when there is necessity for processing that has side effects.

The HTTP processing methods are passed two parameters, the HttpServletRequest object

and the HttpServletResponse object. The HttpServletRequest class has several convenience

methods to help parse the request. Anyway, the request can still be parsed separately by

simply reading the text of the request.

 25

1.3.4. Saving client state

The Servlet API provides two ways to track client state across connections of the stateless

HTTP. In order to do that it uses cookies and session tracking.

Cookies

A cookie is a named piece of data maintained by a browser, typically for session

management and/or for storing a small amount of any information associated with the user.

Since HTTP connections are stateless, one can use a cookie to store persistent information

across multiple HTTP connections but no across multiple browser sessions.

To save cookie information one needs to create an instance of the Cookie object, set the

response content type to the HttpServletResponse response, add the cookie to the response,

and then send the output. All cookie data are strings. There is a necessity of conversion

information of different type to a String object. By default, the cookie lives for the life of the

browser session. It is possible to enable a cookie to live longer or to delete the cookie.

It is impossible to request for a specific cookie. One must ask for all cookies and find the

specific one. Since it is possible that multiple cookies could have the same name, just

finding the first setting is not always sufficient and there might be a need for checking all

cookies anyway to avoid ambiguity.

Session Tracking

Session tracking is a mechanism that servlets use to maintain state about a session, which is

a continuous connection originating from the same browser over a fixed period of time. The

tracking is normally done through the implicit use of browser cookies, which simply store

the session ID. In the case when cookies are disabled, the session ID has to be encoded in

the URL string. This method, called URL rewriting, is a less elegant solution because to

maintain the session all HTML pages, which are sent, have to be created dynamically.

The Session object is a part of HttpSession class and can be obtained by calling getSession

method. Once having access to an HttpSession, one can maintain within if a collection of

key-value-paired information. It is possible to store any kind of Java objects inside the

session and this is the immensely useful advantage of the session mechanism.

 26

1.3.5. Servlet Summary

Java servlets are server-side Java programs that can generate content or do some processing

in response to a client request in much the same way as CGI programs do. Servlets can be

thought of as applets that run on the server side without a user interface. They are invoked

through an URL invocation.

Servlets are a powerful mechanism for a Java programmer to gain access an object-oriented

abstraction of HTTP. Servlets are portable across web servers, are simple to design and

implement, have tight integration with the web server, service requests in an efficient

manner and may be run inside safe sandbox.

Although HTTP is a stateless protocol, HttpServlet provide the means to address the web

state problem. Having implemented a session tracking mechanism, servlets are almost

perfect to implement applications, which require user identification, like e-commerce

applications.

 27

1.4. Relational Database and SQL

SQL stands for Structured Query Language. SQL has its origins in the relational model of

data created in the seventies by E. F. Codd of IBM. Over time other companies were

involved in relational database research and development, and eventually Oracle became the

first generally available relational database. Today there are dozens of relational database

products, like the MySQL database system, which is used for the purposes of this project.

SQL has been standardized and it has become the standard for data retrieval from relational

databases. There is no alternative for the SQL is today in a databases world.

The basic component of a relational database is the table. The table is comprised of rows

and rows are made up of columns. Finally, columns contain data. Columns have to contain

scalar or atomic data values, that is data with one value only. They may store data of

different type, but one column’s data has to be of the same kind.

A table inside a database can contain entries called foreign keys, which are links to other

tables. This provides great flexibility and is a major advantage of relational databases.

SQL itself is a language that allows talking to a database by using standardized queries.

Those queries may ask for data or make changes inside the database. They can create new

tables, delete existing ones or put some data into rows. Basically, SQL is a language of

databases.

A database plays an important role for this project, but since the SQL queries used are basic

ones and the database structure is simple, details will be discussed later.

 28

Chapter 2

2. The system
Every application is about data and its processing. The system being described here is no

exception to the rule. It is composed of data structures and algorithms responsible for their

processing. Anyway, it is difficult to talk only about one regardless of the other, but it is

very convenient to do so, considering description clarity.

The chapter is divided into two parts. Firstly, the basics of the system are described. Then,

the second section deals with actual implementation. Its first subsection is mostly about data

and touches up the XML’s part of the project. In contrast, the sixth part, about servlets1, is

devoted mostly to algorithms. The middle subsections tackle XML companion standards

applied in this project (XSL, XML Schema, DTD) and JAXB. The last subsection discusses

some other techniques that are used within the application.

1 The code of the servlets is composed of about 3000 lines and because of its complexity, this report deals only
with its most essential fragments. It would be virtually impossible to describe the code line by line, and if it
was done, the report would become unnecessarily large. Even though the report only tackles the most vital
system details, it has ended up being less than compact. Furthermore, the report may appear to be superficial,
but in fact, the author of it just had to skip many issues for the sake of clarity. For the same reason, the report
is about the description of the system only, omitting the developing process itself. Since the software
development process is awkward to describe, especially, when considering more complicated application, it is
more reasonable to concentrate on the results than put too much effort on describing dilemmas of writing the
code.

 29

2.1. The system’s description

2.1.1. The question format

Prior to constructing the actual application, several issues had to be addressed. One of them

was the question format. The HTML language imposes some constraints on the format of

allowed form types, which can be displayed by a web browser. Eventually, as the result of

trade-off between the available HTML language’s elements and possible useful types of

questions, the system implements four kinds of questions.

Single choice question

A question with only one correct answer. It may include “don’t know” answer when needed.

Multiple choice question

A question with one ore more correct answers within it. It may include “don’t know”

answer when needed.

String match question

A question that expects a single word as its answer. A user may decide not to answer by

leaving the enter field blank.

Question for external evaluation

A question where user enters a few sentences as his/her answer. Such answer is not

evaluated automatically but is just kept in the database and is expect to be read and

evaluated by the tutor himself/herself.

 30

2.1.2. The system’s basics

The system is composed of three major parts. The first one is responsible for an

authentication of system’s users; the next one provides system’s configuration centre and

the third part displays tests to the system’s users, checks validity of users’ answers, displays

results for an anonymous user and sends users’ answers to the database. For testing

purposes, a simple HTML welcome page was created to provide access to all parts of the

system.

Figure 6. The welcome page

To handle situations when user tries to get access to unavailable for him/her resources and

to cope with unauthorised access to the system in general, another, a very simple page,

called the forbidden page, was prepared.

Figure 7. The forbidden page

 31

The login subsystem

The core part of this subsystem is the Login servlet. It talks to the database and creates the

session object when necessary. The session object contains the user’s name and the user’s

group name.

A user is redirected to the login subsystem when it has not got assigned the session object.

The Login servlet may redirect the user back to the welcome page if the login attempt is

successful or to the forbidden page, if he/her has not granted access to the system.

Figure 8. The login subsystem

When user try to login to the system for the first time, he/she is displayed the login page. A

database registered user fills in the proper fields with his/her login and password and then

submits them. An anonymous user can also login typing anonymous as the login and the

password.

 32

Figure 9. The login page

The login subsystem can be called when the user has been associated the session object

already. In this case he/she is displayed the logout/relogin page.

Figure 10. The logout/relogin page

The manager subsystem

The manager subsystem is the centre of the application. Only registered user of the

“manager” user’s group can access the manager. Calling the Manager servlet without any

parameters makes it displaying the manager menu.

Figure 11. The manager menu

 33

An unauthorised user is redirected to the forbidden page when he/she tries to call the

manager. A user who is not logged in the system, is redirected to the login subsystem.

Figure 12. The manager subsystem

The authorised user is able to do several things. First of all, he/she can create a new or edit

an existing test. The tests available for editing are only those, which have not been deployed

yet. In the case of attempt to edit a deployed test, the user is redirected to the forbidden

page. The test editor page allows changing the author, date, title, description, notice and

warning of the test. It also allows creation of new questions or editing the existing ones.

There are three kinds of the question editor screens depending on the question type.

