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Abstract— Gartner predicts that by 2013 mobile devices will 

overtake PCs as the most popular type of device used for 

accessing Internet-based services. Meanwhile, mobile phones are 

becoming increasingly complex and powerful. However, battery 

technology has not been increasing at the same pace and hence, 

there is an urgent need for solutions to balance the battery 

performance of mobile devices and their functionality. An 

efficient solution would be to analyze the application(s) running 

on the device and manipulate all available device parameters, in 

order to maximize the power saving while minimizing the effect 

on the Quality of Service. As an initial step towards this unified 

solution, this paper takes an extremely important functionality as 

a starting point - video streaming. Different mechanisms for 

adaptive multimedia streams in mobile devices are investigated. 

Furthermore, an enhanced version of the Battery and Stream-

Aware Adaptive Multimedia Delivery algorithm (BaSe-AMy) is 

tested on a real-world mobile device. The experiments result in 

an increase to the maximum playtime of a video stream of up to 

10%, as compared to non-energy-aware streaming solutions, 

while also maintaining a high stream PSNR value. 
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I.  INTRODUCTION 

Both the functionality and the computation capability of 
mobile devices have increased exponentially in recent times. 
Importantly, modern smart-phones and PDAs are now capable 
of interacting with multiple sensors, multitasking and 
communicating over various independent network interfaces. 
While these devices follow a functionality improvement rate 
similar to Moore’s law, developments in battery life have 
lagged behind considerably. A classic example of the gap 
between functionality and power-supply is the iPhone 4. When 
used continuously, for web browsing over 3G, the battery life 
lasts a mere 6 hours [1]. 

Mobile video streaming is an area which is experiencing an 
incredible growth rate. According to Allot, the first quarter of 
2010 saw a 92% increase in video streaming applications. 
These applications account for 35% of the total global mobile 
bandwidth usage [2]. The specifications of the HTC Nexus One 
promote a battery life of 7 hours during talk time in 3G 
networks [3] but our measurements have shown that for the 
energy intensive application of video streaming, the battery 
depletes in as little as 4 hours. In order for a mobile phone to be 
effectively used on a day-to-day basis, it has to be able to 

function for at least 12 hours before requiring battery 
recharging. Currently, there are different energy conservation 
techniques included in mobile Operating Systems (OS), such as 
background process control and ambient light-aware screen 
brightness adaptation. However, these approaches are not 
sufficient to provide the required energy savings in the device.  

An intelligent, context-aware algorithm is a prerequisite for 
dynamically adapting the characteristics of a device in an 
energy and application-aware manner. Each type of application 
in a device would have different Quality of Service (QoS) 
requirements and may also involve different methods for user 
interaction. As a result, each application type will require 
different methods for achieving reductions in the power 
consumption. Each application type needs to be analyzed 
independently and subsequently incorporated into a total 
solution. To this end, this paper investigates energy-
optimizations that can be achieved on a mobile device, in the 
context of an adaptive video streaming application. In 
particular the paper analyzes the benefit brought by the Battery 
and Stream-Aware Adaptive Multimedia Delivery algorithm 
(BaSe-AMy) in terms of energy savings in comparison with a 
non energy-aware video streaming solution. 

The remainder of this paper is organized as follows. In 
Section II different energy saving mechanisms in video 
streaming applications are discussed. Additionally three 
available adaptive streaming solutions for mobile devices are 
surveyed. Following that, the architecture of the system and an 
enhanced version of the BaSe-AMy algorithm are introduced in 
Section III [4]. The test set-up and results are presented in 
Sections IV and V and then conclusions and future work are 
explained in Section VI. 

II. RELATED WORKS 

Lately, video streaming applications have been studied in 
detail. Recently, it has been shown that for video streaming 
applications on wireless mobile devices, the screen, the 
processor and the network interface offer the largest range for 
possible energy savings ([5], [6], [7], [8]). This is illustrated in 
Figure 1. A number of different approaches can be taken in 
order to minimize the energy consumption of a mobile device 
during video streaming. Some of these are discussed below. 

Adaptive Video Decoding 

Adaptive decoding refers to operations on the client device 
that alter the default decoding process in real-time in order to 



maximize energy efficiency. This can involve simplifying the 
decoding process or skipping specific video frames instead of 
decoding them. This process inherently lowers the QoS but 
also increases battery life. 

