
MiceTrap: Scalable Traffic Engineering of Datacenter
Mice Flows using OpenFlow

Ramona Trestian and Gabriel-Miro Muntean
Performance Engineering Laboratory

School of Electronic Engineering
Dublin City University, Dublin, Ireland

{ramona, munteang}@eeng.dcu.ie

Kostas Katrinis
IBM Research - Ireland

IBM Technology Campus
Damastown Industrial Estate, Dublin, Ireland

katrinisk@ie.ibm.com

Abstract— Datacenter network topologies are inherently built
with enough redundancy to offer multiple paths between pairs of
end hosts for increased flexibility and resilience. On top, traffic
engineering (TE) methods are needed to utilize the abundance of
bisection bandwidth efficiently. Previously proposed TE
approaches differentiate between long-lived flows (elephant
flows) and short-lived flows (mice flows), using dedicated traffic
management techniques to handle elephant flows, while treating
mice flows with baseline routing methods. We show through an
example that such an approach can cause congestion to short-
lived (but not necessarily less critical) flows. To overcome this, we
propose MiceTrap, an OpenFlow-based TE approach targeting
datacenter mice flows. MiceTrap employs scalability against the
number of mice flows through flow aggregation, together with a
software-configurable weighted routing algorithm that offers
improved load balancing for mice flows.

Index Terms—Software-defined Networks, OpenFlow,
Datacenter Networks, Traffic Engineering, Routing

I. INTRODUCTION

The current networking environment is suffering a dramatic
change as new and more complex technologies are taking over.
The rapid growth in cloud computing and the demand for
massive-scale datacenters increases the need for more
intelligent and efficient network management systems. To
simplify matters, vendors and service providers started
designing solutions based on the concept of Software Defined
Networks (SDN) and their implementation-related technologies
(e.g., OpenFlow (OF) [1]). The seminal idea of SDN is to
separate the control from the data plane. Among other
advantages, this separation lays the ground for fine-grained,
adaptive traffic management solutions, as opposed to fixed
approaches like Equal-Cost Multi-Path (ECMP) [2] or Valiant
Load Balancing (VLB) [3].

For the purpose of scalable and cost-efficient traffic
engineering (TE) in datacenters, traffic flows are typically
classified as either short-lived (mice flows) or throughput-
bound (elephant flows). Studies [4] on live datacenter traffic
show that elephant flows account for less than 10% of all
flows, but they carry more than 80% of the entire traffic
volume. Thus, many of the proposed datacenter traffic
management solutions cope with elephant flows only, while
baseline routing methods like ECMP manage the mice flows.
Dividing the bandwidth equally among flows is far from
optimal for deadline-constrained flows like the mice flows.
This could lead to waste of bandwidth and loss in terms of

revenue for operators [5]. Moreover, variation in link
utilization leads to hot-spots, while at the same time other links
may be underutilized [6]. The latter could be used to offload
traffic from the hot-spot links, thus avoiding congestion.

Because of the short lifetime of mice flows, if considered
individually, they might not be of concern; however as they
represent 90% of the flows [4], on ensemble they could have
an important impact. In this context, applying TE solutions on
10% of the flows in a datacenter only, may not be very
effective [4].

A motivational example is illustrated in Fig. 1 that depicts
part of a datacenter and an application scenario, where a
number of senders in Rack 1, initiate 1000 (partially)
temporally overlapping short flows to the same destination in
Rack 2. This many-to-one communication pattern is very
common in datacenters [7], caused for example by NoSQL or
distributed data processing applications. Assume that port
“In1” at Switch1 is already handling a good amount of traffic
(e.g., due to elephant flows), exhibiting a port utilization of
96%. By employing ECMP, the traffic is equally split across
the two existing paths, i.e. 500 mice flows will be routed
through the already highly-loaded switch port. Assuming
1Gbps links, if the aggregate rate required by the 500 flows
exceeds the residual bandwidth available at port “In1”
(40Mbps), congestion occurs, leading to degraded
applications’ quality of service that generate/consume the
affected mice flows. This example clearly showcases that
preferential elephant flow scheduling, together with naive
ECMP can be detrimental to applications inducing short flows
that temporally overlap over paths with at least one common
switch. To overcome this deficiency, we propose MiceTrap,
an OpenFlow-based TE approach that employs mice flow
aggregation together with a weighted routing. The idea
behind this weighted routing algorithm is to find a set of
dynamically computed ratios (weights) which are then used to
spread the traffic at each hop across the available next hops
for given traffic demands. The algorithm achieves load
balancing by spreading the traffic across multiple paths.

