
DONET-VOD: A HYBRID OVERLAY SOLUTION FOR EFFICIENT PEER-TO-PEER VIDEO
ON DEMAND SERVICES

Changqiao Xu1, 3, 4, Gabriel-Miro Muntean2, Enda Fallon1, Xiaoguang Li1

1Software Research Centre, Athlone Institute of Technology, Ireland

2School of Electronic Engineering, Dublin City University, Ireland
3Institute of Software, Chinese Academy of Sciences, China

4Graduate University of the Chinese Academy of Sciences, China

ABSTRACT

The existing DONet-based approach uses successfully a
random gossip algorithm for scalable live video streaming.
This pure mesh overlay network-based solution may lead to
unacceptable latency or even failure of VCR operations in
Video-on-Demand (VoD) services where nodes usually
have different playing offsets, across a wide range. This
paper proposes DONet-VoD which enhances DONet in
order to address issues related to VoD delivery and VCR
operations. In DONet-VoD, DONet principle is employed
for the video distribution over the overlay network and a
novel algorithm which uses a multi-way tree structure and
extra prefetching buffers at the nodes is proposed to support
efficient VoD operations. Video segments are prefetched
and stored in a distributed manner in the nodes’ prefetching
buffer along the tree. The cooperation between DONet-
based video delivery and the tree-located multimedia
components enable multimedia streaming interactive
commands to be performed efficiently. This paper presents
and discusses the prefetching scheme, details the
cooperation procedure, and then analyses the performance
of the proposed DONet-VoD .

Index Terms—Peer-to-peer, VoD, prefetching, multi-
way tree, DONet

1. INTRODUCTION

There is extensive recent research in the area of peer-to-
peer (P2P) multimedia streaming [1-9]. Unlike P2P live
streaming [1, 2] in which the peers start playback from the
current point of streaming when they join the streaming
session, in P2P Video-on-Demand (VoD) streaming [3-6]
VCR-like operations such as forward, backward, and
random-seek have to be supported. Providing this level of
interactive streaming service in a P2P environment is a
significant challenge.

“Cache-and-relay” mechanism [7] is used in P2P
streaming which caches the played content and relays it to
the peers which request streaming of the same content.

Furthermore, the mechanism is extended [8] by caching
apart from the played portion of the video stream also extra
sequences prefetched in advance by using additional
bandwidth. The prefetching strategy can grant peers the
ability to overcome the bursty packet loss, the departure of
source peer, and to smoothen the playing experience.

Most research use prefetching strategy to assist solving
the interactivity problem for multimedia streaming.
Researchers proposed a hierarchical prefetching scheme for
popular or sub-popular segments [4], which is based on the
assumption that the popular or sub-popular segments will
be visited often with the random-seek. However, this
scheme’s main challenge is collecting the user viewing logs
in a distributed P2P system. In VMesh [5], video segments
are prefetched and stored in nodes over a Chord network.
Each node maintains previous/next-segments-lists based on
distributed hash tables (DHT) and uses the lists to support
jumps. VMesh does not use “cache-and-relay” mechanism,
so the video segments in playback buffer are discarded and
not made full use of. DHT is efficient for exact queries but
is not well suited for range queries since hashing destroys
the ordering of data.

DONet [1] uses successfully a random gossip algorithm
for scalable live video streaming, but this mesh overlay
network-based approach may lead to unacceptable latency
for VCR operations in VoD services where nodes usually
have different playing offsets. In RINDY [6], each peer
maintains a set of concentric rings and places all neighbors
on these rings according to their present playing distances.
It uses gossip messages between neighbors of the rings to
locate the nodes which have the content sought (e.g.
following a random-seek). Though RINDY decreases the
latency for locating target node when random-seek occurs
compared with DONet, it has the same problems as DONet:
increase of both jump latency and failure rates. With both
RINDY and DONet, if a node A intending to jump forward
within the video stream locates a node B which has the
segment corresponding to the new position and at that time
B initiates a jump as well, then A’s jump fails.
Consequently search for another node is required, which
increases significantly the jump latency.

641978-1-4244-2571-6/08/$25.00 ©2008 IEEE ICME 2008

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 27, 2009 at 08:48 from IEEE Xplore. Restrictions apply.

This paper proposes DONet-VoD, which enhances
DONet with a novel algorithm to address VoD VCR
operations-related issues and to increase their efficiency.
DONet-VoD uses a multi-way tree structure of additional
prefetching buffers at the nodes. Video segments are
prefetched and stored in the nodes’ prefetching buffers
along the tree in a distributed manner. The paper presents
and discusses DONet-VoD’s algorithm and analyses the
performance of the proposed solution.