By changing the quantization parameter for each macro-
block in the video decoder on the client device, Park et al. 
achieved a 42% decrease in energy consumption during video-
decoding with a mere 13% quality degradation in the video 
[9]. In [10], Yu et al. propose an algorithm for scaling the 
frame-rate of a video sequence during the video decoding 
process for reductions in decoding time and power 
consumption. The algorithm assesses the level of movement 
between the immediately preceding decoded video frames. If 
the level of movement between the previous frames is above a 
certain threshold, then the current frame is decoded as normal.  
However, if the level of movement is below the threshold, 
then the current frame can be discarded without decoding it 
and its reference frame is displayed again. This yielded a 
reduction in decoding time by up to 35.9% while the PSNR of 
the video dropped from 37.44 dB to 33.12 dB 

It should be noted that each of the aforementioned 
mechanisms for adaptive video decoding is complementary to 
the work presented in this paper. The BaSe-AMy algorithm 
specifically looks at adaptive video encoding and delivery 

Display Control & Dynamic Voltage Scaling (DVS) 

Different display technologies have very different energy 
consumption characteristics. Cheng et al. proposed an 
algorithm for LCD screen devices to adapt the backlight of the 
screen while also compensating for the degradation in video 
quality by adjusting the intensity level of each pixel in the 
video frame [11]. The algorithm yielded power savings of over 
40% while still maintaining a “fair” QoS. This approach 
requires additional processing at a video proxy but ideally it 
could be realized as a terminal-based solution on the device 
while still yielding some energy reductions.  

In contrast, OLED screens do not utilize a backlight for the 
illumination of the display. The power consumption of OLED 
screens depends on the intensity level and chromaticity of 
each pixel [12]. Dong et al. were the first to begin research on 
manipulating the colors of pixels on OLED screens in order to 
conserve energy on mobile devices [13]. The result of this 
work was the application “Chameleon” which dynamically 
altered color in the context of a web-browsing application. The 
power consumption for displaying each color on the OLED 

screen of a device is modeled in the application. This model is 
then used for altering the color scheme of websites to schemes 
that have a higher energy efficiency rating. Initial tests showed 
a power reduction of 41% on the device when using the 
“Chameleon” application.  

In [14], Yang et al. proposed an algorithm for dynamically 
scaling the voltage supply to a mobile device’s CPU. The 
decoding time for each video frame is predicted and used to 
select a frequency level on the CPU that will successfully 
decode a certain ratio of frames in time for presentation on the 
screen. This algorithm resulted in a reduction of system-wide 
energy consumption by up to 17% over other DVS 
mechanisms and up to 24% over non-DVS mechanisms. 

The dynamic display control and dynamic voltage scaling 
techniques are complementary to the work in this paper. 
However, a middleware implementation is necessary to 
achieve each technique. This paper solely looks at 
optimizations that can be implemented in the application layer. 

Adaptive Video Streaming Mechanisms 

There are currently three standards that have been adopted 
for implementing adaptive streaming of MPEG-4 H.264 
videos to mobile devices.  

1. Apple has developed HTTP Live Streaming (HLS) [15]. 
HLS is an open standard which Apple has submitted to the 
IETF [16]. HLS works by taking a video input and 
encoding it at multiple different levels of bit-rate. Each of 
these levels of video are then segmented into multiple 
sections of uniform playback duration. A mobile client can 
request a section of video over a HTTP connection. 
Subsequent sections can be downloaded as required for 
playback. At any point the client can switch over to request 
video sections from one of the other levels of bit-rate. The 
result is that an adaptive stream is delivered to the mobile 
device. HLS is currently available on iOS devices since 
version 3.0. One advantage of HLS is that it is not tied to 
any single platform for either delivery or consumption. 
Adobe recently added HLS to Flash Media Server (FMS) 
[17], so that FMS can also be used to delivery video 
streams to devices that are not Flash-enabled. Google has 
also added HLS to Android 3.0 [18] which makes it a 
ubiquitous solution. 

