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Abstract—Most research on P2P multimedia streaming assumes 
that users access video content sequentially and passively. Unlike 
P2P live streaming in which the peers start playback from the 
current point of streaming when they join the streaming session, 
in P2P video-on-demand streaming VCR-like operations such as 
forward, backward, and random-seek have to be supported. 
Providing this level of interactive streaming service in a P2P 
environment is a significant challenge. This paper proposes a 
Balanced Binary Tree-based strategy for Unstructured video-on-
demand distribution in P2P networks (BBTU). BBTU assumes 
videos can be divided into several segments which can be fetched 
from different peers. BBTU involves two steps: 1) balance binary 
tree construction based on a prefetching algorithm in order to 
support interactivity; 2) unstructured video dissemination over 
network based on gossip protocol, which is the overlay for video 
distribution. Analysis and simulation show how BBTU is an 
efficient interactive streaming solution in P2P environment. 

Keywords: P2P video-on-demand; interactivity; balanced 
binary tree; unstructured network 

I. INTRODUCTION

Peer-to-peer (P2P)-based approaches for multimedia 
streaming services have been studied extensively recently [1-
12]. The research work on P2P streaming can be classified 
into P2P live [1-3] and P2P Video-on-Demand (VoD) [4-7]. In 
most of these research papers, the authors assume that the 
peers start playback from the beginning or the current point of 
streaming when they join the streaming session, and the peers 
will keep on watching until they leave or fail the session. This 
supposition ignores the users’ interactivity.  

Based on a large number of observations on true VoD [13, 
14] it was concluded that: 1) most multimedia objects are 
visited partially; 2) Many VCR-like operations such as 
forward, backward, random-seek occur, as they are very 
popular when people watch multimedia programs. Providing 
this level of interactive streaming service in a P2P 
environment is a significant challenge. In P2P live streaming, 
all of the peers have a “close” playback time; a peer can find 
its streaming suppliers easily when it joins the streaming 
session. However, P2P video-on-demand streaming allows the 
peers to request streaming asynchronously with different 
offsets, so it is difficult to find suitable streaming suppliers. 
Although media files can be downloaded in advance by P2P 

file technology such as BitTorrent and played it on-demand 
afterwards, this introduces long startup delays for playback. 

“Cache-and-relay” mechanism [8] is used in P2P 
streaming which caches the played content and relays it to 
other peers which request the same streaming later. 
Furthermore, the mechanism is extended by caching only the 
played portion to prefetch some portions in the future using 
additional bandwidth (besides storage) [4, 9]. The prefetching 
strategy can grant peers the ability to overcome the bursty 
packet loss, the departure of source peer, and to smoothen the 
playing experience.  

Most research use prefetching strategy to assist solving the 
interactivity problem for multimedia streaming. Researchers 
proposed a hierarchical prefetching scheme for popular or sub-
popular segments in [5], which is based on the assumption that 
the popular or sub-popular segments will be visited often with 
the random-seek. However, this scheme’s main challenge is 
collecting the user viewing logs in a distributed P2P system. In 
VMesh [6], video segments are prefetched and stored in nodes 
over a Chord network. Each node maintains previous/next-
segment-lists based on distributed hash tables (DHT) and uses 
the lists to support short jumps. If the jump is too far away, a 
DHT search is triggered for the segment corresponding to the 
new position. VMesh does not use “cache-and-relay” 
mechanism, so the video segments in playback buffer are 
discarded and not made full use of. DHT is efficient for exact 
queries but is not well suited for range queries since hashing 
destroys the ordering of data.  

This paper proposes a Balanced Binary Tree-based 
strategy for Unstructured media distribution in P2P networks 
(BBTU) along with novel algorithms to address VoD VCR 
operations-related issues and to increase their efficiency. 
BBTU uses a balanced binary tree structure of additional 
prefetching buffers at the nodes. Video segments are 
prefetched and stored in the nodes’ prefetching buffers along 
the tree in a distributed manner, which will support 
interactivity. Furthermore, by using the buffer overlapping 
mechanism and gossip protocol, an unstructured network is 
established to distribute streaming between nodes. The paper 
presents and discusses BBTU’s algorithms and evaluates the 
performance of the proposed solution. 
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II. BBTU SOLUTION

BBTU has a hybrid architecture (see figure 1), which 
integrates two networks: a balanced binary tree and an 
unstructured network. The balanced binary tree is based on 
BATON [10] which is balanced and adaptive to dynamic 
network. Each node in BATON maintains “links” to its parent, 
children, and adjacent nodes (in-order traversal). The cost of 
the search in BATON is bounded by O(logN).  