 34

Figure 13. The test editor

Figure 2.9. The external evaluation question editor

 35

Figure 14. The string match question editor

Figure 15. The single and multiple choice question editor

 36

Apart from creation and editing of tests, there are other options available in the manager

menu. A non-deployed test may be deleted – physically removed from the file system. The

test which is not deployed, may be also made available for use; in other words, it may be

deployed. Deployment involves creation of a database table named after the name of the

XML file containing the test. A test may be also un-deployed and in that case the table with

its results is dropped.

The most important part of the system is, by far, the result checker. It gives access to

system’s users’ results. Basically, it reads users’ answers from the database, evaluates them,

calculates statistics and then displays everything in the web browser window. If the test

contains questions for external evaluation and if such questions have been answered, a

buttons appears in the question’s column; clicking such button opens a window with the

answer.

Figure 16. The results checker

Figure 17. The result checker – an external evaluation type question

 37

The testing system

Figure 18. The testing subsystem

 38

The testing subsystem is composed of three servlets. The Presenter is responsible for XML

processing including unmarshalling XML document into Java objects. These objects are

then put into the session object and uses by the other servlets in the later processing. The

transformation from XML to HTML is based on the XSL style sheet. As the result of this

transformation the system’s user is presented the HTML page built up of the test’s

introductory part and a sequence of forms followed by the submit and reset buttons.

Figure 19. The sample of generated test’s introductory part

Figure 20. The sample of generated single choice question form (with the notice)

Figure 21. The sample of generated multiple choice question form

 39

Figure 22. The sample of generated string match question form

(with the notice and the preset suggestion)

Figure 23. The sample of generated external evaluation question form (with the notice)

Figure 24. The submit and reset buttons

The Checker servlets process the response generated by the HTML test form filled in by a

user. It marks user’s answers inside the test object, which is kept in the session, so that the

answers are available to the next servlet in the processing chain. The Checker servlet also

looks after validity of the user’s answers. If the given answer is valid the Acceptor servlet is

invoked. In the case of the invalid answer, the question form is redisplayed to the user with

the main test’s warning and warnings of proper questions being set up. The answer is

considered to be invalid when:

• no answers have been checked in single or multiple choice question,

• “don’t know” answer was checked along with other answers,

• illegal characters have been found within filled in text fields (those illegal chapters

are [‘] and [“] – they may potentially disturb communication with the database) .

The mentioned illegal characters are converted to [#], when the test form is redisplayed.

 40

Figure 25. Redisplayed sample multiple choice question

Figure 26. Redisplayed sample string match question

The Acceptor servlet is the last one in the chain. Its first task is to save user’s answers in the

database’s table. Then depending on the user’s group, it shows the confirmation page or the

results page for the anonymous type of user.

Figure 27. The confirmation page

Figure 28. The results page

 41

2.2. The implementation

2.2.1. The XML test’s structure

The chosen format for tests’ storage is XML. The main reason behind this decision is that

the XML is both very convenient for data storage and its processing (XML companion

standards provide the means of doing it).

XML structure is defined by tags, as in the case of HTML. Tags can also contain attributes,

which are additional information included as part of the tag itself, within the tag's angle

brackets.

The vital issue, which one encounters when designing an XML structure, is whether to

model a given data item as an element or as an attribute of an existing element. After many

hours of working with the XML test data and as the result of decided question types and

peculiarities of following JAXB processing, the final structure for test storage seems to be

the one presented below.

<test name="value">
 <author>value</author>
 <date>value</date>
 <title>value</title>
 <description>value</description>
 <notice>value</notice>
 <warning>value</warning>
 <question type="value" value="value">
 <title>value</title>
 <description>value</description>
 <notice>value</notice>
 <warning>value</warning>
 <answer contents="value" display="value">value</answer>
 …

 </question>
 …

</test>

The figure on the next page presents graphical representation of the structure excluding the

attributes.

 42

Considering the test structure, a few things need to be explained. First of all the elements

themselves. Although their structure is well shown by the above figure, there some other

issues left and those are discussed by the table below

tag’s name subelement
of mandatory multiple

instances type description of
element’s content

test - yes no text -

date test yes no text
date of test’s

creation
/modification

title test yes no text test’s title

description test no no text test’s
description

notice test no no text test’s notice
warning test no no text test’s warning
question test yes allowed - -
title question yes no text question’s title

description question no no text question’s
description

notice question no no text question’s
notice

answer question yes allowed text

for single
/multiple

choice question
contains what is
displayed as a
possible answer

Some of the elements contain attributes. They may be optional or obligatory and they might

have default values. The peculiarities of the attributes are exposed in the next table.

Figure 29. The test structure

 43

ta
g’

s n
am

e

at
tr

ib
ut

e

of

ty
pe

ob
lig

at
or

y

de
fa

ul
t

va
lu

e

de
sc

ri
pt

io
n

t
e
s
t

n
a
m
e

- text no -
keeps test’s
name when test
is processed

t
y
p
e

-

enumeration
(singleChoice |
multipleChoice |
stringMatch |

externalEvaluation)

yes - indicates type
of the question

q
u
e
s
t
i
o
n

v
a
l
u
e

- float no 1.0 how much is the
question worth

single
/multiple
choice
question

text
(true | false |

dontKnow)
no false

indicates if
answer is
correct, wrong
or of “don’t
know” type

string
match

question
text yes - contains the

right answer

c
o
n
t
e
n
t
s

external
evaluation
question

- - - -

single
/multiple
choice
question

text
(checked) no -

if is set makes
the answer to be
checked when the
HTML form is
displayed

string
match

question
text no - may contain

suggestion

a
n
s
w
e
r

d
i
s
p
l
a
y

external
evaluation
question

text no - may contain
suggestion

 44

2.2.2. DTD and XML Schema

A XML structure may be accompanied by DTD or XML Schema to impose some

constraints on it. Although this project’s application does not involve directly none of these

two standards, the DTD (see Appendix A.1.2) is needed for the JAXB part of the project.

Nevertheless XML Schema (see Appendix A.1.1) is not necessary at all for the time being,

it has been worked out, since it is very likely that feature versions of JAXB will use it.

Referencing

Just for integrity of this report, the following line shows how DTD can be bound to the

sample XML document; this line is supposed to be placed within the prolog.
 <!-- <!DOCTYPE test SYSTEM "http://[...]/test.dtd"> -->

The XML Schema declaration is placed as an attribute of the test tag.
 <test xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://[...]/test.xsd">

DTD versus XML Schema

A comparison between the two standards on the base of fragments that describe the same

part of XML structure, demonstrates some important differences between them. The DTD

for question element (including its attributes) is shown next.
 <!ELEMENT question (title, description?, notice?, warning?, answer+) >
 <!ATTLIST question
 type (singleChoice | multipleChoice | stringMatch |
 externalEvaluation) #REQUIRED
 value CDATA "1.0" >

The corresponding XML Schema description is more complicated but is more precise by the

way; writing it is much more time-consuming.
<xsd:complexType name="questionType">
 <xsd:sequence>
 <xsd:element name="title" type="titleType"/>
 <xsd:element name="description" type="descriptionType" minOccurs="0"/>
 <xsd:element name="notice" type="noticeType" minOccurs="0"/>
 <xsd:element name="warning" type="warningType" minOccurs="0"/>
 <xsd:element name="answer" type="answerType" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="typeAttribute" use="required"/>
 <xsd:attribute name="value" type="valueAttribute" use="optional"
 default="1.0"/>
</xsd:complexType>

 45

<xsd:simpleType name="typeAttribute">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="singleChoice"/>
 <xsd:enumeration value="multipleChoice"/>
 <xsd:enumeration value="stringMatch"/>
 <xsd:enumeration value="externalEvaluation"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="valueAttribute">
 <xsd:restriction base="xsd:decimal"/>
</xsd:simpleType>

First of all, XML Schema allows precise definition of type of elements’ content and their

attributes. While the DTD tells only that value attribute is character data, the schema

confines its values to the decimal type only. Secondly, XML schema provides exact control

over how many occurrences of an element are allowed.

 46

2.2.3. JAXB

One might say that the project is JAXB based. Basically, JAXB allows mapping between

XML documents and Java objects. A part of JAXB is the schema compiler which translates

XML document structure (DTD precisely) into one or more Java classes.