2. As well as supporting HLS, Adobe has their own dynamic 
streaming solutions: RTMP Dynamic Streaming and HTTP 
Dynamic Streaming. RTMP Dynamic Streaming does not 
require any segmentation of the video streams but it does 
require the use of FMS for the stream delivery. HTTP 
Dynamic Streaming [19] can be served from FMS or an 
Apache server. This approach works in a similar way to 
HLS in that it requires segmentation of the video stream 
before transmission. Both these solutions would be played 
in a Flash player or an Adobe AIR application. While flash 
players are available on most platforms, requiring their 
utilization is quite a limiting restriction. Any development 
of streaming applications would have to be done using 
proprietary Adobe software. 
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Figure 1 – Variation in Power Consumption of Components on Nexus One 

Android Phone 



Figure 2 – BaSe-AMy Architecture 
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Figure 3 – BaSe-AMy Algorithm 

 

3. Notably, Microsoft has developed a system called Smooth 
Streaming [20] which is part of their Silverlight system. 
Smooth Streaming uses HTTP as the delivery protocol for 
its streams. Although this mechanism is not compatible 
with Android phones, Microsoft have released solutions 
for both iOS and Windows Mobile. One important thing to 
note is that developers do not have complete access to the 
configuration of the adaptation algorithms [21]. 

 
Section IV details the selection of the adaptive streaming 

solution used in the work reported in this paper. 
 

III. ARCHITECTURE 

The BaSe-AMy algorithm that is proposed in this paper is 
an evolved version from the first incarnation, as seen in [4]. 
The algorithm assesses the remaining battery level, the 
remaining video stream duration and the packet loss rate and 
then dynamically adapts the stream bit-rate and display 
brightness to maximize energy conservation without sacrificing 
the Quality of Experience (QoE) too much. The current version 
of the algorithm has been updated to adapt the display 
brightness dynamically. The algorithm also assesses the loss 
rate more accurately and the threshold for the loss rate has been 
altered for a value that is more applicable in a real-world 
scenario. The value for the loss threshold in this paper is 
modeled on Adobe’s Dynamic Streaming Class [22] that 
triggers automatic adaptation if the packet loss rate goes over 
25%. The different levels of thresholds for different battery 
levels in the original algorithm have been abandoned in the 
enhanced BaSe-AMy algorithm. The reason for this is the 
thresholds jeopardize achieving the maximum playback 
duration which can result in user dissatisfaction with the 
service. In the assessment for adapting up again, a new 
mechanism has been introduced to smooth out the video 
adaptations and reduce the ping-pong effect. This is achieved 
by comparing the remaining battery life to an up-scaled level of 
the remaining stream duration. 

This application has both client and server components as 
shown in Figure 2. The client is a wireless mobile device. 
When the user opens the video streaming application, the 
application cycles through the following stages: 

1. Streaming 

The client immediately opens the video stream connection 
to the video server. The video stream is then displayed on 
the screen of the client device in full-screen mode. In the 
initial stages, the highest video quality stream is played. 

2. Monitoring 

As the stream is playing, the remaining battery capacity, 
packet loss and stream duration are sampled periodically. 
The exact sampling period can be stipulated by the user or 
can be arbitrarily set in the algorithm before use on the 
device. Previous and current readings of the battery level 
are used to dynamically predict the remaining battery life.  

3. Decision 

The enhanced BaSe-AMy algorithm (Figure 3) is 
implemented in the decision module on the client device. It 

analyzes the collected data from the monitoring stage and 
decides whether or not any adaptation is required. BaSe-
AMy decides whether to adapt the video stream up or down 
one quality level or to adapt the device’s display brightness 
in order to achieve optimal results.  



4. Adaptation 

When adaptations to the stream bit-rate are required, an 
order is sent to the server which seamlessly adapts the 
quality of the stream. Alterations to the level of brightness 
of the display are implemented in the video streaming 
application on the client device. The application then 
resumes monitoring its resources again.  

 

IV. TESTING AND SETUP 

The complete testing setup can be seen in Figure 4. This 
mechanism is evaluated using a HTC Nexus One running 
Android 2.3 as the client device in an 802.11g network. This 
specific device was selected because of its wide range of 
functionality and because it runs Android, an Open Source 
platform. Additionally, Android has integrated functionality for 
logging the power consumption of the device, which is ideal 
for the use-case, considered in this paper.  