2. DONET-VOD ARCHITECTURE AND PRINCIPLE

DONet-VoD has a hybrid architecture (see figure 1), which
integrates two networks: a multi-way tree and DONet. The
multi-way tree is based on BATON* [9] which is balanced.
The cost of the search in BATON* is bounded by O(logmN).

Apart from the playback buffer used during video
streaming, DONet-VoD involves the addition of an extra
prefetching buffer to each node. Videos are divided into
uniform segments. Upon entering the system, a new client
may start viewing on demand a video stream. Using its
residual bandwidth, it also downloads in advance some
video segments and stores them in its prefetching buffer.
The video segments are not selected at random; they are
chosen by the prefetching scheme, which orders the video
segments in the adjacent nodes’ prefetching buffers
according to the playback time. After the video segments
are completely downloaded, they will be maintained during
the node’s lifetime.

In DONet-VoD, DONet is the routine overlay for video
distribution. Under normal conditions, each node gets the
multimedia streaming from its gossip partners. When VCR-
like operations occur, the partners updating progress is
triggered and during its course, the multi-way tree assists
the node to jump to the new playing scene quickly. The
adjacent nodes in the tree will provide the node with the
multimedia streaming segments from their prefetching
buffers. After re-establishing new partners by using
REQUEST and REPLY messages (detailed in section 4)
over DONet, the streaming suppliers are switched to the
new partners again.

Fig.1 The architecture of DONet-VoD

3. DONET-VOD PREFETCHING SCHEME

Assuming that the notations presented in table 1 are used, if
the video P is coded using CBR rate and is divided into
equal segments (e.g. one segment is 1 sec. playback length),

d numbers of successive segments are set as one
prefetching unit, then P has L = dLen

TABLE I
NOTATIONS USED OF PREFETCHING ALGORITHM

Notations Descriptions
S The VoD media server
T The multi-way tree
P The requested video for playing
Len Length of P (the total seconds time for playback)
d Size of one prefetching unit
R The root node of T
X A node in T
Level(X) The level of X in T
Prebuf(X) Node X’s prefetching buffer
Seg(X) The sequence number of prefetching unit in Prebuf(X)
Parent(X) Node X’s parent node in T

 prefetching units
which are numbered from 1 to L sequentially. The
prefetching buffer of node X is defined as Prebuf(X) with
size of d video segments. Fanout of the tree T is set as even,
a range of values managed by a node is greater than ranges
of values managed by the first 2m children nodes while
less than ranges of values managed by the last

2m children nodes.
The proposed prefetching scheme is illustrated in figure

2. As it shows, at the level 0 of T, we set the mapping
relationship between the corresponding prefetching unit of
P’s middle position with Prebuf(R), namely Seg(R)= 2L .
At level 1 the children nodes (from left to right) of R are
named R1, R2, …, Rm and P is divided into m equal
subsections L1, L2, …, Lm . Assuming Mid(L1), Mid(L2), … ,
Mid(Lm) are the prefetching units’ sequence numbers
corresponding to the middle position of L1, L2, …, Lm
respectively, we set Seg(R1)=Mid(L1), Seg(R2)=
Mid(L2), … , Seg(Rm)= Mid(Lm). The above operations are
repeated for each of the tree levels until P can not be
divided anymore (the subsection length is less than one
prefetching unit). Then, we set the prefetching unit’s
sequence number to equal its parent node’s. For node X,
presuming X is the ith child of Parent(X), Level(R)=0. From
the settings and notations presented above, the following
equations can be deduced:

(1)If Level(X) =0, then
2/)(LXSeg (1)

(2)If LmXLevel m)1(log)(0 , there are two cases:
 If 21 mi , then

)(2
)12())(()(XLevelm
LimXParentSegXSeg (2)

 If mim 2/ , then

)(2
)12())(()(XLevelm
LmiXParentSegXSeg (3)

642

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 27, 2009 at 08:48 from IEEE Xplore. Restrictions apply.

 (3) If LmXLevel m)1(log)(, then
))(()(XParentSegXSeg (4)

For conditions (1), (2), (3), X needs prefetching of the
specific prefetching unit from S; for condition (4), X gets
the prefetching unit from its Parent(X) or one of its
adjacent nodes whose prefetching unit sequence number
equals Seg(X). (4) avoids to download all the prefetching
units from S, alleviating the load of S.

BATON* is adaptive to dynamic network, for node join,
departure, failure or load balancing. If a node’s position in
T is changed, it should check whether the prefetching unit
in its prefetching buffer satisfies the equations (1)-(4); if
not it should update the prefetching unit.