The Binding Schema

Since DTD’s constraints on structure of a XML document are often ambiguous, there is a

need for the binding schema. The schema devised for the test’s structure (see Appendix

A.1.3) is a simple one. It completes the DTD by specifying that the type attribute of the

question element is an enumeration containing four elements.
 <element name="question" type="class" >
 <attribute name="type" convert="questionType" />
 …
 </element>
 <enumeration name="questionType" members="singleChoice multipleChoice
 stringMatch externalEvaluation"/>

Thanks to this declaration, as the result of generation of the processing codes, another,

questionType, Java class is created; some changes are also made within generated Question

class. The project’s binding schema also tells the schema compiler that the value attribute is

to be converted to the float type.
 <element name="question" type="class" >
 …
 <attribute name="value" convert="float"/>
 </element>

Generate Processing Codes

It is done by simple invocation of the schema compiler.

Considering the Question class for example, it has got generated internal variables that

reflect elements and attributes of the question structure.
 private questionType _Type;
 private float _Value;
 private boolean isDefaulted_Value = true;
 private final static float DEFAULT_VALUE = Float.parseFloat("1.0");
 private String _Title;
 private String _Description;
 private String _Notice;
 private String _Warning;
 private List _Answer = PredicatedLists.createInvalidating(this,
 new AnswerPredicate(), new ArrayList());

 47

Elements and attributes are usually converted into String objects. In this case, there are a

few exceptions. The value attribute has been transformed into the float type as the result of

the declaration within the binding schema. Moreover, it has assigned default value taken

from the DTD. Since the answer element may appear more that once within the question, it

is represented as a list of objects of the Answer class, which is also created during

compilation.

Generated Java classes need to be compiled by the standard Java compiler in order to obtain

actual Java classes, which can be use then.

Working with generated classes

Once having the classes one can do several things with them. XML document may be

decomposed into objects and this process is called unmarshalling. When XML file needs to

be unmarshalled, the unmarshalFile method is invoked.
 private Test unmarshalFile (FileInputStream data)
 throws UnmarshalException
 {
 Test test = new Test();
 test = test.unmarshal(data);
 return test;
 }

Sometimes there is necessity for creation of a new element. In such circumstances a new

instance of needed class is created, by just calling its constructor.

Having document as Java objects one can manipulate its elements and their attributes by

simply calling proper methods, that have been automatically generated during compilation.

Those methods allow setting values or getting them. If the elements are kept on the list, as it

is with the answer objects kept within the question one, the Java language itself provide

convenient ways of dealing with that.
 for(ListIterator j = question.getAnswer().listIterator(); j.hasNext();)

 {

 Answer answer = (Answer)j.next();

 …

 }

If one is to get the first element, another Java syntax is used.
 Answer answer = (Answer)(question.getAnswer().get(0));

 48

Before marshalling objects into XML file, the Java object representation has to be verified if

conforming with the DTD. It is performed just by calling validate method of test object

(assuming validation of the test structure).

Marshalling to a XML document is again a trivial task. For the project purposes there is

saveTest method prepared that takes care about that.
 private void saveTest(Test test)
 throws IOException
 {
 String testName = test.getName();
 String docsPath = getServletContext().getRealPath("/docs");
 File file = new File(docsPath + "/" + testName + ".xml");
 FileOutputStream fileOutputStream = new FileOutputStream(file);
 test.marshal(fileOutputStream);
 fileOutputStream.close();
 return;
 }

 49

2.2.4. XSL

The XSL style sheet (see Appendix A.1.4) is used for transformation from XML data

representation of the test into its displayable HTML form. In fact, since XML has strict

syntax, the result of XSLT is in XHTML format, rather than HTML.

The style sheet

An exemplary fragment of the sample XML file, is listed next.
 <question type="singleChoice" value="1.0">
 <title>A botanical challenge</title>
 <description>Check a thing which is not a plant</description>
 <notice>This is a compulsory question</notice>
 <answer contents="true">A radiator</answer>
 <answer>A larch</answer>
 </question>

The XSLT results in XHTML code given below.
 <h3>1. A botanical challenge (1 point)</h3>
 <p>Check a thing which is not a plant</p>
 <blockquote>
 <i>This is a compulsory question</i>
 </blockquote>
 <p>
 <input value="1" name="q1" type="radio">A radiator

 <input value="2" name="q1" type="radio">A larch

 </p>

As it can be seen, the transformation itself is not straightforward. The HTML tags are not

just the XML’s one but of different names. There are much more going on than only

conversion of tags’ names. The part of the XSL sheet which handles conversion of a

question is presented next.

 <xsl:template match="question">
 <xsl:variable name="questionPosition" select="position()"/>
 <hr/>
 <h3>
 <xsl:number value="$questionPosition" format="1. "/>
 <xsl:value-of select="title"/>
 <xsl:call-template name="points">
 <xsl:with-param name="value" select="@value"/>
 </xsl:call-template>
 </h3>
 <xsl:apply-templates select="description | notice | warning"/>
 <p>
 <xsl:apply-templates select="answer">
 <xsl:with-param name="questionNumber" select="$questionPosition"/>
 </xsl:apply-templates>
 </p>

 </xsl:template>

 50

The second line creates a variable that keeps question number within the test. The variable

is then used to number question (the format chosen is of the XSL type “1. “) and when

answer template is being called. At some stage the points template is called. This template is

responsible for displaying how much is question worth.
 <xsl:template name="points">
 <xsl:param name="value" select="UNDEFINED"/>
 <xsl:choose>
 <xsl:when test="$value>='2.0'">
 (<xsl:value-of select="$value"/> points)
 </xsl:when>
 <xsl:otherwise> (1 point)</xsl:otherwise>
 </xsl:choose>
 </xsl:template>

Finally, there are four types of the answer template. One of them, used when a single

choice question is being displayed is given next.
 <xsl:template
 match="answer[parent::node()/attribute::type='singleChoice']"
 <xsl:param name="questionNumber" select="UNDEFINED"/>
 <xsl:choose>
 <xsl:when test="attribute::display='checked'">
 <input type="radio" name="q{$questionNumber}" value="{position()}"
 checked=""/><xsl:value-of select="."/>

 </xsl:when>
 <xsl:otherwise>
 <input type="radio" name="q{$questionNumber}"
 value="{position()}"/><xsl:value-of select="."/>

 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

One can see the use of the XPath language when the template is being matched to the

question type and later to determine answer’s position within the question element.

Exhaustive description of the XSL sheet could possibly take ten more pages, but for the

sake of report’s compactness, only two more things are mentioned.

Since the final result of the XSL transformation is supposed to be HTML, the sheet hat to

inform the XSL processor about that.
 <xsl:output method="html" encoding="ISO-8859-1"/>

The encoding attribute sets the character encoding for the output method.

In order to produce valid HTML page, when the root of the XML document is being

processed, the skeleton of the HTML page is generated.

 51

 <xsl:template match="/">

 <html>
 <head>
 <title><xsl:value-of select="test/title"/></title>
 <link rel="StyleSheet" href="conf/style.css" type="text/css"
 media="screen"/>
 </head>
 <body>
 <xsl:apply-templates select="test"/>
 </body>
 </html>
 </xsl:template>

The Java code

The XSLT is implemented by the performXSLT method. This method is used within the

Presenter and Checker servlets.

 private void performXSLT (InputStream data, InputStream style,
 Writer result)
 throws TransformerConfigurationException, TransformerException
 {
 StreamSource dataSource = new StreamSource(data);
 StreamSource styleSource = new StreamSource(style);
 StreamResult transformResult = new StreamResult(result);

 TransformerFactory tFactory = TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer(styleSource);

 transformer.transform(dataSource, transformResult);
 }

 52

2.2.5. The database and SQL

The tables

The system uses a set of tables. An obligatory table is the one named “systemusers”. It

keeps users’ names, passwords and information about groups that users belong to. A user

can follow into two categories of groups – the “manager” group and the rest of users. The

manager kind of user has an access to the manager subsystem while other users can access

only the testing part (and of course the login subsystem).

The table below shows the structure of the table.

For the testing purposes some basic table was created and two users were set .

