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Abstract—One of the key features of the Media Independent 

Handover (MIH) framework, introduced by the IEEE 802.21 

standard, is the support for events, including network 

degradation events which can be triggered based on link layer 

metrics and propagated to upper layer mobility protocols. As a 

framework, MIH does not provide specifics on how these events 

are triggered. Typically events are triggered when performance 

parameters such as Received Signal Strength (RSS) and link loss 

rate exceed a predefined threshold. In this paper we suggest that 

for vehicular systems, the constrained nature of movement 

enables network performance prediction. We propose to capture 

this performance predictability through a Fixed Route Adapted 

Media-streaming Enhanced handover algorithm (FRAME). 

FRAME uses a directed feed forward neural network to trigger 

MIH link events. FRAME provides a pluggable learning 

mechanism which allows for the extensible definition of 

performance and learning metrics. FRAME is evaluated using a 

commercial metropolitan network implementation. Results show 

that FRAME has significant performance improvements over 

existing MIH link triggering mechanisms. 

 

Index Terms—heterogeneous networking, media streaming, 

vehicular networks, MIH, directed learning 

I. INTRODUCTION 

Having promised much in the late 1990’s early 2000’s, IP 

enabled wireless and mobile networks are finally realising 

their potential. Technologies such as UMTS (3G) were 

generational in nature and proposed to support the mobile 

computing requirements of the “dot com” era. A decade later, 

mobile devices such as the iPhone, iPad and Android smart 

phones mean IP enabled access networks are receiving the 

level of utilisation originally anticipated.   

Wireless LAN (WLAN) was originally designed to 

provide coverage in specific “hot spot” areas. The advent of 

heterogeneous networking has enabled WLAN to play a 

significant role as a constituent part of a wider IP access 

network infrastructure. The significant numbers of WLAN 

installations providing high capacity low cost network access 

make it the network of choice for end users. When WLAN 

coverage is not available, users migrate to a metropolitan or 

mobile access network.  

In such a scenario an effective network migration strategy 

is required to moderate between the physical characteristics of 

the underlying network and the QoS required by the target 

application. The IEEE, through the 802.21 working group, 

have proposed the MIH standard [1][2][3]. As a framework 

MIH provides the concept of communication of network 
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critical events to upper layer mobility protocols. While MIH 

defines the communication interface, it does not provide 

specifics on how events should be triggered. Many existing 

algorithms [4][5][6][7][8][9] trigger events based on static 

thresholds applied to performance metrics such as Received 

Signal Strength (RSS).  

For vehicular systems such approaches are limited as they 

do not consider how the constrained nature of movement can 

be used to influence predictive link triggering. We propose to 

capture this performance predictability through a Fixed Route 

Adapted Media-streaming Enhanced handover algorithm 

(FRAME). Such an approach could be used to capture the 

historic experience of commuters on a route in order to 

optimise collective performance.  Unlike other location based 

approaches [7][8][10][11], FRAME does not focus on the 

optimization of a specific handover decision. Rather, FRAME 

determines the optimal collective handover criteria for all 

Access Points (AP) on a route. Such an approach has the 

ability to limit the effect of spurious handovers as outlined in 

[12][13][14].  

FRAME utilizes a directed feed forward neural network to 

enable MIH link triggering for multimedia streaming 

applications. FRAME is evaluated against the standard MIH 

approach [4] using performance metrics from a commercial 

network installation in Dublin, Ireland. Results illustrate that 

FRAME has a significant performance improvement over the 

classic MIH approach.   

In this article we use frame loss rate and PSNR for 

performance evaluation. FRAME however, provides a 

pluggable extensible interface which is adaptable to emerging 

media stream analysis metrics and device characteristic 

improvements. Other media stream quality metrics such as 

Mean Opinion Score (MOS) or Structural Similarity (SSIM) 

can be easily integrated by the framework. In this work we 

assume the end user device has sufficient heterogeneous 

networking capability, battery life, available memory, and 

processor speed. For performance limited devices, the 

extensible FRAME interface allows device specific 

performance metrics such as those described in [15], to be 

utilized in the handover decision.  

This paper is organised as follows: an overview of relevant 

mobility protocols is presented in Section II. Artificial Neural 

Network (ANN) concepts are introduced in Section III. 

Section IV describes the structure of the FRAME algorithm. 

The characteristics of the commercial network installation are 

described in Section V. Simulations and results are presented 

in Section VI. Related work is discussed in Section VII.  

Finally conclusions are discussed in Section VIII. Additional 

background data for this article is available from [16].  
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Table I:  MIH Event Service – Event List 

Id Event Name Description 

1 Link Up L2 connection is established 

and link is available for use 

2 Link Down L2 connection is broken and 

link is not available for use 

3 Link Going 

Down 

Link conditions are degrading 

& connection loss is imminent 

4 Link Detected New link has been detected 

5 Link 

Parameters 

Change 

Link parameters have crossed 

specified threshold 

6 Link Event 

Rollback 

Previous link event needs to 

be rolled back 

7 Link SDU 

Transmit 

Status 

Indicate transmission status of 

all PDU segments 

II.      MOBILITY PROTOCOLS 

A. Media Independent Handover 

MIH is a recent IEEE standard from the 802.21 working 

group, which supports seamless handover between 

homogenous and heterogeneous networks. MIH does not 

implement network handover; rather it provides a framework 

for handover between a range of network technologies 

including 3G, HSDPA, Bluetooth, WiFi and WiMax. MIH 

introduces the MIH network handover Function (MIHF) 

which consists of three elements: event service, command 

service and information service.  

 

Media Independent Event Service 

The MIH Event Service (MIES) is responsible for 

communicating network critical events to upper layer mobility 

protocols. These events are used by the upper layers to 

determine optimal handover time. Table I details some of the 

MIES events. The Link_Going_Down (LGD) event provides 

upper layers with a predictive indication of network 

degradation. FRAME focuses on the optimization of candidate 

path selection. As part of its optimal path selection FRAME 

determines, using historic performance characteristics, when 

path migration should occur replicating the functionality of the 

LGD mechanism. Many existing MIH implementations utilize 

a static performance threshold Pthres to generate the MIH LGD 

event. In such scenarios the relationship between the time that 

Pthres 
(actual or projected) is exceeded, Tdeg, and the time at 

which path handover is initiated, Th-init, can be expressed as 

follows: 

)( deglg TT dinith α=−                       (1) 

αlgd
 
is an anticipation factor applied to Tdeg

 
to adjust the 

aggressiveness of LGD event triggering. Fig 1 illustrates how 

such a relationship is dependent on the rate of wireless 

degradation.  

 

 

 

 

Fig. 1 Threshold-based MIH Triggering for Wireless Links 

Many implementations use RSS as the indicator of network 

performance. If the current RSS crosses Pthres the LGD event 

is generated. The NIST MIH implementation in NS2 [4] 

utilizes the actual power level of packet transmission 

RXThresh (Pthres) and Pr_limit (αlgd) to control event 

triggering.  

Other studies [4][5][6][7][8][9] utilize a predictive 

indication of RSS with Pthres. These approaches however, do 

not provide a mechanism by which the handover algorithm 

can tune performance thresholds for changing network 

conditions.   

 

Media Independent Command Service 

 

The MIH Command Service (MICS) enables higher layers to 

control the physical, data link and logical link layers. The 

higher layers control the reconfiguration or selection of an 

appropriate link through a set of handover commands. The 

commands carry the upper layer decisions to the lower layers. 

For example the MICS may be used to request a mobile node 

to switch between links. Commands defined include 

MIH_Switch and MIH_Get_Status. As FRAME assumes that 

SCTP [17] is the mobility protocol in use, the MIH_Switch 

command results in a call to SCTP’s Set_Primary command. 

However, similar translations would be implemented for 

Mobile IP.  

 
Media Independent Information Service 

  

The Media Independent Information Service (MIIS) provides 

a framework by which an MIHF, residing in the mobile node 

or in the network, discovers and obtains network information 

within a geographical area to facilitate network selection and 

handovers. The objective is to acquire a global view of all the 

heterogeneous networks using metrics such as cost, QoS 

metrics and security. These metrics are used by a policy 

engine to facilitate effective handover decisions.  
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Fig. 2 FRAME/MIH Interaction 

 

B. FRAME/MIH Interaction 

 

Within the MIH architecture FRAME is considered an 

MIH_User which interacts with the MIHF through the MIH 

Service Access Point (MIH_SAP). The MIHF in turn interacts 

with the specific MAC through a MIH_Link_SAP. Fig 2 

illustrates this interaction.  

Within the MIHF, FRAME utilises the services of the 

MIES and MICS. Using the MIES, FRAME requests the 

MIHF to routinely generate a 

MIH_Link_Parameters_Report.indication service primitive 

which specifies the performance characteristics of specific 

links. The MIHF requests the MAC to generate this report 

using the Link_Config_Thresholds.request service primitive. 

When FRAME determines that a handover is required it 

requests the MICS to implement the handover using the 

MIH_MN_HO_Candidate_Query.request primitive with the 

required destinations ranked by preference in the 

CandidateLinkList attribute. 

In FRAME, in order to maintain accurate SCTP path 

configurations, MIH utilises a number of MIES service 

primitives including; MIH_Link_Up, MIH_Link_Down and 

Link_Handover_Imminent (Layer 2 handover). The 

functionality of the MIH_Link_Going_Down service primitive 

is superseded by FRAME, as the proactive detection of link 

failure is undertaken following the reception of the  

MIH_Link_Parameters_Report. 

C. Stream Control Transmission Protocol 

SCTP [17] is a transport protocol originally designed to 

transmit signaling data across IP networks. Though it was 

originally designed to provide path redundancy for inter 

exchange signaling, SCTP has evolved to become a general 

purpose mobility protocol. A key feature which differentiates 

SCTP from TCP is multi-homing.  

A multi-homed device has more than one IP address, 

thereby enabling a peer to contact it over a number of different 

physical paths within one end to end association. At start-up 

SCTP selects one IP address of a multi-homed peer as the 

primary path for data transmission. If there are no data chunks 

being sent SCTP uses heartbeat packets to determine the 

reachability of a peer IP address. If the number of consecutive 

transmission timeouts exceeds the Path.Max.Retrans (PMR) 

parameter, the address is marked inactive. When a primary 

path becomes inactive, handover to an alternate path occurs. A 

number of studies have highlighted deficiencies in the SCTP 

switch management for mobility [18][19]. As a layer 

compliant protocol, SCTP is limited to using end to end 

metrics to gauge the performance of underlying network 

connections. Such an approach is performance limited for 

wireless networking environments. In our approach we disable 

the switch management features of SCTP while we still utilize 

its multi-homed switch implementation. By using FRAME to 

trigger MIH events, we avoid the performance deficiencies of 

a layer compliant end to end protocol.  

