
TOWARDS EFFICIENT AND SCALABLE DATA MINING 

USING SPARK 

Jie Deng
1
, Zhiguo Qu

2
, Yongxu Zhu

1
, Gabriel-Miro Muntean

2
 and Xiaojun Wang

2
  

The Rince Institute, 

Dublin City University, Ireland 

E-mail:1{jie.deng3,zhu.zhuyonz2}@mail.dcu.ie 
2{zhiguo.qu,gabriel.muntean,xiaojun.wang}@dcu.ie 

 

 

 

Keywords: PrefixSpan algorithm; MapReduce model; Spark 

platform; Distributed system. 

Abstract 

Following the requirements of discovery of valuable 

information from data increasing rapidly, data mining 

technologies have drawn people's attention for the last decade. 

However, the big data era makes even higher demands from 

the data mining technologies in terms of both processing 

speed and data amounts. Any data mining algorithm itself can 

hardly meet these requirements towards effective processing 

of big data, so distributed systems are proposed to be used. In 

this paper, a novel method of integrating a sequential pattern 

mining algorithm with a fast large-scale data processing 

engine Spark is proposed to mine patterns in big data. We use 

the well-known algorithm PrefixSpan as an example to 

demonstrate how this method helps handle massive data 

rapidly and conveniently. The experiments show that this 

method can make full use of cluster computing resources to 

accelerate the mining process, with a better performance than 

the common platform Hadoop. 

1 Introduction 

With the development of information technology, data can be 

collected faster and more easily. This raises the problem of 

how to extract valuable information from data. Various 

techniques have been proposed including statistical analysis, 

data mining and machine learning, etc. These techniques have 

different characteristics and could be used on different areas 

of data analysis. One of the most interesting techniques is 

data mining, which mainly focuses on knowledge discovery 

from datasets. It discovers patterns and transforms these 

patterns into understandable information for users.  

One of the classic algorithms in data mining is PrefixSpan [1, 

2], which was originally proposed by Jian Pei in 2001. Many 

improvements have been made on this algorithm since then, 

such as construction of the projected database with restriction 

[3], removing infrequent items at the beginning of the mining 

process to reduce the search space, or even performing load 

balancing between parallel PrefixSpan processes [4, 5]. 

Furthermore, this algorithm has been used in different areas, 

such as malware detection [6] and intrusion detection [7].  

However, with the challenge of big data, traditional data 

mining algorithms like PrefixSpan do not have the ability to 

process massive datasets [8]. Big data processing has been 

proved to be useful in many different areas such as wireless 

sensor network analysis [9], and market analysis [10]. The 

analysis of big data requires algorithms to handle more varied 

and complex structures with difficulties in storing, analyzing 

and visualizing [11]. Different storage and processing 

methods [12] have to be implemented to meet the requirement 

of processing large-volume, growing datasets [13]. Although 

different frameworks have been proposed to solve this issue 

[14], most of them are grid based [15] and are using the 

MapReduce model [16,17,18] to process the data; however, 

specialised algorithms running on the framework have not 

still been properly explored. 

In this paper, we proposed a method of integrating sequential 

pattern mining algorithms with a distributed data processing 

engine Spark. Since no algorithm has been proposed 

specialized for the distribution system, porting existing 

algorithms to the distribution system would be a rational 

choice. 

The rest of this paper is organized as follows, section 2 gives 

an introduction of distribution platforms including 

MapReduce and Spark, section 3 gives an example of build 

the classical algorithm PrefixSpan on both platforms. All the 

experiment results are in section 4 which compared the 

performance of Spark on different number of nodes and with 

Hadoop as well. 

2 Distribution platform 

This section provides the architecture of two well-known 

distributed frameworks. As traditional data mining algorithms 

could not fulfil the requirements of massive data processing, 

new methods are introduced for data mining algorithms to 

handle big data. MapReduce and RDD are two such methods. 

2.1 MapReduce 

MapReduce is a parallelizable data process framework aiming 

to provide a generic method to processing data on cluster or a 

grid. It has been used in many different areas such as graph 

pattern analysis [19, 20], itemset mining [21], support vector 

machine [22] and also sequential pattern mining [23]. To 

make full use of computing resources and storage resources in 



cluster, HDFS is always used to store data files as multiple 

copies, so that MapReduce can take advantage of locality of 

data, and decrease data transmission time. 