The deployment of a test involves creation of a database table. The table presented below

was created during deployment of the sample test (see Appendix A.2.1). As it can be seen

users’ answers are stored as strings of a maximum length of 255 characters, which is

specified by the varchar(255) type. The exception is the question for external evaluation

and such question’s answer is saved in the column of the text type, which allows 65535

characters. The table’s name corresponds to the name of the XML file with the test.

 53

Some results stored in the table are presented below. One can see that in the case of single

and multiple choice questions, the atomic answers are separated by [#].

The SQL queries

The SQL queries in this project are simple and are about five things, namely:

• listing existing tables;
SHOW TABLES;

• creation of a table;

an exemplary query for the table of the sample test (see Appendix A.2.1)
CREATE TABLE test (

user VARCHAR(30) NOT NULL,

q1 VARCHAR(255) NOT NULL,

q2 VARCHAR(255) NOT NULL,

q3 VARCHAR(255) NOT NULL,

q4 TEXT NOT NULL);

• deletion of a table;
DROP TABLE [table_name];

• inserting data into a row of the table;
INSERT INTO [table_name] VALUES ('[user_name]', '[q1_answer]',

'[q2_answer]' , …, '[qN_answer]');

• extracting data from table;
SELECT password,usergroup FROM systemusers

 WHERE user='[user_name]';

 or
 SELECT * from [table_name];

 54

The Java code

The Java code responsible for connection to the database usually looks like this, presented

below.

 Connection conn = DriverManager.getConnection(dbURL, dbUser,
 dbPassword);
 Statement stmt = conn.createStatement();
 ResultSet rs = stmt.executeQuery(“[SQL query]");

 while (rs.next())
 {
 …
 }

 rs.close();
 stmt.close();
 conn.close();

In the case of creation or deletion of a table, the execute method of Statement object is

invoked; for inserting new data into table executeUpdate method is used.

 55

2.2.6. The servlets

The system is made up of several servlets, which share application’s functionality.

Essentially, one can distinguish three parts of the system. The first one is responsible for

authentication of system’s user and this part includes the Login servlet. The next part, made

up of the Manager servlet, serves as system’s configuration centre and it is used for

creation, deployment and editing of tests. It also allows checking tests’ results and obtaining

some tests’ statistics. The last part containing the Presenter, Checker and Acceptor servlets,

works for actual testing – it is responsible for displaying tests to the system’s users, for

checking validity of users’ answers, for displaying results when it is appropriate (for

anonymous users) and finally for sending users’ answers to the database.

The Login servlet

GET request:

→ try to obtain the session object

→ try to extract the "ie.dcu.slawek.user" attribute from the session

→ if the attribute exists, display the logout/relogin page

→ if there is no attribute, display login page

POST request:

→ try to obtain the session object; if the session has been found, it is invalidated

→ look for request’s parameter named "logout"; if it exists, redirect user to the index page

and quit the servlet

→ extract "user" and "password" parameters from the request

→ if anonymous user has been detected (user: anonymous, password: anonymous), set the

user group as anonymous

→ if the user parameter indicates other than anonymous user, check database for password

and group of given user

→ compare given password with this extracted from the database

→ if the passwords are not equal, redirect user to the forbidden page and quit the servlet

→ if password matches, create session object and set "ie.dcu.slawek.user" and

"ie.dcu.slawek.usergroup" attributes, redirect user to the index page and quit the servlet

 56

The Manager servlet

GET request:

→ invoke the doPost method passing it the request and the response objects

POST request:

→ try to obtain the session object; if the session has not been found, redirect user to the

Login servlet and quit this servlet

→ try to get the string with the user’s name kept within the "ie.dcu.slawek.user" attribute;

if it cannot be done, redirect user to the Login servlet and quit this servlet

→ try to get the string with the user’s group kept within the "ie.dcu.slawek.usergroup"

attribute; if it cannot be done, redirect user to the Login servlet and quit this servlet

→ look for following parameters in the request and take proper action if one is found:

→ "newTest" found, take the same steps as for "editTest"

→ "deleteTest" found, delete the test file

→ "editTest" found:

→ look request’s parameter named "testName"; if it exists:

→ if the corresponding XML file exists:

→ if the test is deployed, redirect user to the forbidden page and quit the

servlet

→ if the test not deployed:

→ perform unmarshalling of XML file with the test

→ set the name attribute of the test object to the name of the file

→ if there is no proper XML file:

→ create a new test object

→ set the test’s name to the value of "testName" parameter

→ set the test’s author to the value of the "ie.dcu.slawek.user" session

attribute

→ set the test’s date to actual date

→ set the test’s tile to the value of "testName" parameter

→ put the test object onto the session

→ display the test

 57

→ if the "testName" parameter does not exist:

→ "printTest" found, display the test

→ "testTitle" found, set the test’s title

→ "testAuthor" found, set the test’s author

→ "testDate" found, set the test’s date

→ "testDescription" found, set the test’s description

→ "testNotice" found, set the test’s notice

→ "testWarning" found, set the test’s warning

→ "deleteQuestion" found, delete the question

→ "editQuestion":

→ extract question’s number from "editQuestion" parameter

→ get the questions’ list from the test object

→ if the question’s number is equal to 0:

→ instantiate a new question

→ get the list of its answers

→ instantiate a new answer

→ put the answer on the answers’ list

→ get "questionType" parameter’s value and set the question type

accordingly

→ set the question’s title

→ put the question on the questions’ list

→ if number of the question is greater than 0

→ "questionTitle" found, set the question’s title

→ "questionValue" found, set the question’s value

→ "questionDescription" found, set the question’s description

→ "questionNotice" found, set the question’s notice

→ "questionWarning" found, set the question’s warning

→ "deleteAnswer" found, delete the answer

 58

→ "editAnswer":

→ extract answer’s number from "editAnswer" parameter

→ get the answer’ list from the question object

→ if the answer’s number is equal to 0:

→ instantiate a new answer

→ put the answer on the answers’ list

→ if number of the answer is greater than 0:

→ set the answer’s content accordingly to the value of the

"answerContent" parameter

→ set the answer contents accordingly to the value of

"answerContents" parameter

→ set the answer’s display accordingly to the value of

"answerDisplay" parameter; if this parameter is equal to "

"null" set the answer’s display to an empty string

→ display the question accordingly to its type

→ "saveTest" found:

→ validate the test object

→ marshal the test object to the XML file

→ remove the test object from the session

→ "discardTest" found, remove the test object from the session

→ "deployTest" found, deploy the test

→ "undeployTest" found, undeploy the test

→ "checkResults" found, get, evaluate and display the test’s results [complex task]

→ call the Manager servlet itself without any parameters

→ there is no in the request, display the menu screen

 59

The Presenter servlet

GET request:

→ look for request’s parameter named “testFileName”;

→ if the parameter does not exist, redirect user to the index page and quit the servlet

→ if parameter exists, invoke the doPost method passing it the request and the response

objects

POST request:

→ look for request’s parameter named “testFileName”; if the parameter does not exist,

redirect user to the index page and quit the servlet

→ try to obtain the session object; if there is no session object created redirect user to

forbidden page and quit the servlet

→ check with the database if the test has been deployed; if not, redirect user to forbidden

page and quit the servlet

→ perform unmarshalling of XML file with the test

→ set the name attribute of the test object to the name of the file

→ validate the test object

→ put the test object onto the session as ie.dcu.slawek.test attribute

→ get the writer

→ invoke XSL transformation passing it the XML document, XSL style sheet and the

writer

 60

The Checker servlet

GET request:

→ redirect user to the forbidden page and quit the servlet

POST request:

→ try to obtain the session object; if there is no session object created, redirect user to

forbidden page and quit the servlet

→ try to get the test object kept within the "ie.dcu.slawek.test" session’s attribute; if it

cannot be done, redirect user to forbidden page and quit the servlet

→ check for answers validity and mark test object to reflect user answers [complex task]

by setting the answers’ display attributes

→ if answer is valid:

→ update the test object kept in the session

→ invoke the Acceptor servlet and quit this servlet

→ if answer is invalid:

→ marshal the test object to memory

→ get the writer

→ invoke XSL transformation passing it the XML document from the memory, XSL

style sheet and the writer

 61

The Acceptor servlet

GET request:

→ try to obtain the session object; if there is no session object created, redirect user to

forbidden page and quit the servlet

→ try to get the string with the user’s name kept within the "ie.dcu.slawek.user" attribute;

if it cannot be done, redirect user to forbidden page and quit the servlet

→ try to get the test object kept within the "ie.dcu.slawek.test" session’s attribute; if it

cannot be done, redirect user to forbidden page and quit the servlet

→ prepare string that contain answers of all the questions [complex task]

→ send the answers to the database

→ if the "ie.dcu.slawek.user" session’s attribute indicates an anonymous user, evaluate

results [complex task] and display the results page

→ for all other users different than the anonymous one, show the confirmation page

POST request:

→ redirect user to the forbidden page and quit the servlet

 62

Answer evaluation algorithm

→ iterate through all question’s answers
 for(ListIterator j = question.getAnswer().listIterator(); j.hasNext();)
 {
 Answer answer = (Answer)j.next();
 …
 }

→ for each answer check if the user has chosen it
 if ((new String("checked")).equals(answer.getDisplay()))
 {…}
 else
 {…}

→ if it is chosen but it is a wrong answer, mark the question as failed
 if (!((new String("true")).equals(answer.getContents())))
 {answerFailed=true;}

→ if chosen and it is a “don’t know” type answer, mark the question as unanswered and

keep a record of presence of such answer
 if ((new String("dontKnow")).equals(answer.getContents()))
 {
 dontKnowChosen = true;
 dontKnowCount++;
 }

→ if answer was not chosen but it is the right one, mark the question as failed
 if ((new String("true")).equals(answer.getContents()))
 {answerFailed=true;}

→ if it is not chosen and it is “don’t know” type answer keep a record of presence of such

answer
 if ((new String("dontKnow")).equals(answer.getContents()))
 {dontKnowCount++;}

→ if the answer was not marked as failed or unanswered, it is correct one

 63

Final mark computation algorithm

→ determine numbers of answers excluding “don’t know” type ones
 answersNo = (question.getAnswer().size()) - dontKnowCount;

→ if the user has chosen “don’t know” answer, assign 0 points to the question
 if (dontKnowChosen)
 mark = 0;

→ if the user has given a wrong answer, assign to the mark of this question negative value

of the penalty calculated for this question
 if (answerFailed)

 mark = -penalty;
the penalty for a single choice question:

1_
1

−
=

numberanswers
penalty

the penalty for a multiple choice question:

22
1

_ −
= numberanswerspenalty

→ if the answer chosen was not of “don’t know” type and was not wrong one, assign one

point to the question

→ multiply the number of points by the value of the question to get the final question’s

mark
 mark *= question.getValue();

 64

Exceptions handling

The vital issue of every application is its ability to cope with any kind of errors. During

development of this application, much effort was devoted to make it stable and robust.

Nevertheless, there are situations, when because of the web server or the database failure an

error may occur.

Fragments of code, where an error may happen are enclosed within try statement scope. If

an error occurs, the exception’s message is send to the web browser (if that is possible) and

to the server’s console.
 try
 {
 …
 }
 catch (Exception ex)
 {
 try
 {response.sendError(response.SC_INTERNAL_SERVER_ERROR,
 ex.getMessage().toString());}
 catch (Exception exceptionMessageEx)
 {System.err.println(exceptionMessageEx.getMessage().toString());}
 finally
 {System.err.println(ex.getMessage().toString());}
 }

Writer configuration

Since output of all the project’s servlets is dynamically generated and is of HTML type, the

response content type is set to text/html and the response is marked as not cacheable to

proxy servers and clients by setting an HTTP header pragma: no-cache.

 65

2.2.7. Other technologies incorporated into the project

CSS

Cascading Style Sheets play a small role in this project. There is one style shet created (see

Appendix A.1.5) and it is responsible for modelling apperance of HTML pages, those static

and those created dynamically as well. Results of formatting done by the CSS are shown

next.

Figure 30. Unformatted HTML page.

Figure 31. HTML page formatted by the CSS style sheet.

 66

JavaScript

JavaScript is a script language designed specifically for Internet documents. Scripts written

in this language can be embedded inside HTML pages. In general, the JavaScript language

brings many new elements to the web pages.

The part of the manager subsystem, which is designed for checking tests’ results, uses

JavaScript to create a new web browser window, when one needs to check an answer of the

question for an external evaluation.

function winOpen(userName, answer)
{
 msg=open("","","toolbar=no,directories=no,
 "menubar=no,scrollbars=yes,width=512,height=200");
 msg.document.write("<HTML><HEAD><TITLE>"+username+"</TITLE></HEAD>\");
 msg.document.write("<BODY><P>"+answer+"</P></BODY></HTML>\");
}

The function presented above is called when a user clicks the button of the HTML form
shown below.

<FORM>
 <INPUT TYPE=BUTTON VALUE="Check it"
 ONCLICK="winOpen('[username]','[userAnswer]')">
</FORM>

 67

Chapter 3

3. Installation and configuration

3.1. Software

3.1.1. Microsoft Windows98

All software run under Microsoft Windows98 operating system.

The autoexec.bat file was suitably modified to set necessary paths and environmental

variables.
PATH C:\J2SDK\BIN;C:\TOMCAT\BIN;C:\JAXB\BIN;C:\WINDOWS;C:\WINDOWS\COMMAND;
SET JAVA_HOME=C:\J2SDK
SET CATALINA_HOME=C:\TOMCAT
SET JAVACMD=C:\J2SDK\BIN\java
SET CLASSPATH=C:\DEVELOP;C:\TOMCAT\COMMON\LIB\SERVLET.JAR;
 C:\MYSQL\JDBC_LIB\MYSQL_~1.JAR;
 C:\JAXB\LIB\JAXB-R~1.JAR;C:\JAXB\LIB\JAXB-X~1.JAR;

3.1.2. Sun Java 2 SDK

Java 2 Platform Standard Edition, version 1.4.0_01 has been installed on the machine. The

chosen installation directory was C:\J2SDK and some changes were made to the

autoexec.bat file (see section 3.1.1).

3.1.3. Sun Java Architecture for XML Binding

An early-access release of Sun's implementation of JAXB, the Java Architecture for XML

Binding, has been installed to the C:\JAXB directory. The autoexec.bat file was then

updated (see section 3.1.1).

3.1.4. Apache Tomcat web server

This project is based on Tomcat 4.0, a server that implements the Servlet 2.3 and JSP 1.2

Specifications from Java Software. The server has been installed into a C:\TOMCAT

directory.

In order to install tomcat, a Java Development Kit (JDK) release of version 1.2 or later, has

to be already installed in the system. An environment variable named JAVA_HOME has to

be set to the pathname of the directory into which the JDK release has been installed (see

section 3.1.1).

 68

Finally, to avoid an “out of environment space" error when running the batch files that start

and stop the Tomcat server, in Windows98, the "Initial environment" property of the

shortcut to those batch files, needs to set to 4096.

Some changes were made to server.xml configuration file in the subdirectory conf; the

server’s port number has been changed to 80 and automatic reloading of project’s classes

has been enabled.
<Connector className="org.apache.catalina.connector.http.HttpConnector"
 port="80" minProcessors="5" maxProcessors="75"
 enableLookups="true" redirectPort="8443"
 acceptCount="10" debug="0" connectionTimeout="60000"/>

<!-- Slaweks Application Context -->
<Context path="/testing" docBase="elearn" debug="0" reloadable="true">
 <Logger className="org.apache.catalina.logger.FileLogger"
 prefix="testing_log." suffix=".txt" timestamp="true"/>
</Context>

3.1.5. MySQL Database

The system cooperates with the MySQL database software. The choice for this database was

made because of several reasons. Firstly, this relational database management system is

compact; it takes only around 30 MB of disk space. Secondly, it is Open Source Software,

so it can be downloaded and used by everyone without paying anything (except for

commercial purposes). Finally, the MySQL software is fast, reliable, and easy to use.