For an MIH supported session handover time,����, is given 

by: 

��� � ���� 	 ��
������	�������
� 	 

����� 	 ����� 	 ������������                         (2) 

 

where ���� �is the time taken to generate the 

Link_Going_Down event, ��
������ �is the time taken to 

identify candidate networks, �������
� �is the time taken to 

select a suitable path from the set of candidates ,������  and 

����� are the time taken to implement Layer 3 and Layer 2 

handover and ������������  the time taken to adapt the media 

stream to the changed network conditions.  

Many existing MIH implementations utilise Mobile IP 

(MIP) for switch implementation. MIP however utilises a 

“break before make” approach to network handover. By using 

the multi-homing features of SCTP it is possible to implement 

a “make before break” approach.  If we assume the existence 

of a preconfigured alternate path, we can disregard the 

network discovery and selection components as well as the 

Layer 3 handover component. Using our approach, ���, is 
therefore reduced to: 

��� � ���� 	 �����	������������                   (3) 

III. ARTIFICIAL NEURAL NETWORKS 

Artificial Neural Network (ANN) approaches belong generally 

to two classes: supervised and unsupervised. Unsupervised 

approaches are motivated by the requirement to be 

autonomous self-organizing structures. Such an approach can 

be generally considered as the clustering of input data in order 

to extract useful information.  The most popular unsupervised 

learning approaches are Adaptive Resonance Theory (ART) 

[20] and Kohonen networks [21]. ART networks are an 

evolving branch of neural networks which propose to simulate 

parts of the brain based on physiological models. Kohonen 

networks use topographic mapping in order to map high 

dimensional to low dimensional data.  

Supervised neural networks are generally motivated by the 

requirements of a specific task. As the problem domain is well 

defined supervised approaches tend to optimize specific 

performance criteria. In our approach we propose to optimize 

the selection of candidate access points based on weightings 
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applied to three input parameters: RSS, link loss rate and 

delay. In each of our evaluations we have a clear view of 

optimal performance. For frame loss oriented learning the 

optimal performance is a 0% loss rate. For PSNR oriented 

learning the optimal performance is gauged against the PSNR 

recorded in the presence of 0% loss. The characteristics of our 

problem domain make it suitable for a supervised rather than 

an unsupervised learning. In the following sections we 

describe the most commonly used supervised neural network 

types; feed forward networks, nearest neighbor classification 

and radial basis functions.  

A. Feed-Forward Neural Networks 

The first work on ANN was presented by Mc Cullock and 

Pitts in 1943 [22]. They recognized that combining many 

simple processing units together could lead to an overall 

increase in computational power. The McCulloch and Pitts 

network had a fixed set of weights and it was Hebb [23] who 

developed the first learning rule. His premise was that if two 

neurons were active at the same time then the strength 

between them should be increased. Hebbian learning involves 

weights between learning nodes being adjusted so that each 

weight better represents the relationship between the nodes.  
The following formula describes Hebbian learning:  

�
� � �� !
"!�"
�

"#�
                            (4) 

wij is the weight of the connection from neuron j to neuron 

i, p is the number of training patterns, and !
" is the k
th
 input 

for neuron i. Classification of inputs was introduced by the 

perceptron model in [24]. The perceptron is a type of artificial 

neural network invented in 1957 by Frank Rosenblatt. As a 

linear classifier, it is the simplest kind of feed forward neural 

network. The perceptron maps its input x (a real-valued 

vector) to an output value f(x) (a single binary value). The 

operation of the perceptron can be described as follows: 

$%!& � '(��)$��* ! 	 + , --����������./012�)31                           (5) 

where w is a vector of real-valued weights, w.x is the  

weighted sum of inputs, and b is the 'bias', a constant term that 

does not depend on any input value. The value of f(x) (0 or 1) 

is used to classify x as either a positive or a negative instance, 

in the case of a binary classification problem. If b is negative, 

then the weighted combination of inputs must produce a 

positive value greater than | b | in order to push the classifier 

neuron over the 0 threshold. The bias alters the position of the 

decision boundary. The introduction of back propagation 

enabled the training of synaptic weights based on a desired 

output. Back propagation involved two steps: propagation and 

weight adjustment. Propagation involved the presentation of 

inputs to the ANN in order to generate output and the 

comparison of actual and desired output in order to generate a 

delta value. The weight adjustment stage involves the 

multiplication of each synaptic weight by a ratio of the delta 

value. The ratio determines the rate of learning. If the rate of 

learning is too small optimization can be centered on local 

maxima. If the learning rate is too large the ANN may never 

reach a trained optimal value.  

 
Fig. 3 A Supervised Learning Neural Network 

Fig 3 illustrates a supervised learning ANN. Values x0, x1, 

x2,.... xn are provided as input to the neuron. The neuron has 

two modes of operation: training or trained. In trained mode, 

the neuron applies synaptic weights wk0, wk1,.... wkn which 

enhance or degrade the input values. These weighted values 

are summed and an activation function ϕ(.) is applied.  ϕ(.) 

determines whether the neuron should “fire”, producing an 

output yk which classifies the input pattern. In supervised 

learning, the ANN will have an offline training phase in which 

neural outputs are compared against a training set. Alterations 

are made to the synaptic weights to limit the error in 

classification between the output yk and the training set dk. 

When the ANN correctly classifies the input pattern, the ANN 

operates in trained mode.   

There are a number of common activation functions used 

by feed forward neural networks. A step function is a function 

like that used by the original Perceptron. The output is a 

certain value, e.g. 1, if the input sum is above a certain 

threshold and 0  if the input sum is below a certain threshold. 

These kinds of step activation functions are useful for binary 

classification schemes, when an input pattern has to be 

classified into one of two groups.  

Other types of activation function include log-sigmoid and 

Gaussian. Fig 4 illustrates a sigmoid activation function which 

has the property of being similar to the step function, but with 

the addition of a region of uncertainty.  

For FRAME we utilize a variant of the sigmoid activation 

function to indicate (1) if path handover should occur to a 

specific path and (2) the degree of certainty with which we 

suggest handover should occur. At routine intervals FRAME 

selects the network path with the highest sigmoidal activation 

as the primary path.  

B. K-Nearest Neighbor Classification 

K-nearest neighbor is a method of classifying input patterns 

based on their proximity to existing patterns in a training set.  
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Fig. 4 Sigmoid Activation Function 

The technique involves computing the distance of an 

input vector 4
  from a set of stored training samples �
�. The 

input pattern is assigned the classification most common 

amongst its k-neighbors. In its simplest form, k=1, the input 

pattern is matched against the single pattern it most closely 

resembles. 

An approach sometimes utilized is to weigh the 

contributions, so that nearer neighbors contribute more to the 

average than more distant ones. The generalization of linear 
interpolation gives each neighbor a weight of 1/d, where d is 

the distance to the neighbor. The selected neighbors are taken 

from a set of correctly classified objects.  

Usually Euclidean distance is used as the distance 

metric. In cases such as text classification, another metric such 

as Hamming distance can be used. Often, the classification 

accuracy of k-NN can be improved significantly if the distance 

metric is learned with specialized algorithms such as e.g. 

Large Margin Nearest Neighbor or Neighbourhood 

components analysis.  

C. Radial Basis Functions 

Radial basis functions [25] emerged as a branch of ANN in 

the late 1980’s. RBF networks typically have three layers: an 

input layer, a hidden layer with a non-linear RBF activation 

function and a linear output layer. A characteristic feature of 

an RBF is that their response decreases or increases with 

distance from a central point. Fig 5 illustrates the structure of a 

radial basis function ANN. The bell shaped activation 

functions in the hidden nodes indicate that each represents a 

radial basis function that is centered on a vector in the feature 

space. The values equidistant from the center in all directions 

have the same values. A critical feature which differentiates an 

RBF from a Multi-Layer Perceptron (MLP) is that there are no 

weights on the lines from the input nodes to the hidden nodes. 

The input vector is fed to each m-th hidden node where it is 

put through that nodes radial basis function 

5� � 1!6789! 8 :�9�;%<=�&>                    (6) 

where 9! 8 :�9� is the square of the distance between the 

input feature vector x and the center vector :� for that radial 

basis function. 5� �are the outputs from the radial basis 

functions.  
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Fig. 5 Radial Basis Function ANN 

IV. FRAME  – FIXED ROUTE ADAPTED MEDIA STREAMING 

ENHANCED HANDOVER ALGORITHM 

Traditionally, handover algorithms utilize static thresholds 

applied to metrics such as RSS [4][5]. Such approaches have 

evolved by proactively predicting RSS values, though still 

making use of static handover triggering thresholds [7][8][26].  

While RSS is an important performance parameter, used 

alone does not provide an accurate view of the dynamic status 

of a link. Therefore, handover approaches have considered 

multiple performance parameters, including RSS, delay and 

loss rate. Some solutions also consider metrics related to the 

content delivery quality as experienced by end users [6][27].  

Such approaches however are performance limited as they 

apply static performance thresholds, which when exceeded, 

trigger handover. Applying a static performance threshold 

makes assumptions regarding the status of a network. Previous 

work we have undertaken [28] illustrates that it is beneficial 

for the handover management algorithm to probe network 

performance and dynamically alter thresholds through  

synaptic weights. In this context, FRAME is a pluggable 

mechanism which can adapt to various performance metrics 

and alters parameter weightings based on learned behavior.    

The proposed FRAME algorithm consists of two major 

components: 

Route Identification and Management (RIM) – is 

responsible for the identification and management of vehicle 

routes. Using the vehicle geographical position, RIM identifies 

existing, altered or new routes.  

Media Performance Directed Learning Algorithm 

(MPDLA) – implements the path selection intelligence within 

FRAME. MPDLA is a feed forward neural network which 

operates with a neuron dedicated to each candidate AP. Back 

propagation and weight adjustment are implemented each time 

the vehicle completes a cycle of a route.   

Fig 6 outlines the pseudo code for the FRAME algorithm. 

FRAME dynamically configures and maintains traffic routes 

using GPS coordinates. Having read the GPS coordinates, 

FRAME determines if the current position uniquely identifies 

an existing route.  If the position is not previously configured, 

a new route is created and training is initiated.   

FRAME operates in either training or trained mode. As 

new media stream analysis metrics are likely to emerge, 

FRAME provides a pluggable learning mechanism, 

ImplementTraining, which allows for the utilization of 

alternative learning metrics. In this investigation two training 
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mechanisms are evaluated: frame loss rate, and PSNR-based, 

respectively. Initially, FRAME configures random synaptic 

weights in the 0.25 to 1.5 range. Typically an arbitrary 

activation threshold of 1 is chosen for approaches such as 

FRAME. Randomly allocating initial weights in the 0.25 to 

1.5 range typically results in an initial configuration which is 

neither excessively passive nor aggressive. Subsequently, 

training is implemented after each route cycle. Frame loss-

directed training seeks to minimize the frame loss rate. PSNR-

directed training minimizes the difference between the PSNR 

of the video streamed on route and that of the video streamed 

with zero percent loss rate. FRAME is considered trained 

when the training process no longer updates the synaptic 

weights. FRAME ensures that synaptic weights remain 

relevant to changing network conditions by making use of a 

threshold, accuracyThresh.  
 