MapReduce employs a master-slave architecture. In either 

Map or Reduce phases, the core concept is that the master 

distributes processing tasks to slave nodes, and these slave 

nodes will return processing result after finishing the job. 

There is a major difference between Map and Reduce. The 

Map function always faces the minimum fragments of 

datasets, and the results are always obtained by manipulating 

the fragment itself, such as characters’ filtering. It can be 

described as: 

map :: (key1, value1) => list (key2, value2))         (1) 

The input of Reduce function is from the output of Map phase. 

Normally, the Reduce function aims to combine the same or 

different items, get result by statistic or mathematic 

processing of these items, such as summarize. It can be 

described as: 

reduce :: ( key2, list (value2)) => list (value3)          (2) 

 

Figure 1 Architecture of MapReduce 

2.2 Spark 

Based on the fundamental concept of Hadoop, Spark [24] is a 

more effective cluster computing system that makes data 

processing easier and faster [25]. By introducing a new 

processing method and data structure RDD (resilient 

distributed dataset) [26], Spark can provide a wrap for 

distribution computing, so the program itself does not need to 

implement MapReduce. Furthermore, Spark also offers 

different levels of storage, ranging from memory and hard 

disk to stream [27]. It could greatly speed up the process if 

program prefers to use memory compared with HDFS in 

Hadoop. 

An RDD can be seen as an encapsulation of both distributed 

data and operation. Physically, it is a collection of objects 

partitioned across the cluster, but logically, RDD also 

provides a set of operations including map, reduce and other 

common behaviours used in distributed computing. By using 

RDD, the program cares less about storage, operation and 

processing flow.  

The processing function does not have to set MapReduce 

instance explicitly, which means the developer can focus 

more on the algorithm. The operations provided by RDD not 

only contain map and reduce, but also a few encapsulation of 

transformations like flat map, sort, filter and group. By using 

these methods, PrefixSpan program could save great efforts 

for fitting into the MapReduce framework, which means not 

only simplifying programming model, but also improving 

processing performance. 

This section has introduced two of the famous distribution 

systems. Both of them could help a traditional data mining 

algorithms handle massive datasets. In the next section, we 

will use PrefixSpan as an example to show how to use these 

platforms to speed up the mining process. 

 

3 Distributed PrefixSpan 

In this section, implementing PrefixSpan on two distribution 

platforms is demonstrated. With the help of RDD, the 

algorithm not only makes use of the computing cluster, but 

also simplifies the programming model, while making the 

algorithm easily to be built and maintained. 

3.1 PrefixSpan on MapReduce 

PrefixSpan is a well-known data mining algorithm aiming to 

find sequential patterns from a dataset without the need of 

multiple scans to the dataset. This algorithm can find length-

one items on each round, and is recursively performed 

afterwards to find all high frequency-occurring items to form 

patterns. During the recursion, the dataset is always purged 

based on the found frequent items, which largely reduces the 

dataset and further decreases the mining time. This algorithm 

has been proven as an effective algorithm compared with 

other point-based sequential pattern mining algorithms. 

PrefixSpan uses a pattern-growth method, which can find 

patterns with only one scan of the sequential database. Three 

fundamental steps are involved into the PrefixSpan as follows. 

1) Find length-1 sequential patterns, by scanning the 

database and counting the items in transactions. The 

frequent items will be length-1 patterns in this round.  

2) Project database to reduce search space and build the 

project database for each pattern found in step 1, that is 

to remove all the items before the first appearance of the 

pattern in each transaction. Then the pattern itself will 

become a prefix to the projected database. 

3) Find sequential patterns in the projected database. By 

following the same procedure in Step 1, the frequent 

patterns with lengths such as length-2, length-3, etc, in 

the projected database will also be found.  

Finally, all the sequential patterns can be found by recursively 

performing these 3 steps above. 

Related to the MapReduce framework, the same steps will be 

processed to implement the PrefixSpan. However, using a 

single Map and Reduce function may not be enough to finish 

the whole PrefixSpan process, so multiple MapReduce 

processed will be used.  