Fig. 1 The architecture of BBTU 

Apart from the playback buffer used during video 
streaming, BBTU involves the addition of an extra prefetching 
buffer to each node. Videos are divided into uniform segments. 
Upon entering the system, a new client may start viewing on 
demand a video stream. Using its residual bandwidth, it also 
downloads in advance some video segments and stores them 
in its prefetching buffer. The video segments are not selected 
at random; they are chosen by the prefetching scheme, which 
orders the video segments in the adjacent nodes’ prefetching 
buffers according to the playback time along the tree. After the 
video segments are completely downloaded, they will be 
maintained during the node’s lifetime. 

In BBTU, the unstructured network is the routine overlay 
for video distribution, which is established based on buffer 
overlapping mechanism and gossip protocol. Each node has a 
data structure, called Gossip Partners Link Table (GPLT). 
Each item of node X’s GPLT points to the node whose 
playback buffer overlaps with X’s playback buffer. Each node 
maintains and updates its GPLT independently.

Under normal conditions, each node gets the multimedia 
streaming from its gossip partners. When VCR-like operations 
occur, its original gossip partners can not supply the streaming 
anymore for the playback position being changed, so the new 
partners need to be searched, during its course, the balanced 
binary tree assists the node to jump to the new playing scene 
quickly. The adjacent nodes in the tree will provide the node 
with the multimedia streaming segments from their 
prefetching buffers. After re-establishing new partners, the 
streaming suppliers are switched to the new partners again.

BBTU has the following main features: firstly, it integrates 
balanced binary tree’s high search efficiency merit which 
decreases the delay for the jump operations; secondly, it 
inherits good reliability from the random gossip protocol in 
unstructured overlays and thirdly, the video segments in 
prefetching buffer are relatively stable in nodes’ lifetime, 
which achieves the high success rate for random-seek and 
smoothen the multimedia streaming playing experience. 

A. Prefetching Scheme 

As the table I shows, P is the requested video stream. It is 
supposed P is encoded at a CBR rate and divided into equal 
segments (one segment is 1 sec. for playback). If d successive 
segments are set as one prefetching unit, then P has L
= dLen  prefetching units which are numbered from 1 to L
sequentially. The prefetching buffer of node X is defined as 
Prebuf(X) with size of d video segments. In the tree, a range of 
values managed by a node is greater than ranges of values 
managed by its left child while less than the range of values 
managed by the right child.  

7L/8L/2 3L/45L/8
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... ... ... ... ... ...

... ... ... ... ...

8/3L4/L8/L

Llog>Llog≤

Fig. 2 Prefetching scheme of BBTU 

The proposed prefetching scheme is illustrated in figure 2. 
As the figure shows, at level 0 of T, the mapping relationship 
between the prefetching unit corresponding to P’s middle 
position is set to Prebuf(R), namely Preunit(R)= 2L . At 
level 1, presuming the left child and right child of R are named 
R1 and R2, P is divided into two equal subsections: L1 and L2.
Assuming Mid(L1), Mid(L2) are the prefetching unit sequence
numbers corresponding to the middle position of L1 and L2
respectively, then Preunit(R1)=Mid(L1) and Preunit(R2)= 
Mid(L2) are set. At level 2 of T, L1, L2 are divided into two 
equal subsections L11, L12 and L21, L22 respectively; the 
mapping relationships between the prefetching unit 
corresponding to middle position of L11, L12 and L21, L22  are set 
with the left and right node’s  prefetching buffer of R1 and R2
respectively. The above operations are repeated for each of the 
tree levels until P cannot be divided anymore (the subsection 
length is less than one prefetching unit); then the prefetching 
unit’s sequence number is set to equal its parent node’s. For 