1m 2m 3m 4m

2/L8/3L8/L 8/5L 8/7L

Lmm)1(log Lmm)1(log

 Fig.2 Prefetching scheme

4. SUPPORTED VOD SERVICES

We design two types of messages REQUEST and REPLY to
locate new partner required by jump operation in DONet
for the partners updating progress. The message is <typeid,
segid, srcid, TTL, routepath, resultset>, typeid represents
the type of message (REQUEST or REPLY); segid is the
target segment sequence number corresponding to the new
jump position; srcid denotes the source address of the
message; TTL is the remaining hop count of this message;
routepath is a list of peers traversed by the request message;
resultset stores the result of query. Assuming X triggers
partners updating progress; X pushes its address into the
routepath, then forwards this message to one random node
in its mCache. Upon receipt of this query, the visited node
executes the same procedure, until this request arrives at the
node whose playback buffer includes segid or TTL becomes
zero. The final peer adds all of its partners into the resultset,
changes this message to REPLY, and returns the message to
X along the routing path. When X receives the REPLY
message, it adds all partners of resultset into its partners list.
If X can not find the target node until TTL=0, X sends
REQUEST to another node in its mCache and try again.

When a node joins system, it implements two node join
progresses for BATON* and DONet respectively. When the
node starts viewing the video, it implements prefetching
scheme using its residual bandwidth. During the playback,
assuming X jumps another video position, the follows
operations are performed: (1) segid is calculated
approximately from the player interface, then the

corresponding prefetching unit is dsegid ; (2) X empties
its partnership list, partners updating progress is triggered
over the DONet; (3) The tree is traversed until node J with
Seg(J)= dsegid , If J cannot be found until leaf node is
visited, failure is returned; (4) Search the right adjacent link
of J, assuming Que is a queue with size of k, J is put into
Que. Ln is the tail of Que, Cn is the present visited node
traversing the adjacent link. If Seg(Cn) = Seg(Ln)+1, Cn is
put into Que. If Seg(Cn) = Seg(Ln) and the present usable
bandwidth of Cn is more than Ln’s, then Ln is replaced by
Cn. If k’(default=5) successive visited nodes have the same
prefetching unit, then switch to R directly, search from R to
locate the node whose prefetching unit equals Seg(Ln)+1,
then continues search its right adjacent node. The search
progress repeats until finding the node whose prefetching
unit equals Seg(Ln)+1 fails or Que is full; (5)The nodes in
Que send video segments in their prefetching buffer to X;
(6) When X finishes re-establishing new partners, Que is
notified to stop sending streaming. Then, the multimedia
streaming suppliers are switched to X’s new partners.
Otherwise, new visited nodes are put into Que if all the
nodes in Que have finished sending prefetching streaming.

As fig. 3 shows, node 3 jumps, the target segment
corresponding to the new position is g. After search in T, g
falls into node 4’s prefetching buffer. During 3 updating its
partners list, nodes 4, o, 16, 17, 18 send its prefetching
buffer’s video segments to 3 until 3 has established new
partners which are 6, h, k, 13, then the new partners will
supply the streaming.

1

2

3
4

5

Old partners of node 3
Send prefetching buffer video segments to node 3

New partners of node 3
Adjacent link

Fig. 3 Collaboration of tree with DONet
5. PERFORMANCE EVALUATION

In this section, we analyze the performance of DONet-VoD.
Assuming the fanout of the multi-way tree is m, w is the
playback buffer window size of the peers.

Jump Latency: When jump occurs, the prefetching
buffer will provide the streaming service temporarily before
the node finishes re-establishing its partners. Consequently
the jump latency is in terms of hop count for locating the
node in the tree; the segment corresponding to the new
position falls into this node. The node’s right adjacent
nodes will constitute the successive streaming for the new
scene using their prefetching buffers. Taking the features of
BATON* and the prefetching scheme into account, the hops
for search are less than))1((log dLenmO m . This results

643

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 27, 2009 at 08:48 from IEEE Xplore. Restrictions apply.

shows how DONet-VoD is more efficient than VMesh and
RINDY. In VMesh, the cost for search via DHT is O(logN).
In RINDY, the cost for search between rings is

)(log wLenO . Assuming Len=7200 (two hours for
playback), w=10, d=10. Figure 4 presents a result
comparison when different parameters are used.