 Struct::Route  
// Stores (a) RIM data relating GPS coordinates to a 
// route (b) MPDLA parameters for the ANN  
// calculations for the route 
 trainingmode = false //training or trained  
 GPS_Coord startOfRoute 
 GPS_Coord[] existingRoute  
 float[] weights  // synaptic weights  
 float[] performanceMetric  
 // the list of input metrics 
 
 
 enum LearningType={framelosslearning,PSNRlearning} 
 // Which performance metric, Frame Loss/PSNR,  
 // is used to determine the performance of  
 // the network 
 
 float[] weightedMetric  
 // Each performance metric scaled from 0-100 *     
 // synaptic weight for that metric 
 
 float summedWeights  
 // weightedMetric[0] + weightedMetric[1]…. 
 
 float activationThreshold  
 //if summedWeights > activationThreshold then fire  
  
 float[] historicPerf  //previous throughput 
 float learningRate // rate of weight change  
 float accuracyThresh  
 //if throughput<accuracyThresh reinitiate training 
 
 

Procedure::FRAME() // Main Procedure  
GPS_Coord CurrentPos = get GPS_Position() 
foreach(Route)  // RIM route management 
  if(CurrentPos in Route.StartOfRoute) 
   // Start of a Route cycle  
   historicPerf[] += perfforcurrent  
   // perfforcurrent are the current performance  
   // metrics relating to candidate networks  
   CheckAccuracy(historicPerformance) 
   if(trainingmode == true) 
    ImplementTraining() 
   else 
   CalculateHandover() 
  else if(CurrentPos in Route.ExistingRoute)          
      CalculateHandover() 
  else // coords will form a new route 
   if(start of new route) 
   // Create a new Route structure 
    create Route newRoute 
    newRoute.StartofRoute = CurrentPosition 
    newRoute.ExistingRoute[] += CurrentPosition 
    if(trainingmode == false) 

     trainingmode = true 
    CalculateHandover() 
 

Procedure::CalculateHandover() 

// Determine of handover is required 
foreach(AP) 
{ 
  float[] normalisedmetric  
  // normalisedmetric is a performance metric scaled 
  // in the range 0-100  
 
  AP candidateAP // Potential AP for communication  
  float maxActivationValue  
  // The highest performing AP based on input  
  // metrics and synaptic weights  
 
  foreach(performancemetric) 
   normalisedmetric[]=NormMetric(GetPerfMetric()) 
   activationValue=(weights[0]*normmetric[0])+…… 
   if(activationValue>threshold)  
     if(activationValue>maxActivationValue)  
       candidateAP=currentAP 
       maxActivationValue=currentActivationValue  
  implementhandover(candidateAP)   
 

Procedure::CheckAccuracy()  

// Used when FRAME is trained to ensure the trained 
// synaptic weights are within acceptable bounds  
 
  float slope = slopeofLinearRegres(historicPerf) 
  if(abs(slope) > accuracyThresh)  
    trainingmode = true   //reinitiate training 
 
Procedure::ImplementTraining()  
// The procedure CalculteHandover() uses trained 
// synaptic weights to determine if handover is  
// necessary. This procedure trains those synaptic 
// weights 
 
  float errorCorrection  
// The changed which will be applied to the existing  
// weight in order to optimize performance 
 
  int learningiteration 
// The number of iterations of learning since a last  
// random adjustment was applied. Random  
// adjustments avoid optimisation centred on local  
// maxima 
 
  float RandomWeight  
// the size of random weight adjustement  
 
if(weights == null) 
  randomizeweights(); // initialize random weights 
else 
  float slope = slopeofLinearRegres(historicPerf) 
  errorCorrection = slope*Route.learningRate    
  foreach(weight in weights[]) 
   weight+=errorCorrection // alter weights 
   if(learningiteration mode 3 ==1)  
    // apply a random weight adjustment  
    // after 3 cycles 
    if(framelosslearning) 
     RandomWeight=Rand(100-CrtFrameLoss%*NormValue) 
    else if(PSNRlearning) 
     RandomWeight= 
       Rand(MaxPSNR-CrtPSNR%*NormValue) 
    weight+= RandomWeight  

 
Procedure::implementHandover(candidateAP) 
  // This procedure is dependant on the mobility  
  // protocol. It implements a call to the  
  // relevant mobility primitive. For SCTP this is  
  // the setPrimary() method 
  setPrimary(CandidateAP); 

Fig. 6 Pseudo code for the FRAME algorithm 
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Fig. 7 MPDLA Neural Network Model 

 

The MPDLA model consists of x0, x1,... xn neuron inputs 

corresponding to the selected performance metrics. ?
� is the 

synaptic weight applied to each performance metric j for the 

learning iteration i.    

.�  is defined as follows:   

@��A� � �B C
�
#D ?
�                            (7)   

 .� � E(��)$�F@��A� G H�-�)$�I@��A� J H�                       (8) 
    Fig 7 illustrates the configuration of the MPDLA model. 

?
� are synaptic weights for each performance metric in 

relation to KL� . @��A�  is the sum of weighted inputs. H� is a 
user configured activation threshold. If the maximum 

stimulation of all neurons, MN!%@�&, exceeds the activation 

threshold H�, path handover occurs to the AP with MN!%@�&. 
FRAME calculates the rate of change, :, of a linear regression 

line for previous cycle performance as follows: 

: � BOPQPRS%�Q�R&B%PQPR&T                                              (9) 

: is used to gauge the effectiveness of previous synaptic 

weight alterations. In order to control the rate of learning, 

FRAME defines a user configurable learning rate constant 2, 
where r value is between 0 and 1. The selection of an 

appropriate learning rate is critical for the effective operation 

of the algorithm. If the learning rate is too low the network 

learns very slowly. If the learning rate is too high weights 

diverge, resulting in little learning. We define the error 

correction,�U?, as the product of : and 2. 
�U? � : V 2              (10) 

V. EXPERIMENTAL ANALYSIS OF FRAME IN A COMMERCIAL 

NETWORK 

Heterogeneous networking has gained recent acceptance as the 

next logical step in wireless and mobile networking.  

 

Fig. 8.  Dublin City Centre Route – Connolly to Heuston Rail Stations  

 

The International Telecommunication Union (ITU) have 

formalized this trend through the fourth generation wireless 

mobile networks (4G) set of standards [29]. Many mobile 

operators are embracing heterogeneous networking. Initiatives 

such as TeliaSonera’s Homerun and British Telecom’s 

OpenZone [30] have made heterogeneous networking a 

reality. In this section we analyze the performance 

characteristics of one such commercial deployment: Eircom’s 

WLAN deployment in Dublin, Ireland. Eircom are the largest 

provider of broadband services in Republic of Ireland. Their 

heterogeneous network offering in Dublin City Centre consists 

of fixed broadband, mobile cellular (provided by Meteor 

Mobile) and WLAN. The handover approach proposed by 

FRAME is applicable to any IP network type. Previous studies 

we have undertaken [28] have analyzed handover between 

WLAN and 3G. In [28] it was assumed the 3G network was 

ubiquitous with relatively static performance characteristics. 

Handover between heterogeneous networks with dynamic 

characteristics such as WiMax and WLAN would require 

separate instances of the FRAME implementation evaluating 

performance metrics specific to each network type. In this 

work we focus on handover in a homogeneous metropolitan 

network.   

In order to dimension the characteristics of  Eircom’s 

WLAN network we select 2 routes with varying AP 

concentration. Route 1 crosses Dublin City Centre from 

Connolly Rail station in the east to Heuston Rail station in the 

West. The Google Earth [31] image in Fig 8 outlines the 

geographical layout of this route.  

Using NetStumbler [32] we record the RSS for all Eircom 

APs for the route outlined in Fig 8.  Fig 9 illustrates the 

recorded RSS on a 10 minute journey by car at an average 

speed of approximately 18km/h from Connolly to Heuston 

station. As the route passes through Dublin City Centre, there 

is a relatively high concentration of APs. The average RSS for 

the duration of the test was -76.38 dBm.  
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Fig. 9.  Recorded RSS from Eircom APs - Dublin City Centre Route 

 

 

 

Fig. 10.  Dublin Suburban Route – Dublin Airport - Dublin City Centre 

 

The second route is through a suburban area from Dublin 

Airport towards Dublin City Centre. The Google Earth [31] 

image in Fig 10 illustrates the location of Dublin Airport in a 

green belt area in the north of the city.  

Fig 11 illustrates the recorded RSS from Eircom APs on a 

21 min journey by car at a average speed of approximately 

36km/h from Dublin Airport towards Dublin City Centre. 

 

 

Fig. 11.  Recorded RSS from Eircom APs – Dublin Airport towards Dublin 

City Centre 

 
The route from Dublin Airport to Dublin City Centre 

travels through a green belt area, industrial areas and suburban 

residential areas. The AP coverage is less dense than in the 

City Centre scenario. The average RSS recorded on the route 

was -81.94dBm in comparison to -76.38 dBm recorded on the 

City Centre route. The experimentally recorded data was used 

as input to the simulation models described in the following 

section.  

 

VI. SIMULATION-BASED EVALUATION OF FRAME  

In this section, we evaluate the performance of FRAME using 

the route scenarios outlined in Section V. Our simulation uses 

NS2 with the MIH mobility package from NIST [32] and 

Evalvid [33] with the multi-homing enhancements outlined in 

[34]. In order to integrate the geographical location of the 

route into NS2, we record the GPS co-ordinates for all 

junctions. Using these coordinates we create two simulated 

versions of the routes. The first route is 3.06 Km in length and 

is traversed in 10 minutes. The second route is 12.07 Km in 

length and is traversed in 21 minutes. We simulate the 

streaming of the file “BigBuckBunny.cmp” in CIF format at 

the frame rates 17, 24 and 31FPS. This video was selected as 

it is of sufficiently long duration to provide content for both 

routes. No other characteristics of the file are relevant to our 

investigation. As the file has a fixed number of frames the 

alteration of frame rate affects the streaming duration. 

Increasing the frame rate reduces the streaming duration. The 

file streamed at 17 FPS will have a longer streaming duration 

than the file streamed at 24 or 31 FPS.  The 17 FPS variant 

will therefore utilise additional elements of the network 

installation. Our investigation focuses on the comparison of 

handover strategies for the same frame rate rather than a 

relative comparison of the performance across different frame 

rates.  
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We recreate the RSS signatures illustrated in Fig. 9 and 

Fig. 11 in our simulated model. Each AP has a transmit power 

of 0.281838W, transmit antenna gain of 1, receive antenna 

gain of 1 and an antenna height of 1.5m. This provides an 

outdoor signal range of approximate 250m. The MIH 

parameters CSThresh (link detection) and RXThresh (link 

utilisation) were set to -90dBm and -85dBm, respectively. 