TABLE I
NOTATIONS USED IN THE PREFETCHING ALGORITHM

Notations Descriptions 
S The VoD source media server 
T The balanced binary tree 
P The requested video for playing 
Len Length of P (the total seconds time for playback) 
R The root node of T
X Node of T
d Size of  prefetching unit (the number of segments)
Level(X) The level of X in T
Prebuf(X) Node X’s prefetching buffer 
Preunit(X) The sequence number of prefetching unit in Prebuf(X)
Parent(X) Node X’s parent node in the T
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node X, presuming Level(R)=0, from the settings and notations 
presented above, the following equations can be deduced: 

(1)If Level(X) =0, then  
dLenXPreunit 2/)( =                              (1) 

(2) If )log()(0 dLenXLevel ≤< , then there are two cases: 
 If X is left child, then 

−=
+ d

LenXParentPreunitXPreunit XLevel 1)(2
))(()(     (2) 

 If X is right child, then 

+=
+ d

LenXParentPreunitXPreunit XLevel 1)(2
))(()(     (3) 

(3) If )log()( dLenXLevel > , then 
))(()( XParentPreunitXPreunit =                 (4) 

For conditions (1), (2) and (3), X needs prefetching of the 
specific prefetching unit from S; for condition (4), X gets the 
prefetching unit from its Parent(X) or one of its adjacent 
nodes whose prefetching unit sequence number equals 
Preunit(X). (4) avoids to download all the prefetching units 
from S, alleviating the load of S. (4) also keeps a list of peers 
who store the same prefetching unit, which achieves load 
balancing. 

BATON is adaptive to dynamic network, for node join, 
departure and failure. If a node’s position in T is changed, it 
should check whether the prefetching unit in its prefetching 
buffer satisfies the equations (1)-(4); if not it should update the 
prefetching unit. 

B. Unstructured Video Dissemination Network 
In P2P environment, for any node X and Y, assuming they 

request the same streaming, the video segments aggregated in 
X and Y’s playback buffer are defined as C(X), C(Y)
respectively, if φ≠)()( YCXC . This means they are 
“close” enough in playback time, their playback buffer 
overlaps, so node X can supply the streaming service to Y.
Consequently Y does not need to get the streaming from S,
which can reduce the load of S. Note that as long as no VCR 
operations occur and the network bandwidth is sufficient, this 
buffer overlapping relationship is unchanged. The buffer is 
divided into three parts at every node X: the prefetching buffer 
which has been discussed above, receiving buffer named 
Recvbuf(X) with size of rbx which gets streaming from other 
nodes, and sending buffer named Sendbuf(X) with size of sbx
which caches the played segments and supplies them to other 
nodes upon request. The receiving buffer and sending buffer
form the playback buffer.

Figure 3 depicts a snapshot of the buffers at nodes X and Y
respectively at time t. Supposing tx and ty are the currently 
played segments for nodes X and Y respectively. The 
minimum serial number of the video segment in Sendbuf(X) is 
tx-sbx and the maximum serial number in Recvbuf(X) is tx+rbx.
A similar situation it can be deduced for node Y.

Assuming C(Sbx), C(Rbx), C(Rby) are the video segments 
set in Sendbuf(X), Recvbuf(X), Recvbuf(Y), if 

φ≠)())()(( yxx RbCRbCSbC  then X can be the streaming 

supplier for node Y and satisfies equation (5): 

>+

+<−

yxx

yyxx

trbt

rbtsbt
                                (5) 

Similarly Y can be a streaming supplier of X if it satisfies 
equation (6): 

>+

+<−

xyy

xxyy

trbt
rbtsbt

                                (6) 

Combining (5) and (6), equation (7) is obtained:
xxyyx rbttrbt +<<−                               (7) 

Supposing X and Y join the system at time tx-join, ty-join

respectively, with tx-join=t − tx, ty-join=t − ty , (7) results: 
yjoinxjoinyxjoinx rbttrbt +<<− −−−                (8) 

It is presumed above that the node joins the system at the 
beginning of the streaming. If node X joins with a playback 
offset oi, it can be considered that node X joins the system on 
the virtual time tx-join − oi. S records X’s joining time; if it joins 
with a playback offset then the actual joining time becomes a 
virtual joining time and  tx-join is replaced with tx-join − oi. S sorts 
all of the nodes by their joining time in ascending order and 
links all the active nodes into a timing list named QJtime.

Gossip protocols [1, 15] enable random data dissemination 
with no support from a regular overlay structure. In a typical 
gossip process, a node randomly selects a subset of target 
nodes to deliver recently available data segments, and 
meanwhile, receives segments pushed from these nodes. The 
random choice of targets achieves resilience to random 
failures and enables decentralized operations. 

