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Abstract— Datacenter network topologies are inherently built 
with enough redundancy to offer multiple paths between pairs of 
end hosts for increased flexibility and resilience. On top, traffic 
engineering (TE) methods are needed to utilize the abundance of 
bisection bandwidth efficiently. Previously proposed TE 
approaches differentiate between long-lived flows (elephant 
flows) and short-lived flows (mice flows), using dedicated traffic 
management techniques to handle elephant flows, while treating 
mice flows with baseline routing methods. We show through an 
example that such an approach can cause congestion to short-
lived (but not necessarily less critical) flows. To overcome this, we 
propose MiceTrap, an OpenFlow-based TE approach targeting 
datacenter mice flows. MiceTrap employs scalability against the 
number of mice flows through flow aggregation, together with a 
software-configurable weighted routing algorithm that offers 
improved load balancing for mice flows. 

Index Terms—Software-defined Networks, OpenFlow, 
Datacenter Networks, Traffic Engineering, Routing  

I. INTRODUCTION 

The current networking environment is suffering a dramatic 
change as new and more complex technologies are taking over. 
The rapid growth in cloud computing and the demand for 
massive-scale datacenters increases the need for more 
intelligent and efficient network management systems. To 
simplify matters, vendors and service providers started 
designing solutions based on the concept of Software Defined 
Networks (SDN) and their implementation-related technologies 
(e.g., OpenFlow (OF) [1]). The seminal idea of SDN is to 
separate the control from the data plane. Among other 
advantages, this separation lays the ground for fine-grained, 
adaptive traffic management solutions, as opposed to fixed 
approaches like Equal-Cost Multi-Path (ECMP) [2] or Valiant 
Load Balancing (VLB) [3].  

For the purpose of scalable and cost-efficient traffic 
engineering (TE) in datacenters, traffic flows are typically 
classified as either short-lived (mice flows) or throughput-
bound (elephant flows). Studies [4]  on live datacenter traffic 
show that elephant flows account for less than 10% of all 
flows, but they carry more than 80% of the entire traffic 
volume. Thus, many of the proposed datacenter traffic 
management solutions cope with elephant flows only, while 
baseline routing methods like ECMP manage the mice flows. 
Dividing the bandwidth equally among flows is far from 
optimal for deadline-constrained flows like the mice flows. 
This could lead to waste of bandwidth and loss in terms of 

revenue for operators [5]. Moreover, variation in link 
utilization leads to hot-spots, while at the same time other links 
may be underutilized [6]. The latter could be used to offload 
traffic from the hot-spot links, thus avoiding congestion. 

Because of the short lifetime of mice flows, if considered 
individually, they might not be of concern; however as they 
represent 90% of the flows [4], on ensemble they could have 
an important impact. In this context, applying TE solutions on 
10% of the flows in a datacenter only, may not be very 
effective [4]. 

A motivational example is illustrated in Fig. 1 that depicts 
part of a datacenter and an application scenario, where a 
number of senders in Rack 1, initiate 1000 (partially) 
temporally overlapping short flows to the same destination in 
Rack 2. This many-to-one communication pattern is very 
common in datacenters [7], caused for example by NoSQL or 
distributed data processing applications. Assume that port 
“In1”  at Switch1 is already handling a good amount of traffic 
(e.g., due to elephant flows), exhibiting a port utilization of 
96%. By employing ECMP, the traffic is equally split across 
the two existing paths, i.e. 500 mice flows will be routed 
through the already highly-loaded switch port. Assuming 
1Gbps links, if the aggregate rate required by the 500 flows 
exceeds the residual bandwidth available at port “In1”  
(40Mbps), congestion occurs, leading to degraded 
applications’ quality of service that generate/consume the 
affected mice flows. This example clearly showcases that 
preferential elephant flow scheduling, together with naive 
ECMP can be detrimental to applications inducing short flows 
that temporally overlap over paths with at least one common 
switch. To overcome this deficiency, we propose MiceTrap, 
an OpenFlow-based TE approach that employs mice flow 
aggregation together with a weighted routing. The idea 
behind this weighted routing algorithm is to find a set of 
dynamically computed ratios (weights) which are then used to 
spread the traffic at each hop across the available next hops 
for given traffic demands. The algorithm achieves load 
balancing by spreading the traffic across multiple paths. 