Simulation enhancements as described in [35] were included 

in the model. The WLAN back haul network was configured 

with a 100Mbps capacity and a 1ms delay. The transport layer 

mobility protocol SCTP was used to implement network 

mobility. The video file was streamed from the mobile node 

towards a back end content server. 

Previous studies [4][5][19] have illustrated the importance 

of RSS, WLAN link loss rate and delay as performance 

metrics in a WLAN handover decision. We utilize these 

performance metrics as input to our FRAME algorithm. In the 

following sections we outline the results for both route 

scenarios. Each consists of (1) a brute force evaluation of 

optimal weight configuration based on frame loss rate, (2) an 

implementation of the FRAME algorithm utilizing a frame 

loss directed learning approach, and (3) an implementation of 

the FRAME algorithm utilizing a PSNR directed learning 

approach.  

A. City Centre Route 

1) Brute Force Analysis of Frame Loss Rates – City Centre 

Route 

In this subsection we evaluate the performance of the 

FRAME algorithm for the City Centre scenario described in 

Section V in order to provide a coarse gauge of optimal weight 

configuration. There are 3 frame rates evaluated: 17 FPS, 24 

FPS and 31 FPS. In total there are 14315 frames. Detailed 

results are now provided for the 24 FPS configuration. 

Summary results are provided for the other configurations. 

More detailed results can be downloaded from a results 

appendix available in [16]  

Table II illustrates the frame loss rate for brute force tests 

when streaming the video in CIF format at 24 FPS. Each 

performance metric, Loss, delay, expressed in terms of RTT 

and RSS, is evaluated with their corresponding weights (w1, 

w2 and w3, respectively) ranging from 0.25 to 1.5 in steps of 

0.25. In general this range provided a bound of performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE II 

BRUTE FORCE FRAME LOSS NUMBER- 24 FPS CITY CENTRE ROUTE 

 

    
w2 = 

0.25 

w2=0.

5 

w2= 

0.75 
w2=1 

w2= 

1.25 

w2= 

1.5 

  w3=0.25 14316 14316 14316 14316 14316 11700 

w
1
=
0
.2
5
 

w3=0.5 14316 14316 14316 14316 11696 9312 

w3=0.75 14316 14316 14316 11696 9312 5686 

w3=1 14316 14316 11700 9312 5686 5686 

w3=1.25 14316 11700 9312 5670 5686 5670 

w3=1.5 11696 9312 5670 5686 5670 5670 

w
1
=
0
.5
 

w3=0.25 14316 14316 14316 12096 5340 5340 

w3=0.5 14316 14316 12096 5340 5340 5340 

w3=0.75 14316 12096 5306 5340 5340 3574 

w3=1 12096 5306 5340 5340 3574 1452 

w3=1.25 5306 5340 5340 3574 1452 1452 

w3=1.5 5340 5340 3574 1452 1452 1452 

w
1
=
0
.7
5
 

w3=0.25 3061 5688 5577 2797 1160 3174 

w3=0.5 5688 5577 2797 1160 3174 1160 

w3=0.75 5577 2797 1160 3174 1160 1452 

w3=1 2797 1160 3174 1160 1452 1452 

w3=1.25 1160 3174 1160 1452 1452 1452 

w3=1.5 3174 1160 1452 1452 1452 1452 

w
1
=
1
 

w3=0.25 5149 2527 2527 2562 2767 2788 

w3=0.5 2527 2527 2562 2767 2788 2733 

w3=0.75 2527 2562 2767 2788 2733 3063 

w3=1 2562 2767 2788 2733 3063 3063 

w3=1.25 2767 2788 2733 3063 3063 3154 

w3=1.5 2788 2733 3063 3063 3154 3061 

w
1
=
1
.2
5
 

w3=0.25 3246 3226 3226 3226 2742 3804 

w3=0.5 3226 3226 3226 2742 3804 3417 

w3=0.75 3226 3226 2742 3804 3417 3440 

w3=1 3226 2742 3804 3804 3440 3169 

w3=1.25 2742 3804 3417 3440 3169 3361 

w3=1.5 3804 3440 3440 3169 3361 3063 

w
1
=
1
.5
 

w3=0.25 2554 2554 2527 2527 2527 2742 

w3=0.5 2554 2527 2527 2527 2527 3405 

w3=0.75 2527 2527 2527 2527 3405 5293 

w3=1 2527 2527 2527 3405 5293 3485 

w3=1.25 2527 2527 3405 5293 3485 3169 

  

w3=1.5 2527 3405 5293 3485 3169 2919 

 

Figures 12 to 17 graphically illustrate the effect of weight 

alterations on percentage frame loss. The initial configuration 

w1=0.25 (Loss), w2=0.25(RTT), w3=0.25(RSS) resulted in a 

100% frame loss rate. The 100% loss rate occurs as the output 

neuron does not exceed the activation threshold at any time 

during the cycle. Therefore no candidate AP is selected as the 

primary path. Increasing weights, increase the potential of 

exceeding the activation threshold.  
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Fig. 12.  Percentage of Frames Successfully Transmitted w1=0.25 w2 and 

w3 vary from 0.25 to 1.5 

 

 
 

Fig. 14.  Percentage of Frames Successfully Transmitted w1=0.75  

and w2 and w3 vary from 0.25 to 1.5 
 

 

 

Fig. 16.  Percentage of Frames Successfully Transmitted w1=1.25  
and w2 and w3 vary from 0.25 to 1.5 

 

 
 

 
 

Fig. 13.  Percentage of Frames Successfully Transmitted w1=0.5  
and w2 and w3 vary from 0.25 to 1.5 

 

 
 

Fig. 15.  Percentage of Frames Successfully Transmitted w1=1  
and w2 and w3 vary from 0.25 to 1.5 

 

 

 

Fig. 17.  Percentage of Frames Successfully Transmitted w1=1.5  
and w2 and w3 vary from 0.25 to 1.5 
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Fig. 18.  Activation Value Vy w1=.25 w2=.25 w3=.25 

 

 

Fig. 19.  Activation Value Vy w1=0.75 w2=1 and w3=0.25 

 

Fig 18 illustrates how when the weighting 0.25 is applied 

to each normalized performance metric, for each AP, the 

activation value @� �does not exceed the activation threshold 

H� � ( at any time.  

We now consider one of the weightings which resulted in 

the best recorded frame loss rate of 1802 frames a percentage 

frame loss rate of 12.6%. Fig 19 illustrates the activation 

values achieved when w1=0.75 (Loss), w2=1(RTT), 

w3=0.25(RSS). There is a period of continuous coverage in 

which H� is exceeded between 180 and 725 seconds.  

For a learning algorithm such as FRAME it is important to 

determine the clustering of frame loss rates resulting from 

weight configurations. Tables A and B in the results appendix 

[16] detail the frame loss rates for the corresponding weight 

configurations for 17 and 31 FPS respectively. Using the 

results from Table II we define optimal frame loss in this 

situation as less than 2000 frames an approximate percentage 

frame loss rate of 14%. If there are a large number of weight 

configurations which result in a frame loss rate which is close 

to optimal this will reduce learning complexity and the 

number of training cycles. Inversely, if there are a large 

number of weight configurations which result in high frame 

loss rates, local maxima will reduce the effectiveness of the 

algorithm and increase training time.  

 

 

Fig. 20.  Distribution of Weight Configurations  

 

Fig. 21. 17 FPS Case - Frame Loss Rate per Weight Configuration  

 

Fig. 20 illustrates the distribution of weight configurations 

and their associated frame loss. Fig. 20 illustrates that for 17 

and 31 FPS there are a large number of weight configurations 

which result in a frame loss rate which is close to optimal (less 

than 2000 frames lost).  This high concentration of weights 

resulting in optimal frame loss reduces training complexity 

and the number of training cycles required. For 17 FPS, 108 of 

the total 216 weight configurations experienced a frame loss 

of less than 2000 frames. For 31 FPS the number of weight 

configurations which experienced a frame loss of less than 

2000 was 133.  

For the 24 FPS case there are a large number of weight 

configurations which result in a frame loss of between 2001 

and 4000. Such a large cluster of weight configurations 

centered on a suboptimal frame loss will increase training 

complexity. For 24 FPS, only 26 of the total 216 weight 

configurations experienced a frame loss of less than 2000 

frames. In the following sections we illustrate how cyclical 

random weight adjustments can reduce the potential for local 

maxima.   
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Fig. 22. 24 FPS Case - Frame Loss Rate per Weight Configuration  

TABLE III 

MEAN AND MODE WEIGHT CONFIGURATIONS  

 

Fig. 21 illustrates the frame loss rates for 17 FPS with each 

weight w1, w2 and w3 ranging from 0.25 to 1.5 in steps of 

0.25. It illustrates the dominance of the performance 

parameter Loss (x1). When Loss has a weighting in excess of 

0.75, frame loss is typically less than 2000 frames, regardless 

of the weight configuration of the other performance metrics. 

The frame loss rate for 31 FPS follows a similar pattern. 

Fig. 22 illustrates the frame loss number for 24 FPS with 

each weight w1, w2 and w3 ranging from 0.25 to 1.5 in steps 

of 0.25. Fig. 22 illustrates a greater degree of variation in 

frame loss rates in comparison to Fig. 21. The occurrences of 

optimal frame loss rates are not clustered and there it cannot 

be noticed a dominant performance metric. This results in a 

more complex training exercise. 

In order to further analyze the relative importance of each 

performance metric, Table III presents the mean and mode 

weight configurations for the highest populated frame loss 

groups 0-2000, 2001-4000 and greater than 14000.   

Table III illustrates that for the optimal frame loss rate of 

less than 2000, x1 (Loss) had the highest mean weighting, x2 

(RTT) next highest mean weighting and x3 (RSS) the lowest 

mean weighting for 17 and 31 FPS.  For 24 FPS the best 

performing weight configurations gave equally high 

precedence to x2 (RTT) and x3(RSS) with weights of 1.125 

while x1 (Loss) illustrating that the occurrences of optimal 

frame loss rates are not clustered.  

We will now evaluate the FRAME algorithm in the context 

of these brute force test results.  

2) FRAME Utilizing Frame Loss Directed Learning – City 

Centre Route 

Table IV outlines FRAME results when employing the 

frame loss directed learning session with the 24 FPS video for 

the City Centre route. The initial weights w1=0.270, 

w2=0.730 and w3= 0.980 are randomly allocated. Table II 

illustrated that this selection of random weights is far from 

optimal with a low weighting for the critical parameter Loss.  