Supposing the size of GPLT is k, the partners search 
algorithm for node X is as follows: 

1) Traverse the timing list QJtime, starting from the node i
whose joining time is greater than tx-join - rbx;

2) Test condition (8) for each encountered node. If the 
node satisfies (8) and it is not the gossip partner of X, then it is 
added into a set N; 

3) If number of nodes in N is more than K (invariable 
parameter) or the visited node violates condition (8), then 
traversing stops; 

4) k nodes are selected randomly from N and their IP 
address and port information is added into X’s GPLT. 

When GPLT has been established, X should send message to 
its partners periodically, monitoring whether its partners are in 
normal status. When it discovers any partners such as Y leaving, 
failing accidentally or not satisfying (8), X deletes Y from its 
GPLT and triggers partner search algorithm to get a new node 
to replace Y.

Fig. 3 Node Buffer status at time t
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When the unstructured media distribution network has 
been established, Push or Pull [12] mechanisms (not detailed 
here) can be used to transfer multimedia between nodes. 

C. Interactivity Supporting Procedure 
When interactivity occurs for node X during its playback, 

the target video segment corresponding to the new position 
can be calculated roughly by the player interface. Assuming it 
is g, the corresponding prefetching unit is dg / , which is 
denoted with M. X maintains a queue called Que with size of 
K (invariable parameter), each member in Que keeps a pointer 
(i.e., the IP address) pointing to a node. The interactivity 
supporting procedure is as follows: 

1) X empties GPLT, partners updating progress is triggered; 
2) T is traversed begin with R, M is compared with 

Preunit(R), if equals, then R is the target node, R is regarded 
as node J, jumps to 4), otherwise, executes next step; 

3) T is traversed until node J with Preunit(J)=M.  If J
cannot be found until node H with )log()( dLenHLevel >
is visited, failure is returned; 

4) Assuming Ln is the tail of Que, Cn is the current visited 
node, J is put into Que and the right adjacent link of J begins 
to be traversed. If Preunit(Cn) = Preunit(Ln)+1, Cn is put into 
Que. If Preunit(Cn) = Preunit(Ln) and the present usable 
bandwidth of Cn  is more than Ln’s, then Ln is replaced by Cn.
If K’ (default value is 5) numbers of successive visited nodes 
have the same prefetching unit, then Cn switches to R,
searches from R to locate Y with Preunit (Y)= Preunit(Ln)+1, 
then continues to traverse Y’s right adjacent node. The 
traversing progress repeats until finding the node whose 
prefetching unit equals Preunit(Ln)+1 fails or Que is full;  

5) The head of Que begins to send its video segments in its 
prefetching buffer beginning with the segment whose serial 
number is g. The next nodes in Que send all segments in theirs 
prefetching buffer to X in order. This streaming transmission 
sequence is of the continuous video segments, beginning with 
g for the new position. The node which finishes sending its 
prefetching video segments is deleted from Que; 

6) Assuming the time for X’s jump is tjump, then X’s joining 
time in QJtime is replaced by tjump - g and QJtime reorders.  

7) When X finishes re-establishing its new partners, Que is 
notified to stop sending streaming. Then, the streaming 
suppliers are switched to X’s new partners. Otherwise, if there 
are only K’’ (invariable parameter) numbers of nodes in Que, 
then the right adjacent node of Ln is regarded as J and 
executes the step 4) again, then new nodes are put into Que 
and Que continues to send streaming to X, this operation 
repeats until X finishes re-establishing. At worst, if X can not 
re-establish its new partners successfully, Que will supplies X
with the continuous multimedia streaming, which ensures the 
success and stability for random-seek. 

As figure 4 shows, presuming node 5 jumps during 
playback, the video segment corresponding to the new target 
playback position is g which can be calculated approximately 
from the player interface, After searching in T, presuming g
falls into node 6’s prefetching buffer. Node 5 empties its 
partners in its GPLT which includes node 1, 2, e, 12 and 

triggers partners updating process by partners search algorithm.
During this process, node 6 and nodes 13, 3, h, 14 (which are 
the traversal results after executing step 4) send its prefetching 
buffer’s video segments to node 5 until node 5 has established 
its new partnership nodes (which are 4, a, 10, c). Then the new 
partner nodes will supply the streaming to node 5. 