II. RELATED WORKS

Existing multi-path routing techniques like ECMP and
VLB randomly split flows across the available equal cost paths.
Randomly spreading the traffic over multiple paths, without
considering uneven flow sizes, can lead to transient congestion
on some links. Recently, researchers have proposed traffic

Fig. 1. Motivational Example: a) Equal-Cost Multi-Path Routing and b) non-Equal-Cost Multi-Path Routing which avoids the congestion incident

management solutions that rely on a centralized controller for
route configuration, mostly leveraging on OpenFlow for switch
state maintenance and traffic statistics gathering. For example,
DevoFlow [8], Hedera [9], Mahout [10], all provide flow
management solutions that differentiate between mice and
elephant flows. The detection of elephant flows is done either
at the edge switch (e.g., DevoFlow, Hedera), or at the end-host
(e.g., Mahout). In both cases, a threshold for the transferred
bytes is used (1-10MB for DevoFlow, 10% of NIC bandwidth
for Hedera and 100KB for Mahout). When the threshold is
reached, the flow is marked as an elephant flow.

 Particularly to handling mice flows, Hedera uses ECMP
for short-lived flows, while the elephant flows (>100MB) are
handled by the OF controller only. The authors in [11] showed
that Hedera performs comparable to ECMP for a traffic matrix
with most of its entries corresponding to flows with less than
100MB of data. DevoFlow uses static multipath routing and
the microflow path is randomly selected according to a pre-
computed probability distribution. Mahout uses a static load
balancing scheme without involving the controller.

In summary - and to the best of our knowledge - none of
the existing datacenter TE/flow-scheduling approaches provide
for dynamic, congestion-aware management of mice flows.

III. M ICETRAP ARCHITECTURE

Fig. 2 illustrates the MiceTrap architecture comprising of an
end-host-based elephant flow detection mechanism module,
multi-path forwarding of flow aggregates implemented on OF
switches using standard OF techniques and custom OF
controller modules that manage mice aggregation and routing.
A. Elephant Flow Detection

MiceTrap addresses the scheduling of mice flows and
therefore it requires a mechanism to differentiate mice from
elephant flows. As previously mentioned, the problem of
elephant flow detection has been well researched and various
solutions are available. MiceTrap employs elephant detection
and marking at the end-host by using an existing kernel-level
shim layer approach [10]. The mechanism makes use of a shim

layer integrated in the end-host that monitors TCP socket
buffers. The shim layer identifies and marks the flow as an
elephant when the number of bytes in the buffer exceeds a
predefined rate threshold over a given time window. The
elephant flows are handled by the elephant flow scheduling
scheme that works in tandem with MiceTrap, while the latter
handles all unmarked flows (mice). Upon the detection of the
elephant flows, a default mode is defined which handles the
flows per default means (e.g. using wild-carded OF entries and
using multi-path routing with ECMP). One possible technique
to elevate the mice flow treatment from default to MiceTrap,
could be to define a threshold over a time window and when
the volume of flows targeting a specific destination rack,
exceeds this threshold, MiceTrap is triggered. The mice flows
are handled in a manner that collectively improves network
congestion/application performance.

B. Mice Flow Aggregation

Due to the large number of mice flows in a datacenter, it is
prohibitively expensive to maintain an exact rule in the switch
forwarding table for each mouse flow separately. Additionally,
this would hinder the scalability of traffic management due to:
a) massive traffic matrix sizes that need to be handled by the
controller routing module and b) inability of the limited
bandwidth of the switch CPU to cope with periodically
reporting a huge number of flow-entry counters to the
controller. In response to this, the Mice Aggregation module

Fig. 2 MiceTrap Architecture

aggregates incoming mice flows per target (e.g., specific
destination IP address or destination rack), thus reducing the
number of rules required to apply traffic management to mice
flows. This is in fact accomplished by making use of the
features exposed by the OF standard only.

The OF Specification Version 1.1 proposes the use of
group tables along with the flow tables to support multi-path
routing. Multi-path routing is enabled by adding the ability to a
flow to point to a group. Each group is composed of a set of
group action buckets, and each group bucket contains a set of
actions to be applied to matching flows. Each bucket carries a
weight field that defines the bucket’s share of the traffic
processed by the group. An example is illustrated in Fig. 3. All
the incoming mice flows that match the flow-entry destination
IP are pointed to a group. The group table contains the action
buckets with each bucket corresponding to a possible path the
flow may take to reach its destination.