As a result, there is a relatively long training session 

consisting of 12 cycles. The initial allocations of weights are 

applied to normalized performance metrics: Loss, RTT and 

RSS. If the activation value Vy exceeds the activation 

threshold H� =1, the neuron fires indicating that path 

switchover should occur.  

On completion of the route cycle the frame loss rate is 

calculated. The first traversal of the route resulted in a frame 

loss number of 11700 (81.72%).  If we assume that the initial 

loss rate for route cycle 0 was 100% we calculate the rate of 

change, :, of a linear regression line through both points. 

Using : we can determine the rate by which alterations to 

synaptic weights affect frame loss. For frame loss directed 

learning a negative : indicates that synaptic weight alterations 

have a beneficial effect on throughput. A positive : indicates 

that synaptic weight alterations have a detrimental effect on 

throughput. A large : (positive or negative) indicates that 

FRAME requires numerous training cycles. A small : 
indicates that the selection of weights is close to optimal. On 

the first cycle c has a value of -18.28 indicating that the initial 

weight configurations had a beneficial effect on frame loss. 

The error direction value, d, is used to provide an indication as 

to whither positive or negative c is beneficial. In this form of 

learning the optimal outcome is a zero frame loss rate. 

Therefore the FRAME algorithm encourages negative c by 

increasing weights. In order to relate the negative c to a 

positive change in weights we multiply by d=-1.  

In order to control the rate of learning we define a user 

configurable learning rate constant 2. The selection of an 

appropriate learning rate is critical for the effective operation 

of the algorithm. If the learning rate is too low the network 

learns very slowly. If the learning rate is too high weights 

diverge, resulting in sub-optimal learning.  In this approach we 

use a balanced learning rate r = 0.003. The maximum 

theoretical c is -100, assuming a maximum percentage frame 

loss rate of 100 in learning cycle 1 and 0 percent frame loss 

rate in cycle 1. Therefore the maximum weight alteration 

achievable when r=.3 is -100*-1*0.003=.3. In our approach 

we select an activation threshold of H� � (. With such an 

activation threshold a maximum weight alteration of .3 is 

neither passive nor aggressive. In order to determine the 

alteration in weight we expand (10) to include the error 

direction value d:  

U�
� � : V W V 2                                       (11) 

 

 

 

 

 

 

Mean x1 

(Loss)

Mean x2 

(RTT)

Mean x3 

(RSS)

Mode x1 

(Loss)

Mode x2 

(RTT)

Mode x3 

(RSS)

1.093 0.811 0.776 1.000 0.500 0.500

1.000 1.233 1.233 0.500 1.500 1.500

0.324 0.565 0.611 0.250 0.250 0.250

0.692 1.125 1.125 0.750 1.500 1.500

1.127 0.897 0.867 1.250 1.500 0.750

0.321 0.536 0.536 0.250 0.250 0.250

1.092 0.944 0.915 1.250 1.500 1.500

0.683 0.950 0.950 0.750 1.000 1.500

0.324 0.565 0.611 0.250 0.250 0.250
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TABLE IV 

FRAME EMPLOYING FRAME LOSS DIRECTED LEARNING 24 FPS CITY CENTRE ROUTE 

 

w1 (Loss) w2 (RTT) 

w3 

(RSS) Threshold Iteration 

Frame 

Loss 

% Frame 

Loss  Slope 

Error 

Correction 

Learning 

Rate 

0.270 0.730 0.980 1 1 11700 81.72 -18.28 0.055 0.003 

0.325 0.785 1.035 1 2 9312 65.04 -17.48 0.052 0.003 

0.380 0.840 1.090 1 3 5222 36.47 -22.62 0.068 0.003 

0.183 0.836 1.357 1 4 9784 68.34 1.65 -0.005 0.003 

0.178 0.831 1.352 1 5 9784 68.34 15.93 -0.048 0.003 

0.173 0.826 1.347 1 6 9780 68.31 -0.01 0.000 0.003 

0.340 0.836 1.187 1 7 5316 37.13 -15.60 0.047 0.003 

0.387 0.883 1.234 1 8 5316 37.13 -15.59 0.047 0.003 

0.433 0.929 1.280 1 9 5653 39.48 1.18 -0.004 0.003 

0.672 1.210 1.424 1 10 1452 10.14 -13.49 0.040 0.003 

0.712 1.250 1.464 1 11 1452 10.14 -14.67 0.044 0.003 

0.753 1.291 1.505 1 12 1452 10.14 0 0 0.003 

 

 

Fig. 23.  24 FPS %Frame Loss Based Learning Parameters    

For the first learning cycle c=-18.28, d=-1 and r =0.003. 

we calculate U�
� = -18.28*-1.003 resulting in a weight 

adjustment of 0.055 for each weight. This U�
� results in a 

weight assignment of w1=0.325 w2=0.785 and w3=1.035 for 

the second traversal of the route. Every third cycle a random 

weight adjustment is applied to each weight in order to avoid 

the potential of learning being concentrated on local maxima. 

The size of this random weight adjustment is dependent on the 

effectiveness of the existing weight configuration. The size of 

the random weight adjustment is calculated as follows: 

RandomValue*(FrameLossRate*RandomizingConstant)  (12) 

The random values have a range of -100 to 100. The 

RandomizingConstant is a fixed value of 0.00008. The value 

0.00008 was chosen as  large frame loss rate of for example 

80% will result in a random weight adjustment of the order of 

- 0.64 to 0.64. A small frame loss rate for example 5% will 

result in a random weight adjustment of the order of - 0.04 to 

0.04. Following cycle 3 the frame loss rate was 36.47% this 

resulted in a random weight adjustment of the order of - 0.292 

to 0.292. The actual random weight adjustment were x1= -

0.265, x2=-0.072 and x3=0.199.  

For cycle 4 the weights configurations for w1= 0.178 

consisted of the weight for the previous learning cycle 0.380 

plus the error correction 0.068 plus the random weight 

adjustment - 0.265 The weights for w2 and w3 for cycle 4 

were calculated in a similar manner. The next random weight 

adjustment is applied at cycle 7.  

 

 
 
Fig. 24.  % Frame Loss/Error Correction per Frame Rate 

 

The frame loss rate for cycle 6 was 68.31%. This resulted 

in a random weight adjustment of the order of - 0.546 to 

0.546. The actual weight adjustment applied to w1, w2 and w3 

were 0.167, 0.01 and - 0.16. Fig 23 illustrates how alterations 

to the synaptic weights affected the frame loss rate.  

Fig 23 illustrates that the random weight adjustment 

applied during learning cycle 4 had a detrimental effect on 

frame loss rate. 

The frame loss number for cycle 3 was 5222 while the 

error correction proposed positive alterations to the weights of 

0.068 the random weight of adjustment x1= -0.265, x2=-0.072 

and x3=0.199 and final weight configuration of x1=0.183, 

x2=0.836 and x3=1.357 resulted in a frame loss rate of 9784 

for cycle 4. This illustrates (1) the importance of link loss rate 

as a performance metric in handover decisions (2) the effect 

on overall performance of an excessively low weighting for 

any particular metric.  Fig 23 illustrates that in the first 3 

learning cycles the frame loss rate decreases as the weights of 

each performance metric increase. For the fourth cycle the 

influential parameter Loss receives a detrimental negative 

random weighting.  

Table IV (and also Tables C and D available in [16]) 

illustrates the values of the training parameters for the video 

streamed on the City Centre route at 24 FPS (17 and 31 FPS, 

respectively). The 17 FPS configuration required the least 

number of training cycles, 6 while the 31 and 24 FPS 

configurations required 9 and 12 training cycles, respectively.  
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TABLE VI 

FRAME UTILIZING PSNR DIRECTED LEARNING 24 FPS CITY CENTRE ROUTE 

w1 (Loss) w2 (RTT) w3 (RSS) Threshold Iteration PSNR Slope Error Correction Learning Rate 

0.53 0.77 0.33 1 15.01 15.01 0.1501 0.01 

0.680 0.920 0.480 1 2 31.57 15.785 0.15785 0.01 

0.837 1.077 0.637 1 3 33.78 9.385 0.09385 0.01 

1.050 1.065 0.790 1 4 33.78 1.105 0.01105 0.01 

1.062 1.076 0.801 1 5 33.78 0 0 0.01 

 
 

 
TABLE V 

COMPARISON OF FRAME UTILIZING FRAME LOSS DIRECTED LEARNING AND 

STATIC RSS THRESHOLD LGD TRIGGERING  

 
FPS LGD RSS 

Threshold (-

85 dBm) 

Frame Loss 

LGD RSS 

Threshold 

(-80 dBm) 

Frame 

Loss 

Best Frame 

Loss (Brute 

Force Tests) 

FRAME 

(Frame Loss 

Directed 

Learning) 

Frame Loss 

17 8886 8846 1802 1802 

24 9224 8921 1160 1452 

31 9768 9269 1496 1872 

 

 

The increased number of training cycles required in the 24 

FPS case reflects the complexity of the training exercise as 

outlined in Fig. 22 together with the detrimental selection of 

random weight adjustment as outlined in Fig. 23. Fig. 24 

compares the percentage frame loss and error correction for 

each of the frame rates. It illustrates a less complex learning 

exercise for the 17 and 31 FPS configurations in comparison 

to the 24 FPS situation. 

Table V compares the performance of FRAME using frame 

loss directed learning with traditional MIH algorithms which 

trigger the LGD event at -85dBm and -80dBm respectively. It 

also compares the performance of the algorithm against the 

brute force test results outlined in Tables II (and Tables A and 

B from [16]).  

Table V illustrates that the FRAME algorithm utilizing 

frame loss directed learning has a significant performance 

improvement over RSS threshold based LGD event triggering 

algorithms. Table A in [16] also illustrates that for 17 FPS, 

FRAME selected a weighting which was equal to the best 

frame loss identified by the brute force results. For 24 and 31 

FPS respectively the algorithm selected a weighting which 

was 79.88% and 79.91% as effective as the best selection 

identified by the brute force tests.   

 

3) FRAME Utilizing PSNR Directed Learning - City Centre 

Route 

Table VI outlines a FRAME learning session which utilizes 

PSNR directed learning when streaming the media file at 24 

FPS for the City Centre route. In this approach we use the 

PSNR of the streamed video as the basis of our learning. 

As in frame loss directed learning the initial weights w1 

=0.530, w2=0.770 and w3 = 0.330 are randomly allocated. 