0
2
4
6
8

10
12
14

1000 2000 3000 4000 5000 6000
Number of nodes

Jo
in

 L
at

en
cy

 (h
op

s)

VMesh RINDY DONet-VoD m=4
DONet-VoD m=6 DONet-VoD m=8 DONet-VoD m=10

Fig.4 Jump latency
Jump Failure: The number of joined nodes in DONet-

VoD impacts the average jump failure rate. In general case,
if the total joined nodes are more than dLen at any time,
the jump operation will be successful, as prefetching
buffers of all the nodes have shared the whole video
segments of the requested video. However, in RINDY, the
average jump failure rate does not only relate with the
number of joined nodes, but also it is impacted by other
nodes’ present playing position. If the nodes are close on
the playback time axis, or the target node also initiates jump,
the operation of jump fails.

Fig. 5 The impact of playback window size

In DONet-VoD, though the unchanged prefetching
buffer ensures the high success rate for jump, the video
segments in prefetching buffer are provisional suppliers, it
is not good that one node gets the streaming from other
nodes’ prefetching buffer for a long time, because they also
need to assist other nodes for jump. So the node needs to
establish the new partners as soon as possible. As figure 5
shows, assuming node A initiates jump at time tjump, the
segment of the new position is i. During A updating
partners, nodes B, C provide streaming for A using their
prefetching buffer. At time trebuild, A finishes updating, D is
its new partner which includes i. Assuming j is the present
playing segment in A, j should be around jumprebuild tti ,
but it is possible that j falls out D’s playback buffer, A
finding partner D fails actually, if w is strengthened, D can
become A’s partner, so we need set appropriate size of w to
increase the probability for search partners in the

collaboration between the two networks.
Overhead: Compared with DONet, DONet-VoD needs

to maintain another network: the multi-way tree. BATON*
shows how the cost of updating routing tables is O(mlogmN)
for node join and departure. Considering the source media
server stress, it needs to provide extra bandwidth for
prefetching video segments. In general case, dLen
prefetching streams need downloading from S. If the total
nodes are more than dLen , the new joined node can
prefetch segments from its adjacent nodes, either the parent
or sibling. Though extra loads increase, they are light-
weighted and will not bring too much overhead to the
DONet. The cost of extra bandwidth and control overhead
are balanced by the high quality of VoD services.

6. CONCLUSIONS

This paper proposes DONet-VoD, which enhances existing
DONet solution to support peer-to-peer VoD services.
DONet-VoD adds an assistant multi-way tree structure to
the classic architecture in order to support high search
efficiency associated with the tree searches. Video
segments are stored in the tree in a distributed manner
based on the prefetching scheme. The cooperation between
the novel multi-way tree with DONet makes DONet-VoD
to support VoD operations efficiently.

7. REFERENCES

[1] X.Y. Zhang, J.C. Liu, and B. Li, “CoolStreaming/ DONet: a
data-driven overlay network for peer-to-peer live media
streaming,” Proc. IEEE INFOCOM’05, March 2005.
[2] X.F. Liao, H. Jin, and Y.H. Liu, “AnySee: peer-to-peer live
streaming,” Proc. IEEE INFOCOM’06, April 2006.
[3] C.Q. Xu, G.-M. Muntean, and E. Fallon, “A balanced tree-
based strategy for unstructured media distribution in P2P
networks,” Proc. IEEE ICC’08, May 2008.
[4] C.X. Zheng, G.B. Shen, and S.P. Li, “Distributed prefetching
scheme for random seek support in peer-to-peer streaming
applications,” Proc. ACM workshop on Advances in peer-to-peer
multimedia streaming (P2PMMS'05), Nov 2005.
[5] W.-P. Ken Yiu, X. Jin, and S.-H. Gary Chan, “Distributed
storage to support user interactivity in peer-to-peer video
streaming,” Proc. IEEE ICC '06, June 2006.
[6] B. Cheng, H. Jin, and X.F. Liao, “Supporting VCR functions
in p2p vod services using ring-assisted overlays,” Proc. IEEE
ICC’07, June 2007.
[7] S. Jin, A. Bestavros, “A Cache-and-relay streaming media
delivery for asynchronous clients,” Proc. Int. Workshop on
Networked Group Communication (NGC’02), Boston, USA,
October 2002.
[8] A. Sharma, A. Bestavros, and I. Matta, “dPAM: a distributed
prefetching protocol for scalable asynchronous multicast in P2P
Systems,” Proc. IEEE INFOCOM’05, March 2005.
[9] H.V. Jagadish, B.C. Ooi, and K.L. Tan, “Speeding up search in
peer-to-peer networks with a multi-way tree structure,” Proc.
ACM SIGMOD’06, June 2006.

644

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on August 27, 2009 at 08:48 from IEEE Xplore. Restrictions apply.