II. RELATED WORKS 

Existing multi-path routing techniques like ECMP and 
VLB randomly split flows across the available equal cost paths. 
Randomly spreading the traffic over multiple paths, without 
considering uneven flow sizes, can lead to transient congestion 
on some links. Recently, researchers have proposed traffic  



 
Fig. 1.  Motivational Example: a) Equal-Cost Multi-Path Routing and b) non-Equal-Cost Multi-Path Routing which avoids the congestion incident

management solutions that rely on a centralized controller for 
route configuration, mostly leveraging on OpenFlow for switch 
state maintenance and traffic statistics gathering. For example, 
DevoFlow [8], Hedera [9], Mahout [10], all provide flow 
management solutions that differentiate between mice and 
elephant flows. The detection of elephant flows is done either 
at the edge switch (e.g., DevoFlow, Hedera), or at the end-host 
(e.g., Mahout). In both cases, a threshold for the transferred 
bytes is used (1-10MB for DevoFlow, 10% of NIC bandwidth 
for Hedera and 100KB for Mahout). When the threshold is 
reached, the flow is marked as an elephant flow. 

 Particularly to handling mice flows, Hedera uses ECMP 
for short-lived flows, while the elephant flows (>100MB) are 
handled by the OF controller only. The authors in [11] showed 
that Hedera performs comparable to ECMP for a traffic matrix 
with most of its entries corresponding to flows with less than 
100MB of data. DevoFlow uses static multipath routing and 
the microflow path is randomly selected according to a pre-
computed probability distribution. Mahout uses a static load 
balancing scheme without involving the controller.  

In summary - and to the best of our knowledge - none of 
the existing datacenter TE/flow-scheduling approaches provide 
for dynamic, congestion-aware management of mice flows. 

III.  M ICETRAP ARCHITECTURE 

Fig. 2 illustrates the MiceTrap architecture comprising of an 
end-host-based elephant flow detection mechanism module, 
multi-path forwarding of flow aggregates implemented on OF 
switches using standard OF techniques and custom OF 
controller modules that manage mice aggregation and routing. 
A. Elephant Flow Detection  

MiceTrap addresses the scheduling of mice flows and 
therefore it requires a mechanism to differentiate mice from 
elephant flows. As previously mentioned, the problem of 
elephant flow detection has been well researched and various 
solutions are available. MiceTrap employs elephant detection 
and marking at the end-host by using an existing kernel-level 
shim layer approach [10]. The mechanism makes use of a shim 

layer integrated in the end-host that monitors TCP socket 
buffers. The shim layer identifies and marks the flow as an 
elephant when the number of bytes in the buffer exceeds a 
predefined rate threshold over a given time window. The 
elephant flows are handled by the elephant flow scheduling 
scheme that works in tandem with MiceTrap, while the latter 
handles all unmarked flows (mice). Upon the detection of the 
elephant flows, a default mode is defined which handles the 
flows per default means (e.g. using wild-carded OF entries and 
using multi-path routing with ECMP). One possible technique 
to elevate the mice flow treatment from default to MiceTrap, 
could be to define a threshold over a time window and when 
the volume of flows targeting a specific destination rack, 
exceeds this threshold, MiceTrap is triggered. The mice flows 
are handled in a manner that collectively improves network 
congestion/application performance.  