A MySQL database system has been installed to the C:\MYSQL directory. Then the

JDBC_LIB subdirectory was created and a copy of a MySQL JDBC library was placed

there. Next, some changes were made to the autoexec.bat file (see section 3.1.1). Finally,

the MyODBC driver has been installed into the operating system.

For the purposes of the project, elearn database has been created along with its user servlet

and its password sheriff. Lastly, the systemusers table has been prepared (see section 2.2.5).

3.2. Hardware

The project was implemented on a Dell Latitude CPi laptop equipped with Intel PentiumII

processor, 128 MB RAM and 5GB HDD. This computer was fast enough to easily handle

Tomcat web server and MySQL database.

 69

Chapter 4

4. Conclusions
The initially stated assumptions for this project have been met. The final application works

and, what is most important, is stable and robust. Although the report does not describe

directly development steps that were devoted to errors’ handling, the final result can be seen

in the algorithms’ description and in the code itself.

The application was supposed to be flexible and user-friendly as well. The final product

may be considered to come up to these assumptions. The part of the system, which is

responsible for the managing, is easy to use and equipped with most vital functions.

One of the major project’s goals was an investigation of possibilities that XML provides.

XML is the format chosen for tests’ storage. Eventually, it turned out that it was an

excellent choice. XML offers a great flexibility for a developer and allows implementing

almost every data structure. The real strength of XML is its companion standards and

availability of software libraries with their implementation. The XSL provides a way for

conversion XML document into some other document. This project makes use of the XSL

transform to produce a HTML page containing questions’ forms that are displayed to the

end user of the system. Since proper Java libraries have been developed, such conversion is

almost straightforward to implement.

The JAXB, although not finally released, does work fine. This technology is truly useful and

makes developer’s life much easier. The help that JAXB provides for XML processing

could not be overestimated. Hopefully, the next release will include support for XML

Schema, which theoretically could even further simplify using the XML binding by

simplifying Binding Schema for given XML structure (XML Schema is more exact than

DTD, so fewer ambiguities needed to be clear up by Binding Schema).

The project is about server-side development. The application consists of several Java

servlets. These are programs that extend web server functionality and, since they are normal

Java programs, they can potentially do any kind of work.

 70

The servlets of the project perform XML processing and talk to the database. As many other

servlets, they use methods of the Servlet API for HTTP requests’ processing and session

management.

There is a big room for improvement considering code of the servlets. First of all, the

Manager servlet may be decomposed into two parts and one of them might be responsible

only for tests’ editing while the other would handle remaining functionality of the manager.

The other improvement, which could simplify the code, would be connected to JAXB. It is

possible to extend the derived Test class and to move some servlets’ methods, especially

those responsible for users’ answers validation and evaluation, to its body.

The database part of the system may also be improved. The passwords are stored in

plaintext in the table. From the security point of view, only passwords’ digests, produced by

MD5 or another one-way hashing function, should be kept in the database.

The project touches on many modern and interesting technologies and for me, the author, it

gave a great opportunity to explore those techniques and to do something useful at the same

time.

 71

References
[1] W3C Recommendation, “Extensible Markup Language (XML) 1.0”, February 1998,

http://www.w3.org/TR/1998/REC-xml-19980210.html

[2] W3C Recommendation, “Extensible Stylesheet Language (XSL) 1.0”, October

2001, http://www.w3.org/TR/2001/REC-xsl-20011015/xslspec.html

[3] W3C Recommendation, XSL Transformations (XSLT) 1.0”, November 1999,

http://www.w3.org/TR/1999/REC-xslt-19991116.html

[4] “The JavaTM Web Services Tutorial”, Sun Microsystems, June 2002,

http://java.sun.com/webservices/downloads/webservicestutorial.html,

[5] Elliotte Rusty Harold, “XML Bible, Gold edition”, November 2001

[6] Elliotte Rusty Harold and W. Scott Means, “XML in a Nutshell”, January 2001

[7] Eric Armstrong , “The Java API for Xml Processing (JAXP) Tutorial”, December

2001, http://

[8] “Document Type Definition (DTD) Tutorial”, TheScarms, October 2000,

http://www.thescarms.com/XML/DTDTutorial.asp

[9] Miloslav Nic, “DTD Tutorial”, Zvon,

http://teachwww.cogs.susx.ac.uk/vs/it/dtdZvonTut.html

[10] “DTD Tutorial”, W3Schools, http://www.w3schools.com/dtd/default.asp

[11] “An XML Schema Tutorial”, TheScarms, October 2000,

http://www.thescarms.com/XML/SchemaTutorial.asp

[12] “XML Schema Tutorial”, W3Schools,

http://www.w3schools.com/XMLSchema/default.asp

[13] Benoît Marchal, “XML by Example”, Que, 2000

[14] “Kurs języka XML”, Paweł Stroiński, 2001, http://www.pabloware.w.pl

[15] „Prezentacja XML & XSL”, Bartłomiej Bóbski and Tomasz Zieliński, http://

[16] „The Java™ Architecture for XML Binding User’s Guide”, Sun Microsystems, May

2001

[17] “Data binding with JAXB”, IBM, http://www-105.ibm.com/developerWorks

[18] Sam Brodkin, “Use XML data binding to do your laundry”, JavaWorld, December

2001, file:///D:/temp/JAXB/Use_JAXB_to_do_your_laundry/jw-1228-jaxb.zip

[19] “The JavaTM Tutorial, Trail: Servlet”, Cynthia Bloch and Stephanie Bodoff, Sun

Microsystems, , http://java.sun.com/docs/books/tutorial/index.html

 72

[20] „Servlet Essential, v.1.3.5“, Stefan Zeiger, http://www.novocode.com/doc/servlet-

essentials

[21] “Tutorial on Servlets and JSP”, Marty Hall, 1999, http://

[22] “Fundamentals of Java™ Servlets”, MageLang Institute,

http://www.jguru.com/portal/index.html

[23] “Servlet Tutorial”, AcknowledgeTECHNOLOGIES, 2002,

http://www.acknowledge.co.uk/download/'

[24] “MySQL Reference Manual”, MySQL AB, 2001, http://www.mysql.com

[25] Maydene Fisher, “The Java Tutorial, Trail: JDBC(TM) Database Access”, Sun

Microsystems, http://java.sun.com/docs/books/tutorial/index.html

[26] David Cornelius, “Introduction to SQL”,

http://www.corneliusconcepts.com/study/IntroToSQL/

[27] Paweł Wimmer, “Kurs HTML”, PC Kurier, 2001,

http://www.pckurier.pl/html/index.htm

 73

Appendix

A.1. Essential project files

A.1.1. XML Schema for the project’s XML data format (test.xsd)
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<xsd:simpleType name="authorType">
 <xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:simpleType name="dateType">
 <xsd:restriction base="xsd:date"/>
</xsd:simpleType>

<xsd:simpleType name="titleType">
 <xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:simpleType name="descriptionType">
 <xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:simpleType name="noticeType">
 <xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:simpleType name="warningType">
 <xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:simpleType name="nameAttribute">
 <xsd:restriction base="xsd:NMTOKEN"/>
</xsd:simpleType>

<xsd:simpleType name="contentsAttribute">
 <xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:simpleType name="displayAttribute">
 <xsd:restriction base="xsd:string"/>
</xsd:simpleType>

<xsd:simpleType name="typeAttribute">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="singleChoice"/>
 <xsd:enumeration value="multipleChoice"/>
 <xsd:enumeration value="stringMatch"/>
 <xsd:enumeration value="externalEvaluation"/>
 </xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="valueAttribute">
 <xsd:restriction base="xsd:decimal"/>
</xsd:simpleType>

 74

<xsd:complexType name="answerType">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="contents" type="contentsAttribute" use="optional"
default="false"/>
 <xsd:attribute name="display" type="displayAttribute" use="optional"/>
 </xsd:extension>
 </xsd:simpleContent>
</xsd:complexType>

<xsd:complexType name="questionType">
 <xsd:sequence>
 <xsd:element name="title" type="titleType"/>
 <xsd:element name="description" type="descriptionType" minOccurs="0"/>
 <xsd:element name="notice" type="noticeType" minOccurs="0"/>
 <xsd:element name="warning" type="warningType" minOccurs="0"/>
 <xsd:element name="answer" type="answerType" maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="type" type="typeAttribute" use="required"/>
 <xsd:attribute name="value" type="valueAttribute" use="optional"
default="1.0"/>
</xsd:complexType>