Rather than taking the theoretical maximum PSNR of 100 as 

our optimal value, we use the maximum achievable PSNR 

calculated for the media file streamed with no link loss. The 

maximum achievable PSNR in this scenario is 36.09. The 

initial weight configuration w1 =0.530, w2=0.770 and w3 = 

0.33 results in a PSNR value of 15.01. Assuming that the 0
th
 

iteration had resulted in a PSNR of 0 this configuration of 

weights would result in a slope of 15.01. The error correction 

is calculated as the product of the slope and learning rate. A 

learning rate of 0.01 provides a theoretical error correction 

scale of 100 * 0.01 =1. In practical terms the maximum 

learning scale is bounded by the maximum achievable PSNR, 

in this situation 36.09 * 0.01=0.3609.  Following the first 

iteration a positive weight alteration of 0.1501 is applied to 

each of the weights. The weights for the 2
nd

 iteration are w1 

=0.680, w2=0.920 and w3 = 0.48. The weight alterations for 

the second and third iterations are calculated in a similar 

manner.  

Random weight adjustments are applied following the 

completion of every third cycle. The size of the random 

weight adjustment is based on the performance of previous 

weight calculations and is calculated as follows: 

 

XY�Z��[\�A�]^Q���_��A�]^Y�Z��[
���\��A�]^ ` V aNbWcdeN:/c2 V f:Ng1WaNbWcd@Ngh1 (13) 

 

The actual PSNR is taken as a percentage of the maximum 

PSNR. This value is multiplied by a RandomFactor of 0.02. 

The value 0.02 was chosen as the random value generated is 

of the order -100 to 100. If a weight configuration results in a 

PSNR of 28.87, representing 80% of MaxAchievablePSNR, it 

will result in a random weight adjustment of the order of - 0.4 

to 0.4. If a weight configuration results in a PSNR of 3.6 

representing 10% of MaxAchievablePSNR it will result in a 

weight adjustment in the range of -1.8 to 1.8.  

Following learning cycle 3 the PSNR is 33.78 representing 

93.6% of the achievable PSNR. This PSNR value resulted in a 

random alteration in weight of the order of - 0.128 to 0.128. 

The weight configuration for iteration 4, w1=1.051, consisted 

of the weight for the previous learning cycle 0.838 plus the 

error correction 0.093 plus a random weight adjustment of 

0.119. The corresponding random weight adjustments for w2 

and w3 were - 0.107 and 0.059.  

Fig. 25 illustrates the achieved PSNR per frame for the 

configurations with no link loss, RSS threshold LGD 

triggering at -85 dBm and the best performing weight 

configuration w1=1.062, w2=1.076 and w3 = 0.801. It 

illustrates that a deviation in PSNR occurred between the 

weight configuration w1=1.062, w2=1.076 and w3 = 0.801 

and the maximum achievable PSNR between frame 1 and 

frame 1163.  Fig 25 also illustrates that the tradition LGD 

triggering approach based on a threshold RSS of -85dBm has 

significant performance degradation between frame 1 and 

3287 and again between frame 8280 and 14317.  
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Fig. 25.  Frame Loss/Error Correction per Frame Rate 

 

 

Fig. 26.  Candidate AP RSS 

 

Fig. 27.  Activation Values of Candidate AP8 and AP9 

 

At a frame rate of 24 FPS the performance degradation for the 

FRAME configuration is between t=1 second to t=48.4 

seconds. For the RSS based LGD triggering approach the 

performance degradation occurs  between t=1 second and 

t=136.9 seconds and again between t=345 seconds and 

t=596.5 seconds. In order to analyze the performance 

degradation we consider the characteristics of the candidate 

networks during this period in more detail.  Fig. 26 illustrates 

the RSS for all available APs for the period 1-137 seconds.  
 

TABLE VII 

COMPARISON OF FRAME UTILIZING PSNR DIRECTED LEARNING AND 

TRADITIONAL RSS THRESHOLD LGD TRIGGERING  

 
FPS Max PSNR 

(No Link 

Loss Rate) 

MIH -

85dBm 

PSNR 

MIH -

80dBm 

PSNR 

FRAME 

Learning 

PSNR 

17 36.09 19.52 20.11 33.78 

24 36.09 18.74 19.05 33.78 

31 36.09 16.8 17.73 32.22 

 
TABLE VIII 

COMPARISON OF FRAME WITH FRAME LOSS AND FRAME WITH PSNR 

DIRECTED LEARNING APPROACHES  

 
  Final Optimal Weights   

 

FPS 

 

Learning 

Type 

w1 

(Loss) 

w2 

(RTT) 

w3 

(RSS) 

Frame 

Loss 

Achieved 

PSNR 

Achieved 

 

17 

Frame 

Loss 0.879 1.136 0.807 1802 32.64 

PSNR 1.0516 0.776 1.201 1802 33.78 

 

24 

Frame 

Loss 0.753 1.291 1.505 1452 32.95 

PSNR 1.062 1.076 0.801 1160 33.78 

 

31 

Frame 

Loss 0.845 1.150 1.160 1872 32.22 

PSNR 0.781 1.102 1.231 1872 32.22 

 

AP8 has higher RSS and is therefore selected by the 

traditional RSS threshold approach as the AP of choice. If an 

RSS threshold of -85dBm is applied, AP8 is selected as the 

primary path at t=45 seconds. If an RSS threshold of -80dBm 

is applied the AP8 is selected as the primary after 82 seconds. 

AP9 is never considered as the primary as its RSS is less than 

that of AP8 at all times during this period. 

Fig 27 illustrates the activation values for the weight 

configuration w1=1.062, w2=1.076 and w3 = 0.801. It 

illustrates a significant divergence in performance when the 

parameters loss and delay are considered in conjunction with 

RSS.   

Initially AP8 has the highest activation value, though not 

sufficient to exceed the activation threshold of 1. The 

activation value for AP9 momentarily exceeds the activation 

threshold at 46, 51 and 59 seconds before a final selection of 

AP9 as primary at 61 seconds.  

Fig. 27 illustrates that by dynamically dimensioning a 

number of performance metrics, the FRAME algorithm has 

significant improvements over static threshold based LGD 

triggering mechanisms.  

Tables E and F [16] illustrate the final trained values for 

the media file streamed on the City Centre route at 17 and 31 

FPS utilizing PSNR directed learning. Tables VI, E and F 

illustrate that all configurations required relatively few 

learning cycles 5-6. Table VII compares the performance of 

FRAME PSNR directed learning approaches and static 

threshold based LGD triggering mechanisms based on RSS. 

Table VII illustrates that FRAME with PSNR directed 

learning has significant performance improvements over static 

threshold based LGD triggering mechanisms. The 17 FPS 

configuration had a 73% and 68% performance improvement 

over the LDG triggering approaches based on an RSS 

threshold of -85dBm and -80dBm respectively.  
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TABLE IX 

BRUTE FORCE FRAME LOSS RATE 24 FPS SUBURBAN ROUTE 

 

    
w2 = 

0.25 

w2=0.

5 

w2= 

0.75 
w2=1 

w2= 

1.25 

w2= 

1.5 

  w3=0.25 14316 14316 9072 7827 8430 8522 

w
1
=
0
.2
5
 

w3=0.5 14316 9072 7827 8430 8522 8522 

w3=0.75 9072 7827 8430 7478 8522 8522 

w3=1 7827 8430 7478 8522 8522 8522 

w3=1.25 8430 8522 8522 8522 8522 8522 

w3=1.5 7478 8522 8522 8522 8522 8522 

w
1
=
0
.5
 

w3=0.25 14316 8444 7343 7451 8430 8430 

w3=0.5 8444 7343 7451 8521 8430 8430 

w3=0.75 7343 7451 8521 8430 8430 8430 

w3=1 7451 8521 8430 8430 8430 8430 

w3=1.25 8521 8430 8430 8430 8430 8430 

w3=1.5 8430 8430 8430 8430 8430 8430 

w
1
=
0
.7
5
 

w3=0.25 8414 7508 8450 7343 7397 7397 

w3=0.5 7508 8450 7343 7343 7397 7451 

w3=0.75 8450 7343 7343 7397 7451 8521 

w3=1 7343 7343 7397 7451 8521 8430 

w3=1.25 7343 7397 7451 8430 8430 8430 

w3=1.5 7397 7451 8430 8430 8430 8430 

w
1
=
1
 

w3=0.25 8366 7508 7508 8450 8450 7343 

w3=0.5 7508 7508 8450 8450 7343 7343 

w3=0.75 7508 8450 8450 7343 7343 7397 

w3=1 8450 8450 7343 7343 7397 7451 

w3=1.25 8450 7343 7343 7397 7451 8521 

w3=1.5 7343 7343 7397 7451 8521 8521 

w
1
=
1
.2
5
 

w3=0.25 6866 6942 6942 6942 6863 6863 

w3=0.5 6942 6942 6942 6863 6863 7093 

w3=0.75 6942 6942 6863 6863 7093 7073 

w3=1 6942 6863 6863 7093 7073 7073 

w3=1.25 6863 6863 7093 7073 7073 7046 

w3=1.5 6863 7093 7073 7073 7046 7046 

w
1
=
1
.5
 

w3=0.25 6884 8027 7100 7100 8072 8072 

w3=0.5 8027 7100 7100 8072 8072 8072 

w3=0.75 7100 7100 7100 8072 8072 8072 

w3=1 7100 7100 8072 8072 8072 7103 

w3=1.25 7100 8072 8072 8072 7103 7103 

  

w3=1.5 8072 8072 8072 7103 7103 7103 

The 24 FPS configuration had an 80% and 77% 

performance improvement.  The 31 FPS configurations had 

the most significant performance improvement with a 92% 

and 82% performance improvement.   

Table VIII details the FRAME final synaptic weights for 

frame loss and for PSNR directed learning. Fig. 21 illustrated 

that for 17 FPS, a large number of weight configurations 

resulted in close to optimal frame loss. While the weight 

configurations in both learning methods vary, the frame loss 

rate achieved is identical and the final PSNR in both methods 

is comparable. The PSNR approach has a 3.3% performance 

improvement over the frame loss approach. For 24 FPS, the 

PSNR approach had 20.1% less frame loss rate than the frame 

loss approach. When the final PSNR is considered however, 

the performance improvement was only 2.5%. Table VIII 

illustrates that both learning methods have equivalent 

performance for the 31 FPS configuration. 

 

Fig. 28.  Distribution of Weight Configurations  

TABLE X 

MEAN AND MODE WEIGHT CONFIGURATIONS  

 

 

The aim of the FRAME algorithm is to provide a mobile 

multimedia user with seamless handover. Table VIII illustrates 

that the more computationally complex PSNR learning 

method has some improved performance over the frame loss 

learning approach. However, the selection of an appropriate 

learning method is an implementation specific tradeoff 

between learning mechanism complexity, particularly for 

memory constrained devices, and the level of performance 

improvement achievable.  