C. MiceTrap Controller

The MiceTrap Controller consists of: (1) Topology block -
stores information about all the links currently up in the
network; (2) Stats Collector block - keeps track of the links
load by periodically collecting switch ports’ load information;
(3) Path Weight block - computes the paths. (4) Mice Path
Computation block – computes the set of shortest paths
between any source-destination pair; (5) Elephant Flow Path
Computation block - computes the path for the elephant flows;
(6) Set of Rules and Path Installation block - sends the rules to
the switch; (7) Network Map block – network state information
(e.g., current traffic matrix, established routes, etc.).

IV. M ICETRAP WEIGHTED ROUTING ALGORITHM

In order to take full advantage of the datacenter network
bisection bandwidth available, as well as to protect mice
flows, MiceTrap routes mice flow aggregates using a
weighted multi-path routing algorithm. The routing algorithm
spreads the aggregated flows across multiple links based on
dynamically computed ratios in order to balance the load.

Assume the network topology is represented by a connected
graph G = (V, E), where V is the set of nodes and E represents
the directed set of edges. Given the set of source-destination
flows F⊂V2, a set N(s,d) of shortest paths between any source-
destination pairs (s, d) ϵ F is computed. Assume that for any
node v ϵ V, any path i ϵ N(s,d) has a number of Mi subpaths and
each subpath j ϵ Mi has a number of Sij segments. Denoting
with λkji and ckji the traffic link load (taken form switch port
counters) and link capacity on segment k, of subpath j, of path

i, respectively, the Link Utilisation Ratio (LUR) is given by
Eq. 1. The link load is reported by polling the respective
switch port using standard OF mechanisms.

 ������ =
�	
�

�	
�
 (1)

 At each node v ϵ V, and for any path the flow has to take to
reach the destination, a weight is computed for any path i ϵ
N(s,d) as given in Eq 2, with wi ϵ [0,1] and ∑ �� = 1� . The
highest the path weight, the less loaded the path is. Once
computed, the path weight is updated in the action bucket
weight field of each path within a certain group. Based on this,
a hash function on a packet is defined in the switch in order to
distribute the flows across the multiple weighted paths by
sending the packets appertaining to the same flow on the same
path, avoiding the re-ordering problem.

�� = 1 −
(∑ ∑ ���	
�)	
 ��⁄

∑ (∑ ∑ ���	
�)/��	
�
 (2)

The pseudo code of the MiceTrap weighted routing
algorithm is outlined in Algorithm 1.

Algorithm 1: MiceTrap weighted routing algorithm
Data: Network Topology G=(V,E)
 Source-Destination pairs (s,d) ϵ F⊂V2

 ∀s ≠ d
 Set of shortest paths N(s,d) between any source-destination pairs (s, d)
 Traffic load on segment k, of subpath j of path i - λkji
 Link capacity of segment k, of subpath j of path i - ckji
 The number of subpaths of any path i ϵ N(s,d) - Mi
 The number of segments of any subpath j ϵ Mi of any path i ϵ N(s,d) - Sij
Compute Link Utilisation Ratio (LUR kji) of each segment
 for i := 1 to N(s,d) do
 for j := 1 to Mi do
 for k := 1 to Sij do

 ������ =
�	
�

�	
�
 ; /* link utilisation ratio

 k++
 end
 j++
 end
 i++
 end
 Compute Path Utilisation Ratio (PURi) of each path
 for i := 1 to N(s,d) do
 for j := 1 to Mi do
 for k := 1 to Sij do
 ����+= ������ ; /* subpath j utilisation (SU)
 k++
 end
 ����+= ����/�� ; /* path utilisation ratio
 j++
 end
 i++
 end
Compute Path Weight wi of each path
 for i := 1 to N(s,d) do
 !�+= ���� ; /* total node load (TNL) of v ϵ V
 i++
 end
 for i := 1 to N(s,d) do
 �� = 1 − ����/ !� ; /* path weight
 i++
 end

V. M ICETRAP BENEFITS

A. Forwarding State Reduction

Maintaining a rule in the forwarding table of the switch for
every incoming flow is very expensive, given that switch

memory is a scarce resource. We propose to install rules
matching on destination address, as the many-to-one traffic
pattern is very common in datacenters for applications like
MapReduce and web search [7]. For example, if 1000 mice
flows arrive at a Top of Rack (ToR) switch, pointing to the
same destination IP or ToR , the controller will install a single
rule matching the destination, instead of having a rule for each
flow (e.g., 1000 rules in the switch). Moreover, by using the
group functionality of OF, whenever changes in traffic
distribution occur, a single explicit group message can update
a set of flow entries avoiding sending an explicit message for
each flow. This way, MiceTrap saves also bandwidth along
the switch-controller channel.