 
B. Mice Flow Aggregation 

Due to the large number of mice flows in a datacenter, it is 
prohibitively expensive to maintain an exact rule in the switch 
forwarding table for each mouse flow separately. Additionally, 
this would hinder the scalability of traffic management due to: 
a) massive traffic matrix sizes that need to be handled by the 
controller routing module and b) inability of the limited 
bandwidth of the switch CPU to cope with periodically 
reporting a huge number of flow-entry counters to the 
controller. In response to this, the Mice Aggregation module 

 
Fig. 2 MiceTrap Architecture 



aggregates incoming mice flows per target (e.g., specific 
destination IP address or destination rack), thus reducing the 
number of rules required to apply traffic management to mice 
flows. This is in fact accomplished by making use of the 
features exposed by the OF standard only. 

The OF Specification Version 1.1 proposes the use of 
group tables along with the flow tables to support multi-path 
routing. Multi-path routing is enabled by adding the ability to a 
flow to point to a group. Each group is composed of a set of 
group action buckets, and each group bucket contains a set of 
actions to be applied to matching flows. Each bucket carries a 
weight field that defines the bucket’s share of the traffic 
processed by the group. An example is illustrated in Fig. 3. All 
the incoming mice flows that match the flow-entry destination 
IP are pointed to a group. The group table contains the action 
buckets with each bucket corresponding to a possible path the 
flow may take to reach its destination.  

 
C. MiceTrap Controller  

The MiceTrap Controller consists of: (1) Topology block - 
stores information about all the links currently up in the 
network; (2) Stats Collector block - keeps track of the links 
load by periodically collecting switch ports’ load information; 
(3) Path Weight block - computes the paths. (4) Mice Path 
Computation block – computes the set of shortest paths 
between any source-destination pair; (5) Elephant Flow Path 
Computation block - computes the path for the elephant flows; 
(6) Set of Rules and Path Installation block - sends the rules to 
the switch; (7) Network Map block – network state information 
(e.g., current traffic matrix, established routes, etc.).   

IV.  M ICETRAP WEIGHTED ROUTING ALGORITHM 

In order to take full advantage of the datacenter network 
bisection bandwidth available, as well as to protect mice 
flows, MiceTrap routes mice flow aggregates using a 
weighted multi-path routing algorithm. The routing algorithm 
spreads the aggregated flows across multiple links based on 
dynamically computed ratios in order to balance the load.  

Assume the network topology is represented by a connected 
graph G = (V, E), where V is the set of nodes and E represents 
the directed set of edges. Given the set of source-destination 
flows F⊂V2, a set N(s,d) of shortest paths between any source-
destination pairs (s, d) ϵ F is computed. Assume that for any 
node v ϵ V, any path i ϵ N(s,d) has a number of Mi subpaths and 
each subpath j ϵ Mi has a number of Sij segments. Denoting 
with λkji and ckji the traffic link load (taken form switch port 
counters) and link capacity on segment k, of subpath j, of path 

i, respectively, the Link Utilisation Ratio (LUR) is given by 
Eq. 1. The link load is reported by polling the respective 
switch port using standard OF mechanisms. 
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 At each node v ϵ V, and for any path the flow has to take to 
reach the destination, a weight is computed for any path i ϵ 
N(s,d) as given in Eq 2, with wi ϵ [0,1] and ∑ �� = 1� . The 
highest the path weight, the less loaded the path is. Once 
computed, the path weight is updated in the action bucket 
weight field of each path within a certain group. Based on this, 
a hash function on a packet is defined in the switch in order to 
distribute the flows across the multiple weighted paths by 
sending the packets appertaining to the same flow on the same 
path, avoiding the re-ordering problem. 
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The pseudo code of the MiceTrap weighted routing 
algorithm is outlined in Algorithm 1. 