 

B. Suburban Route 

1) Brute Force Analysis – Suburban Route 

In the previous section we analyzed the performance of 

FRAME in a City Centre configuration with a high density of 

APs. In this section we evaluate the performance of FRAME 

in a suburban environment from Dublin Airport to Dublin City 

Centre, as illustrated in Fig. 10. The route from Dublin Airport 

to Dublin City Centre is categorized by green belt, industrial 

and suburban development areas. The AP coverage is 

therefore less dense than in the City Centre scenario. 

Table IX illustrates the frame loss rate for brute force 

weight configurations when streaming the media file in CIF 

format at the default frame rate of 24 FPS. Tables G and H 

[16] indicate the corresponding frame loss rates for 17 and 31 

FPS respectively.  

Fig 28 illustrates the distribution of weight configurations 

and their associated frame loss for the suburban route. Fig. 20 

and Fig. 28 illustrate how the density of APs in the City 

Centre versus the suburban route affects frame loss. In the 

City Centre scenario the greatest density of weight 

configurations result in a frame loss number of 0-2000 frames.  

 

 

Mean X1 Mean X2 Mean x3 Mode X1 Mode x2 Mode X3

6000-7000 N/A N/A N/A N/A N/A N/A

7000-8000 N/A N/A N/A N/A N/A N/A

8000-9000 0.895 0.891 0.891 1.500 1.500 1.000

6000-7000 1.217 0.685 0.630 1.250 0.250 0.250

7000-8000 0.946 0.887 0.884 1.000 1.500 1.000

8000-9000 0.756 0.949 0.966 0.500 1.250 1.500

6000-7000 0.875 0.875 0.250 1.500 0.250 0.250

7000-8000 0.886 0.886 0.892 1.250 1.250 1.500

8000-9000 0.313 0.313 0.313 0.250 0.250 0.250

F
P

S
=

1
7

F
P

S
=

2
4

F
P

S
=

3
1
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Fig. 29.  Frame Loss/Error Correction 17, 24 and 31 FPS  

 

TABLE XI 
COMPARISON OF FRAME UTILIZING FRAME LOSS DIRECTED LEARNING AND 

TRADITIONAL RSS THRESHOLD LGD TRIGGERING  

 
FPS LGD RSS 

Threshold 

(-85 dBm) 

Frame Loss 

LGD RSS 

Threshold (-80 

dBm) Frame 

Loss 

Optimal Frame 

Loss (Brute Force 

Tests) 

FRAME 

(Frame Loss 

Directed 

Learning) 

Frame Loss 

17 9487 9280 8209 8524 

24 8408 8783 6863 7298 

31 8281 7643 6982 7297 

 

Fig. 28 illustrates that for the suburban route the greatest 

density of weight configurations result in a frame loss number 

of 7000-9000 frames. Table X illustrates the mean and mode 

for each of the frame rates for the intervals 6000-7000, 7000-

8000 and 8000-9000.    

Table IX illustrates that no weight configuration resulted in 

a frame loss rate of less than 6000 frames. In order to explain 

this high frame loss we analyze the RSS signature in Fig. 11.  

Fig. 11 illustrates an initial high signal coverage close to 

the airport. As the vehicle moves from the airport, there is 

intermittent signal coverage for approximately 6 minutes until 

we approach the City Centre. For a 17 FPS video sequence the 

duration of the test is 842 seconds. For 24 and 31 FPS the 

duration of the test is 597 and 462 seconds respectively. Due 

to higher frame rates the 24 and 31 FPS configurations benefit 

more from the initial signal coverage at the airport. 

 

2) FRAME Utilizing Frame Loss Directed Learning -Suburban 
Route 

The reduced AP concentration on the suburban route increases 

the frame loss rate. Tables J, K and L illustrate the final 

trained values for the media file streamed on the suburban 

route at 17, 24 and 31 FPS. The average frame loss rate on the 

City Centre route was 4869 while the average frame loss 

number on the suburban route was 7885. FRAME uses 

dynamic probing to determine network conditions. In the City 

Centre, the high availability of candidate APs enables FRAME 

to proactively assess performance and provides significant 

performance improvement over static threshold based MIH 

event triggering approaches. 
 

TABLE XII 

COMPARISON OF FRAME UTILIZING FRAME LOSS DIRECTED LEARNING AND 

TRADITIONAL RSS THRESHOLD LGD TRIGGERING  

 

  FPS 

MIH -

80dBm 

Frame 

Loss 

FRAME  
% 

Performance 

Improvement 

Frame  

Loss Rate 

  17 8846 1802 390.90 

City 

Centre 
24 8921 1452 514.39 

  31 9269 1872 395.14 

Airport – 

City 

Centre 

17 9280 8524 8.87 

24 8783 8450 3.94 

31 7643 7297 4.74 

In the suburban configuration the reduced AP availability 

reduces the path selection complexity and limits the potential 

performance improvement. This results in a reduced number 

of training cycles. The 17 and 31 FPS configurations both 

require 6 training sessions while the 24 FPS configuration 

only requires 4 training sessions. 

Fig. 29 illustrates the frame loss rate and error correction 

for 17, 24 and 31 FPS for each learning cycle. It illustrates that 

the high frequency of weights with frame loss numbers in the 

range 7000-9000 causes the weights to converge to an optimal 

value quickly.  

Table XI compares the performance of FRAME using 

frame loss directed learning in comparison to static threshold 

based LGD triggering mechanisms based on RSS.  

It also compares the performance of the frame loss directed 

learning method against the best performing weight 

configurations outlined in Tables J, K and L.  

Table XI illustrates that FRAME with frame loss directed 

learning had a 10%, 13% and 12% performance improvement 

over a static RSS event threshold of -85dBm for 17, 24 and 31 

FPS respectively. It also had an 8%, 17% and 5% performance 

improvement over a static RSS event threshold of -80dBm  for 

17, 24 and 31 FPS respectively.  

For 17, 24 and 31 FPS respectively, FRAME selected a 

weighting which was 96.3%, 94.0% and 95.6% as effective as 

the optimal selection identified by the brute force analysis 

outlined in Tables IX, G and H.   

Table XI does however illustrate that while FRAME has a 

performance improvement it is not as significant as that 

experienced in the City Centre scenario. The variation in 

performance relates to the higher availability of candidate APs 

in the City Centre route and demand for a more complex 

mobility management decision in such a scenario.  

Table XII compares the performance of FRAME with 

frame loss directed learning and static RSS threshold based 

LGD event triggering for both the City Centre and suburban 

scenarios. It illustrates that in the City Centre scenario where 

there was a high availability of candidate APs, FRAME had 

between 391% and 514% performance improvement over 

traditional LGD link triggering mechanisms. In the suburban 

route where AP coverage was limited the performance 

improvement was less notable at between 3.9% and 8.9%.  
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TABLE XIII 

COMPARISON OF FRAME UTILIZING PSNR DIRECTED LEARNING AND 

TRADITIONAL RSS THRESHOLD LGD TRIGGERING  

 
FPS Max PSNR 

(No Link 

Loss Rate) 

MIH -

85dBm 

PSNR 

MIH -

80dBm 

PSNR 

FRAME 

Learning 

PSNR 

17 36.09 19.75 19.33 22.03 

24 36.09 20.87 19.34 22.55 

31 36.09 23.05 21.25 23.01 

 
TABLE XIV 

COMPARISON OF FRAME UTILIZING FRAME LOSS AND FRAME UTILIZING 

PSNR DIRECTED LEARNING APPROACHES  

 
  Final Optimal Weights   

 

FPS 

 

Learning 

Type 

w1 

(Loss) 

w2 

(RTT) 

w3 

(RSS) 

Frame 

Loss 

Achieved 

PSNR 

Achieved 

 

17 

Frame 

Loss 0.224 0.780 0.746 8524 20.36 

PSNR 1.875 1.032 0.541 8257 22.03 

 

24 

Frame 

Loss 1.262 0.704 1.034 7298 23.01 

PSNR 1.709 1.586 0.844 8071 22.55 

 

31 

Frame 

Loss 1.095 0.741 1.160 7297 23.01 

PSNR 1.583 0.635 1.117 7297 23.01 

 

3)  FRAME Utilizing PSNR Directed Learning - Suburban 

Route 

 

Table M, N and O [16] illustrate the final trained values for 

the media file streamed on the suburban route at 17, 24 and 31 

FPS for FRAME with PSNR directed learning.  

They illustrate that all configurations required relatively 

few learning cycles 5-6. Table XIII compares the performance 

of FRAME with PSNR directed learning and static threshold 

based LGD triggering mechanisms for the suburban route.  

Table XIII illustrates that the FRAME PSNR directed 

learning approaches have generally better performance than 

the static threshold based LGD triggering mechanisms with 

performance improvement ranging up to 14%.  

Table XIV details the final synaptic weights for FRAME 

utilizing frame loss and PSNR directed learning for the 

suburban route. It illustrates that FRAME has equivalent if not 

improved performance over the more computationally 

intensive PSNR learning method. In an environment where 

end user devices have constrained characteristics, the 

computationally light metric frame loss provides an accurate 

assessment of final PSNR.  For the 17 FPS configuration, the 

PSNR directed learning approach has an 8.2% performance 

improvement. For the 24 FPS configuration, the frame loss 

directed learning approach has a 2% performance 

improvement over the PSNR directed learning approach. For 

the 31 FPS configuration both learning methods have 

equivalent performance.  

VII. RELATED WORK 

Location aware systems are a type of context aware systems 

which attempt to predict the end user movement in order 

engineer network performance [36][37]. The confined nature 

of movement in vehicle based systems simplifies the 

predictability of end user movement. A number of studies 

exploit this end user movement predictability in order to 

optimize Vertical Hand Over (VHO). [10] Introduces a 

mechanism which divides a geographical area into zones and 

uses previous historical behavior to determine the most likely 

zone for handover. In [8] the authors propose to determine the 

end location of the end user in order to assist handover 

decision. In [11] the GPS cocordinates on the vehicle are 

traced in order to estimate potential network migrations based 

on the MN’s motion. An adaptive approach based on predicted 

RSS is presented in [7]. These approaches are primarily 

concerned with determining network coverage. They do not 

consider how the dynamic characteristics of candidate 

networks could affect end user QoS. It may be useful to 

determine when a MN will enter the coverage of wireless or 

mobile network. However, if that network is congested it may 

not be an appropriate candidate for path selection. The 

FRAME algorithm exploits predictable movement patterns 

while also considering the dynamic performance 

characteristics of available networks.  

A number of studies consider both the coverage prediction 

provided by location aware approaches and the dynamic 

characteristics of the available networks. [9] considers both 

the device’s location information and packet arrival time. In 

[38] a location-based Vehicle Handover Algorithm (VHA) is 

proposed which combines both mobile location and network 

information in order to limit spurious handovers thereby 

improving VHO latency. All of the approaches outlined are 

concerned with the optimization of handover between specific 

access networks. The current position of the MN and its 

direction is typically used to estimate when the MN will leave 

the coverage of the current network and enter the coverage of 

another. The FRAME algorithm is an abstracted approach 

which determines the optimal collective handover criteria for 

all APs on a route. The handover decision implemented by 

FRAME maybe less effective in certain specific handover 

decisions. However, by analyzing the data for the route in its 

entirety collective performance is optimized. Such an 

approach has the ability to limit the effect of spurious 

handovers as outlined in [38].     