<xsd:complexType name="testType">
 <xsd:sequence>
 <xsd:element name="author" type="authorType"/>
 <xsd:element name="date" type="dateType"/>
 <xsd:element name="title" type="titleType"/>
 <xsd:element name="description" type="descriptionType" minOccurs="0"/>
 <xsd:element name="notice" type="noticeType" minOccurs="0"/>
 <xsd:element name="warning" type="warningType" minOccurs="0"/>
 <xsd:element name="question" type="questionType"
maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="name" type="nameAttribute" use="optional"/>
</xsd:complexType>

<xsd:element name="test" type="testType"/>

</xsd:schema>

 75

A.1.2. DTD for the project’s XML data format (test.dtd)
<!ELEMENT test (author, date, title, description?, notice?, warning?,
 question+) >
<!ATTLIST test name NMTOKEN #IMPLIED >
<!ELEMENT author (#PCDATA) >
<!ELEMENT date (#PCDATA) >
<!ELEMENT title (#PCDATA) >
<!ELEMENT description (#PCDATA) >
<!ELEMENT notice (#PCDATA) >
<!ELEMENT warning (#PCDATA) >
<!ELEMENT question (title, description?, notice?, warning?, answer+) >
<!ATTLIST question
 type (singleChoice | multipleChoice | stringMatch |
 externalEvaluation) #REQUIRED
 value CDATA "1.0" >
<!ELEMENT answer (#PCDATA) >
<!ATTLIST answer
 contents CDATA #IMPLIED
 display CDATA #IMPLIED >

 76

A.1.3. JAXB binding schema for the project’s XML data format (test.xjs)
<xml-java-binding-schema version="1.0ea">

<element name="test" type="class" root="true" />
<element name="question" type="class" >
 <attribute name="type" convert="questionType" />
 <attribute name="value" convert="float"/>
</element>
<enumeration name="questionType" members="singleChoice multipleChoice
 stringMatch externalEvaluation"/>

</xml-java-binding-schema>

 77

A.1.4. XSL style sheet for the project’s XML data format (test.xsl)
<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

 <xsl:output method="html" encoding="ISO-8859-1"/>

 <xsl:template match="/">
 <html>
 <head>
 <title><xsl:value-of select="test/title"/></title>
 <link rel="StyleSheet" href="conf/style.css" type="text/css"
 media="screen"/>
 </head>
 <body>
 <xsl:apply-templates select="test"/>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="test">
 <h2 align="center"><xsl:value-of select="title"/></h2>
 <xsl:text>author: </xsl:text><xsl:value-of select="author"/>

 <xsl:text>date: </xsl:text><xsl:value-of select="date"/>
 <xsl:apply-templates select="description | notice | warning"/>

 <form action="checker" method="Post">
 <xsl:apply-templates select="question"/>
 <hr/>

 <center><table><tr>
 <td><input type="submit" value="Submit Test"/></td>
 <td width="15"></td>
 <td><input type="reset" value="Reset Form"/></td>
 </tr></table></center>
 </form>

 </xsl:template>

 <xsl:template match="question">
 <xsl:variable name="questionPosition" select="position()"/>
 <hr/>
 <h3><xsl:number value="$questionPosition" format="1. "/>
 <xsl:value-of select="title"/>
 <xsl:call-template name="points">
 <xsl:with-param name="value" select="@value"/>
 </xsl:call-template>
 </h3>
 <xsl:apply-templates select="description | notice | warning"/>
 <p>
 <xsl:apply-templates select="answer">
 <xsl:with-param name="questionNumber" select="$questionPosition"/>
 </xsl:apply-templates>
 </p>

 </xsl:template>

 78

 <xsl:template name="points">
 <xsl:param name="value" select="UNDEFINED"/>
 <xsl:choose>
 <xsl:when test="$value>='2.0'">
 (<xsl:value-of select="$value"/> points)</xsl:when>
 <xsl:otherwise> (1 point)</xsl:otherwise>
 </xsl:choose>
 </xsl:template>

 <xsl:template match="description">
 <P><xsl:value-of select="."/></P>
 </xsl:template>

 <xsl:template match="notice">
 <blockquote>
 <i><xsl:value-of select="."/></i>
 </blockquote>
 </xsl:template>

 <xsl:template match="warning">
 <blockquote>
 <xsl:value-of select="."/>
 </blockquote>
 </xsl:template>

 <xsl:template
 match="answer[parent::node()/attribute::type='singleChoice']">
 <xsl:param name="questionNumber" select="UNDEFINED"/>
 <xsl:choose>
 <xsl:when test="attribute::display='checked'">
 <input type="radio" name="q{$questionNumber}" value="{position()}"
 checked=""/><xsl:value-of select="."/>

 </xsl:when>
 <xsl:otherwise>
 <input type="radio" name="q{$questionNumber}"
 value="{position()}"/><xsl:value-of select="."/>

 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

 <xsl:template
 match="answer[parent::node()/attribute::type='multipleChoice']">
 <xsl:param name="questionNumber" select="UNDEFINED"/>
 <xsl:choose>
 <xsl:when test="attribute::display='checked'">
 <input type="checkbox" name="q{$questionNumber}"
 value="{position()}" checked=""/><xsl:value-of select="."/>

 </xsl:when>
 <xsl:otherwise>
 <input type="checkbox" name="q{$questionNumber}"
 value="{position()}"/><xsl:value-of select="."/>

 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>

 <xsl:template
 match="answer[parent::node()/attribute::type='stringMatch']">
 <xsl:param name="questionNumber" select="UNDEFINED"/>
 <input type="text" name="q{$questionNumber}" size="25"
 maxlength="25" value="{attribute::display}"/>

 </xsl:template>

 79

 <xsl:template
 match="answer[parent::node()/attribute::type='externalEvaluation']">
 <xsl:param name="questionNumber" select="UNDEFINED"/>
 <textarea name="q{$questionNumber}" rows="5" cols="80"
 wrap="virtual">
 <xsl:value-of select="attribute::display"/></textarea>

 </xsl:template>

</xsl:stylesheet>

 80

A.1.5. CSS style sheet for HTML’s display formatting (style.css)
BODY {background-color: #EDE7DA}

H1 {font-family: monospace;
 font-size: 20px;
 padding: 6px}
H2 {font-family: monospace;
 font-size: 17px;
 color:white;
 background-color: black;
 padding: 5px}
H3 {font-family: monospace;
 font-size: 17px;
 padding: 5px}

B {color: red}

BLOCKQUOTE {font-family: cursive}

TEXTAREA {font-family: sans-serif;
 font-size: 14px}

TABLE {font-family: sans-serif;
 font-size: 14px}

INPUT {font-family: sans-serif;
 font-size: 14px;}

A:link {font-family: serif;
 font-size: 17px;
 letter-spacing: 0.75px;
 color: navy}
A:active {font-family: serif;
 font-size: 17px;
 letter-spacing: 0.75px;
 color: red}
A:visited {font-family: serif;
 font-size: 17px;
 letter-spacing: 0.75px;
 color: gray}

P {font-family: serif;
 font-size: 17px;
 letter-spacing: 0.75px;
 margin: 17px 17px;
 text-align: justify}

 81

A.1.6. The project’s web deployment descriptor (web.inf)
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>Slaweks Application</display-name>
 <description>An e-learning application which deals with on-line testing.
 </description>

 <servlet>
 <servlet-name>login</servlet-name>
 <servlet-class>Login</servlet-class>
 <init-param>
 <param-name>indexURL</param-name>
 <param-value>index.html</param-value>
 </init-param>
 <init-param>
 <param-name>forbiddenURL</param-name>
 <param-value>forbidden.html</param-value>
 </init-param>
 <init-param>
 <param-name>dbDriver</param-name>
 <param-value>org.gjt.mm.mysql.Driver</param-value>
 </init-param>
 <init-param>
 <param-name>dbURL</param-name>
 <param-value>jdbc:mysql://localhost/elearn</param-value>
 </init-param>
 <init-param>
 <param-name>dbUser</param-name>
 <param-value>servlet</param-value>
 </init-param>
 <init-param>
 <param-name>dbPassword</param-name>
 <param-value>sheriff</param-value>
 </init-param>
 </servlet>