 

Algorithm 1:  MiceTrap weighted routing algorithm 
Data: Network Topology G=(V,E) 
          Source-Destination pairs (s,d) ϵ F⊂V2 

 ∀s ≠ d 
          Set of shortest paths N(s,d) between any source-destination pairs (s, d) 
          Traffic load on segment k, of subpath j of path i  - λkji 
          Link capacity of segment k, of subpath j of path i - ckji 
        The number of subpaths of any path i ϵ N(s,d) - Mi 
          The number of segments of any subpath j ϵ Mi of any path i ϵ N(s,d) - Sij 
Compute Link Utilisation Ratio (LUR kji ) of each segment 
          for i := 1 to N(s,d) do 
                for j := 1 to Mi do 
                      for k := 1 to Sij do 

                           ������ =
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 ; /* link utilisation ratio 

                           k++ 
                      end 
                      j++ 
                end 
                i++ 
          end 
 Compute Path Utilisation Ratio (PURi) of each path 
          for i := 1 to N(s,d) do 
                for j := 1 to Mi do 
                      for k := 1 to Sij do 
                           ����+= ������ ; /* subpath j utilisation (SU) 
                           k++ 
                      end 
                     ����+= ����/��  ; /* path utilisation ratio  
                      j++ 
                end 
                i++ 
          end 
Compute Path Weight wi of each path 
         for i := 1 to N(s,d) do 
               !�+= ����  ;  /* total node load (TNL) of v ϵ V 
              i++ 
         end 
         for i := 1 to N(s,d) do 
               �� = 1 − ����/ !� ; /* path weight          
               i++ 
         end 

V. M ICETRAP BENEFITS 

A. Forwarding State Reduction 

Maintaining a rule in the forwarding table of the switch for 
every incoming flow is very expensive, given that switch 

 



memory is a scarce resource. We propose to install rules 
matching on destination address, as the many-to-one traffic 
pattern is very common in datacenters for applications like 
MapReduce and web search [7]. For example, if 1000 mice 
flows arrive at a Top of Rack (ToR) switch, pointing to the 
same destination IP or ToR , the controller will install a single 
rule matching the destination, instead of having a rule for each 
flow (e.g., 1000 rules in the switch). Moreover, by using the 
group functionality of OF, whenever changes in traffic 
distribution occur, a single explicit group message can update 
a set of flow entries avoiding sending an explicit message for 
each flow. This way, MiceTrap saves also bandwidth along 
the switch-controller channel. 

B. Multipath Routing 

ECMP routing evenly splits the traffic across all the 
available next hops along the set of shortest paths to achieve 
fair load balancing. However, even if the traffic is equally 
distributed, it may not always achieve optimal load balancing. 

Consider the example in Fig. 4 where B is sending 
0.5Gbps of data to destination D. When A wants to send 
1Gbps of data to the same destination D, it has two possible 
paths. Assuming that the links between switches have 1.5Gbps 
residual bandwidth capacity, by using ECMP the traffic from 
A to D will be equally spread across the two paths. However 
as B is already sending 0.5Gbps traffic to the same 
destination, the common links will be utilized at 66% of their 
capacity. This situation can be avoided by employing the 
MiceTrap weighted routing algorithm. The weights for each 
path are computed using Eq. 1 and Eq. 2. As Fig. 4 shows, the 
proposed weighted routing algorithm achieves better traffic 
balancing than conventional ECMP, reducing the load on the 
common links by 25%. 

VI.  CONCLUSIONS AND FUTURE WORK 

This paper proposed MiceTrap, a scalable scheme for 
traffic engineering of mice flows in a datacenter networks. 
Our work is motivated by the fact that management of mice 
flows that is oblivious to network state can lead to suboptimal 
utilization of datacenter fabric resources and eventually 
penalize short-lived flows in favor of elephant flows. This 
becomes even more important, when one recognizes that the 
sharing of network resources should be according to flow 
value (e.g. as quantified through SLA violations) and not 
necessarily based on flow size solely.  To this end, MiceTrap 
leverages on the OpenFlow group option to handle multiple 
mice flows as a single forwarding aggregate and then spreads 
flows within an aggregate via multiple paths, using a weighted 
routing algorithm that takes current network load into 
consideration. We are currently working on prototyping our 
approach for the purpose of proof-of-concept and evaluation. 
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