Various studies have investigated algorithms to optimize 

MIH event triggering. [39] proposes an approach which can 

alter the LGD trigger threshold based on the estimated time of 

entry into the next target cell. In [40] additional primitives for 

MIH are proposed. A new primitive “MIH-PrefixInfo” is 

defined and a parameter “prefix” is added to the existing MIH 

primitives to reduce handover latency. Predictive handover 

mechanisms are proposed in [41], which use the network 

neighbourhood information in the MIIS to prepare for the 

impending handover before failure of the current network. 

[42] proposes an integration architecture for the MIIS, in 

which several networks elements collaborate in the discovery 

of network information. MNs collect the desired neighboring 

network information with a query-response mechanism. 

Results illustrate that the approach shortens network selection 

time. An enhanced Media Independent Handover Framework 

(eMIHF) is designed in [43]. This implementation extends 

MIH by allowing for efficient provisioning and activation of 

QoS resources during the handover preparation phase. In [44] 

a data rate based vertical handover triggering mechanism (DR-

HTM) is introduced for MIH. When a MN discovers a 
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candidate WLAN, it obtains its achievable data rate using 

remote MIH services. Results illustrate that overall network 

utilization can be improved using approach. In [45] it is 

suggested that MIH is not aware of different user contexts, and 

therefore cannot provide context-aware services to improve 

user experience. To address this problem a context-aware 

module is introduced. The context aware module is 

responsible for generating timely MIH Link Going Down 

(LGD) allowing sufficient duration for session adaptation 

A number of studies have integrated location based 

awareness with MIH event triggering. [64] proposes a 

Seamless Wireless internet for Fast Trains (SWiFT) algorithm. 

SWiFT introduces a L2 MIH trigger which uses a handover 

probability value calculated using current RSS and the speed 

of movement. [46] analyses the relationship between mobile 

node speed, cell coverage and MIH L2 event triggering time 

for a MIP based implementation.  The study reiterates the 

importance of effective L2 link triggering in order to limit 

packet loss and delay. In [47] a Mobile Stream Control 

Transmission Protocol (MSCTP)-based handover scheme for 

Vehicular Networks (VNs) is introduced. The approach 

utilises MIH for switch management and SCTP for switch 

implementation. During WLAN path migration an alternate 

cellular path is utilised. A number of new SCTP chunk types 

are introduced including Address Configuration Change 

(ASCONF)-ChangePrim, ASCONF-RegisterIP, and 

ASCONF- Path-Switching chunk. Such an approach however 

may not be appropriate as previous work we have undertaken 

[48][49] illustrates the potential for receiver buffer blocking 

communication failure when paths have significantly differing 

performance characteristics.  

In [50] an adaptive QoS to improve media streaming 

service performance is introduced targeted towards vehicular 

systems.  Results presented indicate that handover time is 

actually increased using the mechanism though overall 

throughput is reduced. For evaluation the authors use the 

standard MIH approach outlined in NS2. This model utilise 

Mobile IP as the mobility protocol. In Section II we outlined 

the potential performance improvement of using a multi-

homed “make before break” approach rather than the “break 

before make” approach provided by an exclusively MIP 

oriented approach. In [51] a media streaming application is 

built which uses MIH. The approach proposes to assure media 

streaming service continuity in heterogeneous networking 

environments. A performance evaluation of the approach is 

undertaken using audio streaming continuity assessment. A 

buffer delay of 2 seconds is recorded making the approach 

unsuitable for real time streaming applications. The authors do 

not provide detail on the mobility protocol employed. MIH is 

a framework for the communication of network critical events 

to upper layer mobility protocols. MIH does not (a) implement 

mobility (b) provide an implementation of how events should 

be triggered. In order to assess the performance of an MIH 

implementation it is necessary to specify the mechanisms 

employed for both (a) and (b).  

Some approaches propose to utilize mSCTP for both 

switch management and switch implementation. In [52] the 

authors identify a potential issue with regard to the 

transmission of the SCTP ASCONF packet prior to 

catastrophic network failure. An optimized vertical handover 

approach is suggested which alters the SCTP SACK chunk in 

and retransmits the ASCONF immediately following 

handover. In [53] an enhancement to mSCTP is proposed 

which performs primary path switching before it becomes 

unavailable due to its primary path drop. The improvement of 

the scheme comes from considering the temporal velocity of 

the mobile terminal with relative RTT variances. Results we 

presented in [19] and [49] highlight a potential performance 

issue with such an approach. In wireless environments RTT 

can increase in an exponential manner as a MN moves from 

the coverage area. On entering the coverage of a wireless AP 

the RTT may initially be very high and then decrease quickly. 

This behaviour relates to the number of transmissions in the 

MAC layer. RTT as a performance metric be effected by this 

behaviour. Results we have presented [19][49] indicate that 

the end to end nature of a transport layer compliant solution 

such as SCTP make it unsuitable as a switch management 

approach. In the above approach, the detection of path failure 

will be at least one RTO. In wireless environments this delay 

can be significantly longer. It is unlikely that a SCTP specific 

approach can meet the delay requirements of a media 

streaming application.  In [54] the authors propose a handoff 

scheme for vehicular based systems which utilizes MIP for 

network discovery and address configuration. The approach 

utilizes SCTP for switch implementation. Switch management 

is based on the RSS of beacon frames. MN direction and 

speed is considered in the switch decision.  Such an approach 

has similarities with location aware mobility solutions. In such 

an approach the performance characteristics of candidate APs 

are not considered. This may lead to a potentially detrimental 

switch decision. A similar approach is outlined in [9] which 

uses the RSS of available AP as the basis for MIH event 

triggering.  

A number of studies have applied ANN mechanisms to 

computer communications. Approaches such as the Kohonen 

Self Organizing MAP (SOM) assist network management 

personnel in the visualization of network conditions. Other 

approaches are concerned with network load balancing where 

network handover is initiated to implement the load balancing 

decision. Our focus relates to ANN approaches which 

optimize handover for specific end points.   

 In [56][57][58] SOM methods are introduced to ease 

the operation of mobile networks by introducing advanced 

monitoring and automated optimisation methods. These 

methods are used to detect mal-functioning network elements 

as well as clustering network elements in order to implement 

parameter optimisation on network element-cluster level. In 

[56] and [57] the authors investigate how SOM methods can 

be utilised for network host intrusion detection. [56] 

concentrated on advanced visualisation of intrusion while [57] 

analysed the mechanisms by which the intrusion is detected. 

In [58] the application area was extended to mobile network 

cell performance monitoring, clustering and anomaly 

detection. The results presented indicated that the methods 

were suitable for anomaly detection, visualization and 

clustering. Such unsupervised methods however are unlikely 

to provide the level of performance granularity required to 

determine handover initiation time for a specific end user.  

Significant ANN research focuses on load balancing for 

heterogeneous networks. In [59] and [60] the authors propose 
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a mutually connected neural network in order to optimise load 

balancing and QoS for the entire network. In [61] the authors 

propose a self-adaptive K value selection scheme for 

optimizing load balancing in large-scale 802.16 systems. In 

[62] the authors utilise a radial basis function ANN to classify 

the Uplink Received Signal Strength Indicator (UL RSSI) 

during high capacity stadium events. Radial Basis Functions 

(RBF’s) are used to aid in developing the model for the UL 

RSSI as the amount of users in the stadium changes. In [63] 

the authors apply distributed optimization dynamics of Mc 

Cullogh Pitts ANN to RAN selection in heterogeneous 

networks. The algorithm focuses on both network load 

balancing and end user QoS support. In [59] the authors 

propose an autonomous optimization method for 

heterogeneous wireless networks, in which mobile terminals 

autonomously utilize the most appropriate wireless 

infrastructure. 

A number of ANN approaches are focused on the 

optimisation of handover without specific regard to network 

load balancing. Some of these studies exploit the 

characteristics of ANN in order to investigate the trade-off 

between excessive spurious handovers and increased handover 

delay. In [12] the authors propose a fuzzy logic handover 

algorithm with multiple inputs which limits the potential for 

spurious handovers. In [13] the authors propose handover 

management schemes which utilise Fuzzy-Based logic in 

order to avoid multiple spurious handovers in wireless 

systems. In [14] the authors evaluate a similar usage scenario 

to that outlined in this paper; in micro-cellular environments in 

cities, users often move on predetermined paths. The authors 

propose to address the trade-off between spurious handovers 

and handoff delay using a MLP. This approach is similar to 

FRAME however the focus of the investigation is more 

limited; defining the optimal handover aggressiveness to 

mediate between spurious handoff and excessive handover 

delay. Also the input metrics are limited to RSS.  

VIII. CONCLUSIONS  

In this work we proposed FRAME, a feed forward neural 

network-based framework for seamless handover, which uses 

the predictable nature of vehicle movement to optimise MIH 

event triggering. FRAME uses a supervised back propagation 

learning mechanism which captures both cyclical and dynamic 

performance characteristics. FRAME provides a pluggable 

extensible interface which can adapt to emerging media 

stream metrics and device characteristic improvements. In this 

work, FRAME is evaluated with two forms of learning: frame 

loss rate directed learning and PSNR directed learning based 

on deviations between the original and streamed media file.  

We evaluate FRAME using performance metrics in scenarios 

deployed on a commercial network in Dublin, Ireland.  

The aim of FRAME is to provide a mobile multimedia user 

with a seamless handover experience. Results illustrate that 

the more computationally complex PSNR learning method has 

some improved performance over the frame loss learning 

approach. However, the selection of an appropriate learning 

method for FRAME is an implementation specific tradeoff 

between learning mechanism complexity, particularly for 

memory constrained devices, and the level of performance 

improvement achievable.  

Our investigation illustrates that the effectiveness of the 

FRAME algorithm depends on (1) the availability of candidate 

APs; where there is a high availability of candidate AP the 

dynamic probing of network conditions by FRAME gives 

significant performance improvement over static threshold 

based MIH event triggering approaches (2) the clustering of 

weight configurations; a large cluster of weight configurations 

centered on a suboptimal point will increase training 

complexity. However, results illustrate that when a large 

number of weight configurations are clustered around local 

minima, the performance of FRAME, even during training, 

significantly exceeds that of traditional static threshold based 

MIH event triggering approaches.  

Future work will focus on (a) the utilization of alternative 

learning metrics (b) optimization of end user experience by 

considering device specific performance metrics such as 

battery life, processor speed and available memory. 
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