III. PERFORMANCE EVALUATION

A. Simulation Settings 
The source media server has ten videos for streaming; each 

is encoded at 256 Kbps and has two hours length. A segment 
length for playback is 1 second; the playback buffer can 
accommodate 120 segments and is divided into receiving 
buffer and sending buffer equally. The default size of a 
prefetching unit is 30 segments. The size of GPLT is 6. The 
performance of BBTU is evaluated with various parameter 
settings, and also is compared with VMesh. VMesh is built on 
top of a public Chord implementation [16]; the length and bit 
rate of the video and each prefetching unit’s length are set 
same as BBTU’s. The topology is generated using the GT-
ITM package [17], which consists of ten transit domains, each 
with twelve transit nodes. Any transit node is then connected 
to six stub domains, each with nine stub nodes. The total 
number of nodes is thus 6,600. Assuming routing between two 
nodes in the network follows the shortest path. The initial 
bandwidth assigned to the links is as follows: 1.5 Mbps 
between two stub nodes, 5 Mbps between a stub node and a 
transit node, and 10 Mbps between two transit nodes. Cross 
traffic will be injected during the experiments to emulate 
dynamic network conditions. The peers participating in the 
system follow a Poisson arrival.

B. Performance and Comparison 
Jump Latency. The jump latency is in terms of hop count 

for locating the node, the segment corresponding to the new 
position falls into this node. Figure 5 presents results 
comparison when different parameters are used in which the 
size of prefetching unit d and number of nodes in system are 
set to different values. This result shows how BBTU is more 
efficient than VMesh. In VMesh, the cost for search via DHT 
is O(logN). N is the number of nodes in system and the cost 
increases with the total number of nodes. Though the cost for 
search in BATON is O(logN), taking BBTU’s prefetching 
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scheme into account, the hops for searching a target node 
whose prefetching buffer includes any playing position 
segments are less than )(log dLenO . The cost decreases with 
the increasing of prefetching unit size. 

Jump Failure. Jump Failure Rate (JFR) is compared 
between BBTU and VMesh when random-seek occurs. It is 
considered that a jump fails if a node cannot locate the target 
node with the first number of segments corresponding to the 
new position during its jump. JFR is set as the average ratio of 
the total nodes which fail jumps to the total nodes for 
requesting jumps during playback. It reflects the capability to 
support random-seek function. As figure 6 shows, the JFR of 
the two systems decreases with increasing of number of nodes. 
However the decrease rate for VMesh is generally lower than 
that of BBTU, it is obvious when not dealing with large scale 
system. In VMesh, peers download segments randomly for 
storage when they join the system, however, in BBTU, peers 
fetch segments by the prefetching algorithm, which enables 
distributing the whole segments regularly over nodes. In 
general, dLen numbers of nodes’ prefetching buffers can 
share the whole video segments of the requested video.  

Streaming Quality. Continuous and smooth playback is 
important for P2P streaming applications. The Segment 
Missing Rate (SMR) is adopted as the criterion for evaluating 
streaming quality. A data segment is considered missing if it is 
not available at a node till the play-out time, and the SMR for 
the whole system is the average ratio of the missed segments 
at all the participating nodes during the simulation time. 
Figure 7 shows SMR in a dynamic network, VMesh fluctuates 
at a greater rate than BBTU. In VMesh, when a node 
consumes its current segment, it gets its next segment for 
playing from a new parent node by searching its next-
segment-list or DHT search, so the node’s suppliers and route 
path change frequently with the playback time axis; in BBTU, 
when a node has established its gossip partners, the 
partnership is relatively stable, the multiple partners  will 
continually provide the streaming,  which achieves better 
stability than VMesh. From a video decoding point of view, 
the low and stable SMR achieves higher streaming quality. 

IV. CONCLUSION

This paper proposed a novel Balanced Binary Tree 
Unstructured media distribution strategy for P2P VoD 
streaming (BBTU). It constructs a balanced binary tree based 

on a prefetching algorithm and establishes an unstructured 
video dissemination network based on the buffer overlapping 
mechanism and gossip protocol. Simulation-based testing and 
consequent comparison-based result analysis show how 
BBTU is a highly efficient interactive streaming service 
solution in P2P environment.  
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