Adobe’s RTMP Dynamic Streaming mechanism is selected 
for the implementation of adaptive video streaming to the 
client. This has been selected because it is a viable option 
across a wide range of mobile and laptop Operating Systems. 
Apple’s HLS would be the ideal choice of mechanism but 
unfortunately the adoption of this technology by other 
companies has just begun. While there are reports of a HLS 
implementation on Android 2.3 from Nextreaming [23], neither 
the player nor the SDK are currently available online. 
Therefore, Adobe’s Flash Media Server 4 is used to serve the 
adaptive H.264 video stream to an application written in Adobe 
AIR and compiled for Android. The power battery percentage 
of the Nexus One is measured periodically by the application 
and these values are used to predict the remaining battery-life. 
The remaining duration of the stream and the loss can be 
obtained from the stream meta-data in Flash. Adaptations to the 
brightness of the device’s display cannot be implemented in an 
Adobe AIR application as this functionality is not exposed in 
the API. In order to calculate the total energy savings on the 
device, this issue was circumvented by running the Adobe AIR 
application and measuring the energy consumption for each 

level of video quality and brightness combination. This 
information was logged and later compiled for analysis.  

Two separate tests were performed to assess the value of 
the BaSe-AMy algorithm. The video that was streamed during 
these tests was a 113s high-action video clip that was played on 
loop for the desired stream duration. This clip was encoded at 
15 frames per second, with a resolution of 800x480 pixels 
using the H.264 codec and an MP4 container. The video was 
trans-coded to 5 different levels of bit-rate: 2 Mbps, 1525 kbps, 
1.05 kbps, 575 kbps and 100 kbps. It is important to note that 
Adobe AIR on Android has poor performance for video stream 
playback with videos encoded above a bit-rate of 500 kbps. As 
Apple HLS becomes available on Android, there will be no 
need to use the Adobe mechanism as in this paper. However 
these tests are performed here to illustrate the potential for 
energy savings using the BaSe-AMy algorithm.  

Four streaming mechanisms are compared in the tests 
presented here. The first involves a Constant Bit-Rate (CBR) 2 
Mbps stream delivered to a device whose screen brightness is 
set to 100%. The second makes use of the same CBR stream, 
but the device has the default OS automatic brightness control 
enabled. The third mechanism is the BaSe-AMy algorithm with 
the device screen brightness statically set to 60%. The final 
mechanism is the BaSe-AMy algorithm with dynamic screen 
brightness control. Each mechanism is compared in terms of 
remaining battery capacity and QoS.  

Figure 4 – Test Setup: Server (laptop), Access Point and two Client Devices 
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Figure 5 – Test 1 - Battery Capacity over Time 
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Figure 6 – Test 1 - PSNR over Time 

 



The first test involves streaming 228 minutes of video from 
the media server to the server to the client device. In the second 
test a 235 minute video is streamed.  

V. RESULTS & ANALYSIS 

The results of each of the test scenarios are plotted in 
Figures 5-8. The labels CBR+ and BaSe-AMy+ are to signify 
when screen brightness control is enabled. For CBR+, this is 
the default system scheme but for BaSe-AMy+, the brightness 
is adaptively controlled in the BaSe-AMy algorithm. 

1. In the first test, the CBR and CBR+ mechanisms result in 
total battery depletion before the whole video sequence can 
be displayed. However both the BaSe-AMy and BaSe-
AMy+ mechanisms enable the full video stream to be 
played completely due to the adaptivity.  

2. In the second test, the duration of the video stream was 
increased. While the CBR and CBR+ mechanisms resulted 
in total battery depletion in the same length of time as seen 
in the first test, the BaSe-AMy and BaSe-AMy+ 
algorithms successfully adapted the stream playback to 
increase the battery life by 7.6% and 10.1% respectively.  

Table I provides a comparison of results from each of the 
two tests.  

VI. CONCLUSION AND FUTURE WORK 

This paper focuses on assessing the benefits of an improved 
version of the recently proposed BaSe-AMy algorithm tested 
on an Android-based device. The implementation investigated 
in this paper is achieved using Adobe RTMP Dynamic 
Streaming to an Adobe AIR application that was compiled for 
Android. While stream playback in the Adobe AIR application 
is poor for high-quality videos, experimental results show the 
potential for increasing the battery life by up to 10% while 
watching a video stream.  

The future work will focus on implementing an adaptive 
streaming solution on mobile devices using Apple HLS. 
Additionally, further development of the unified energy-aware 
algorithm is required. This would include aggregating the 
BaSe-AMy algorithm with other energy saving techniques. The 
development of this unified algorithm would also involve 
researching methods for energy conservation for other 
application types and would require the construction of a 
combined intelligent, context-aware algorithm. 
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