B. Multipath Routing

ECMP routing evenly splits the traffic across all the
available next hops along the set of shortest paths to achieve
fair load balancing. However, even if the traffic is equally
distributed, it may not always achieve optimal load balancing.

Consider the example in Fig. 4 where B is sending
0.5Gbps of data to destination D. When A wants to send
1Gbps of data to the same destination D, it has two possible
paths. Assuming that the links between switches have 1.5Gbps
residual bandwidth capacity, by using ECMP the traffic from
A to D will be equally spread across the two paths. However
as B is already sending 0.5Gbps traffic to the same
destination, the common links will be utilized at 66% of their
capacity. This situation can be avoided by employing the
MiceTrap weighted routing algorithm. The weights for each
path are computed using Eq. 1 and Eq. 2. As Fig. 4 shows, the
proposed weighted routing algorithm achieves better traffic
balancing than conventional ECMP, reducing the load on the
common links by 25%.

VI. CONCLUSIONS AND FUTURE WORK

This paper proposed MiceTrap, a scalable scheme for
traffic engineering of mice flows in a datacenter networks.
Our work is motivated by the fact that management of mice
flows that is oblivious to network state can lead to suboptimal
utilization of datacenter fabric resources and eventually
penalize short-lived flows in favor of elephant flows. This
becomes even more important, when one recognizes that the
sharing of network resources should be according to flow
value (e.g. as quantified through SLA violations) and not
necessarily based on flow size solely. To this end, MiceTrap
leverages on the OpenFlow group option to handle multiple
mice flows as a single forwarding aggregate and then spreads
flows within an aggregate via multiple paths, using a weighted
routing algorithm that takes current network load into
consideration. We are currently working on prototyping our
approach for the purpose of proof-of-concept and evaluation.

ACKNOWLEDGMENT

This work was supported by the Irish Research Council for
Science, Engineering and Technology (IRCSET) through the
Enterprise Partnership Scheme and the Industrial Development
Agency (IDA) Ireland.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
enabling innovation in campus networks,” ACM SIGCOMM
Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74, 2008.

[2] C. E. Hopps, “Analysis of an Equal-Cost Multi-Path
Algorithm”, RFC 2992 [Online]. Available: http://tools.ietf.org
/html/rfc2992.

[3] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P.
Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable
and flexible data center network,” ACM SIGCOMM, 2009.

[4] K. Srikanth, S. Sengupta, A. Greenberg, P. Patel, and R.
Chaiken. “The Nature of Data Center Traffic: Measurements &
Analysis”, in Proc. ACM SIGCOMM on Internet Measurement
Conference (IMC), 2009.

[5] C.-Y. Hong, M. Caesar, and P. B. Godfrey, “Finishing Flows
Quickly with Preemptive Scheduling”, ACM SIGCOMM, 2012.

[6] T. Benson, A. Akella, and D. A. Maltz, “Network traffic
characteristics of data centers in the wild,” in Proc. ACM
SIGCOMM on Internet Measurement Conference (IMC), 2010.

[7] H. Wu, Z. Feng, C. Guo, and Y. Zhang, “ICTCP: Incast
Congestion Control for TCP in Data Center Networks”, in ACM
CoNEXT, 2010

[8] J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, A. R.
Curtis, and S. Banerjee, “DevoFlow: cost-effective flow
management for high performance enterprise networks”, in
Proc. ACM SIGCOMM Workshop on Hot Topics in Networks
(Hotnets), 2010.

[9] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A.
Vahdat, “Hedera: Dynamic flow scheduling for datacenter
networks”, in NSDI, pp. 281-296, USENIX Association, 2010.

[10] A. R. Curtis, W. Kim, and P. Yalagandula, ”Mahout: Low-
overhead datacenter traffic management using end-host-based
elephant detection”, in IEEE INFOCOM, 2011.

[11] T. Benson, A. Anand, A. Akella, and M. Zhang, “Microte: fine
grained traffic engineering for data centers”, in ACM CoNEXT,
2011.

Fig. 4 Traffic Load Distribution - Example