 <servlet>
 <servlet-name>presenter</servlet-name>
 <servlet-class>Presenter</servlet-class>
 <init-param>
 <param-name>indexURL</param-name>
 <param-value>index.html</param-value>
 </init-param>
 <init-param>
 <param-name>forbiddenURL</param-name>
 <param-value>forbidden.html</param-value>
 </init-param>
 <init-param>
 <param-name>dbDriver</param-name>
 <param-value>org.gjt.mm.mysql.Driver</param-value>
 </init-param>
 <init-param>
 <param-name>dbURL</param-name>
 <param-value>jdbc:mysql://localhost/elearn</param-value>
 </init-param>

 82

 <init-param>
 <param-name>dbUser</param-name>
 <param-value>servlet</param-value>
 </init-param>
 <init-param>
 <param-name>dbPassword</param-name>
 <param-value>sheriff</param-value>
 </init-param>
 </servlet>

 <servlet>
 <servlet-name>checker</servlet-name>
 <servlet-class>Checker</servlet-class>
 <init-param>
 <param-name>forbiddenURL</param-name>
 <param-value>forbidden.html</param-value>
 </init-param>
 </servlet>
 <servlet>
 <servlet-name>acceptor</servlet-name>
 <servlet-class>Acceptor</servlet-class>
 <init-param>
 <param-name>indexURL</param-name>
 <param-value>index.html</param-value>
 </init-param>
 <init-param>
 <param-name>forbiddenURL</param-name>
 <param-value>forbidden.html</param-value>
 </init-param>
 <init-param>
 <param-name>dbDriver</param-name>
 <param-value>org.gjt.mm.mysql.Driver</param-value>
 </init-param>
 <init-param>
 <param-name>dbURL</param-name>
 <param-value>jdbc:mysql://localhost/elearn</param-value>
 </init-param>
 <init-param>
 <param-name>dbUser</param-name>
 <param-value>servlet</param-value>
 </init-param>
 <init-param>
 <param-name>dbPassword</param-name>
 <param-value>sheriff</param-value>
 </init-param>
 </servlet>

 <servlet>
 <servlet-name>manager</servlet-name>
 <servlet-class>Manager</servlet-class>
 <init-param>
 <param-name>indexURL</param-name>
 <param-value>index.html</param-value>
 </init-param>
 <init-param>
 <param-name>forbiddenURL</param-name>
 <param-value>forbidden.html</param-value>
 </init-param>
 <init-param>
 <param-name>dbDriver</param-name>
 <param-value>org.gjt.mm.mysql.Driver</param-value>
 </init-param>

 83

 <init-param>
 <param-name>dbURL</param-name>
 <param-value>jdbc:mysql://localhost/elearn</param-value>
 </init-param>
 <init-param>
 <param-name>dbUser</param-name>
 <param-value>servlet</param-value>
 </init-param>
 <init-param>
 <param-name>dbPassword</param-name>
 <param-value>sheriff</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>login</servlet-name>
 <url-pattern>/login</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>presenter</servlet-name>
 <url-pattern>/presenter</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>checker</servlet-name>
 <url-pattern>/checker</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>acceptor</servlet-name>
 <url-pattern>/acceptor</url-pattern>
 </servlet-mapping>
 <servlet-mapping>
 <servlet-name>manager</servlet-name>
 <url-pattern>/manager</url-pattern>
 </servlet-mapping>

</web-app>

 84

A.2. Other files

A.2.1. XML file containing a sample test (test.xml)
<?xml version="1.0" encoding="UTF-8"?>

<test name="test">
 <author>John Doe</author>
 <date>02-04-1978</date>
 <title>An Essential Test</title>
 <description>This is the very first test which was made for testing
purposes. You can feel free to answer any questions you want to do. There
is no penalty involved even if your answer is incorrect. Good luck and
keep in mind that the truth is out there.
 </description>
 <notice>Pay attention when answernig multiple choice question with
"Don't know" option - do not forget to uncheck it if you have decided to
answer. Do not enter anything except for text when filling in text fields.
 </notice>
 <warning>Any kind of cribbing is allowed in this unbelievable test!
 </warning>
 <question type="singleChoice" value="1.0">
 <title>A botanical challenge</title>
 <description>Check a thing which is not a plant</description>
 <notice>This is a compulsory question</notice>
 <answer contents="true">A radiator</answer>
 <answer>A larch</answer>
 </question>
 <question type="multipleChoice">
 <title>A difficult question</title>
 <description>Check vehicles</description>
 <answer contents="true">A bike</answer>
 <answer contents="false">An orchestra</answer>
 <answer contents="false">A hot-dog</answer>
 <answer contents="true">A lorry</answer>
 <answer contents="dontKnow" display="checked">Don't know</answer>
 </question>
 <question type="stringMatch" value="2.0">
 <title>A difficult task</title>
 <description>Type a word which is abnormal</description>
 <warning>No need to hurry!</warning>
 <answer contents="larch" display="kind of tree"></answer>
 </question>
 <question type="externalEvaluation" value="2.0">
 <title>An easy mission here</title>
 <description>Just type a few words</description>
 <notice>Please keep your answer short but clear</notice>
 <answer/>
 </question>
</test>

 85

A.2.2. The index page (index.html)
<HTML>

<HEAD>
<TITLE>Main page of Slaweks application</title>
<LINK REL=StyleSheet HREF="conf/style.css" TYPE="text/css" MEDIA=screen>
</HEAD>

<BODY>

<CENTER>
<H2>Introduction</H2>
</CENTER>
<P>Welcome to the main page of a system designed for interactive testing
for distance learning purposes. The system consists of several parts and
is a fully featured. It deals with creation, storing, presentation and
evaluation of tests. They may be composed of different types of questions
- single choice, multiple choice ones and such those that expect text
answer. All tests are stored in XML files designed in a way that making
them is a trivial task. Moreover there is a tool provided for automatic
generation of XML files. The application cooperates with a MySQL(R)
database which keeps authentication information like user names and
passwords and also information of tests evaluation results for each user.
The results are also processed to give some statistics to the authorised
user, let say to a tutor of a course who have prepared tests.</P>

<CENTER>

<H2>Testing</H2>
<H3>Log in/out to/from the system</H3>
<TABLE ALIGN=CENTER><FORM ACTION="login" METHOD=GET>
<TR><TD WIDTH=50% ALIGN=RIGHT>Press the button</TD>
<TD ALIGN=LEFT><INPUT TYPE=SUBMIT VALUE="Login or logout"></TD></TR>
</FORM></TABLE>

<H3>Try a test (you have to be logged in already)</H3>
<TABLE ALIGN=CENTER><FORM ACTION="presenter" METHOD=POST>
<TR><TD WIDTH=50% ALIGN=RIGHT>Test name:</TD>
<TD ALIGN=LEFT><INPUT TYPE=TEXT NAME="testFileName"></TD></TR>
<TR><TD></TD><TD><INPUT TYPE=SUBMIT VALUE="Let me try"></TD></TR>
</FORM></TABLE>

<H3>Management (you have to be logged in as a manager)</H3>
<TABLE ALIGN=CENTER><FORM ACTION="manager" METHOD=GET>
<TR><TD WIDTH=50% ALIGN=RIGHT>Press the button</TD>
<TD ALIGN=LEFT><INPUT TYPE=SUBMIT VALUE="Manage the system"></TD></TR>
</FORM></TABLE>

</CENTER>

</BODY>

</HTML>

 86

A.2.2. The forbidden page (forbidden.html)
<HTML>

<HEAD>
<LINK REL=StyleSheet HREF="conf/style.css" TYPE="text/css" MEDIA=screen>
<TITLE>Access Denied Page</TITLE>
</HEAD>

<BODY>
<CENTER>

<H1>Access denied</H1>
</CENTER>
</BODY>

</HTML>

 87

A.3. A floppy disk with all project’s files