The count frequency part in step 1 needs a whole MapReduce 

process to be finished. For every transaction going into the 

map function, the item appearance will be recorded and the 

reduce function will summarize the occurrence number for 

each item. The final result consists of the items with the 

occurrence number above the minimum support. 

 

 
 

Figure 2 The frequent count phase of PrefixSpan 

 

The project database part in step 2 also needs a whole 

MapReduce process to be accomplished. The input key is the 

result from the count frequency function, and the map 

function will remove items which have occurred before the 

given key. The reduce function can simply collect all the 

transactions after processing, and assemble them as a 

projected database. Similar to the general PrefixSpan process, 

the process is recursively performed for the first two 

MapReduce. All the output of the first MapReduce process 

will be the final result for the sequential pattern mining. 

 

 
 

Figure 3 Project phase of PrefixSpan 

 

With the implementation of the PrefixSpan on the 

MapReduce framework, the PrefixSpan algorithm can benefit 

from the distributed system to perform the computing on a 

cluster. Although the structure needs two individual 

MapReduce processes, this framework provides the algorithm 

the ability to handle massive data, which is impossible on a 

single machine. 

3.2 PrefixSpan on Spark  

Like in the previous case, the PrefixSpan program on Spark 

needs two parts to be complete. The concept of frequency 

calculation part is to count items in each transaction, and 

compare the occurrence number with minimum support. Flat 

map and map in RDD could be used for counting items, and 

each item will be stored in a tuple and for further comparison. 

The project database part could be implemented by map and 

filter functions. The map function will return each transaction 

after purging the prefix and the filter will be used to remove 

transactions without items. 

 

 
 

Figure 4 PrefixSpan based on RDD 

 

By using RDD to write the PrefixSpan program, the 

processing model is simplified. Furthermore, all the 

intermediate results can be stored in the memory instead of 

hard disk, which will be another improvement to speed up the 

processing. 

4 Experimental Testing 

The experimental environment contains one master machine 

and four working machines. The master machine is a PC with 

an Intel Core i3-3220 CPU and 4 GB memory; the working 

nodes are virtual machines sharing two cores from an AMD 

Opteron 2350 CPU and 2 GB memory. The Hadoop platform 

is version 1.2.1, and Spark platform is version 0.8.0. 

4.1 IBM Synthetic Data Generator 

Test dataset used in experiments is generated by the IBM 

Quest Synthetic Data generator [28], which can generate 

emulated custom transactions. The parameters of the 

generator can be configured, including item number, pattern 

number, etc. The configuration used in this paper is shown in 

Table I. 

 

Parameters Value 

Average items per transaction(T) 10 

Number of transactions (D) 200k 

Number of items (N) 1000 

Average length of maximal pattern (I) 10 

 

Table 1 Parameters of the synthetic data generator 

4.2 Spark 

The first experiment illustrated the performance of 

PrefixSpan using Spark against different minimum supports. 

By comparing the time consumption of PrefixSpan between 



different working nodes, we can find out how this algorithm 

scales by using the Spark platform. 

 
Figure 5 Time consumption of Spark with different nodes 

 

From the result in figure 5 we can see that firstly, the 

processing time increases dramatically when the minimum 

support drops from 0.6% to 0.4%. Secondly, the processing 

time used in 2 nodes is much less than the processing time in 

1 node. However, increasing nodes from 3 to 4 did not clearly 

improve the processing performance. The same trend can be 

found in another experiment of only run one frequency count 

function and one project database function, which is shown in 

Fig.6. 

 
 

Figure 6 Time consumption of Spark with running partial 

PrefixSpan 

4.3 Spark and Hadoop 

The second experiment compares the performance of Spark 

and Hadoop. Both of the frameworks are running test dataset 

on minimum support 1% against different computing nodes. 

The result in Fig.7 shows Spark is generally 5 to 10 times 

faster than Hadoop. And this result can also be confirmed 

with the output from running PrefixSpan frequency count and 

project database functions only once, which shows in Fig. 8. 

Furthermore, by perform the same experiment with lower 

minimum support, the same trend can be found in figure 9 

and figure 10. 

 

 
Figure 7 Time consumption of Hadoop and Spark with 

different nodes with minimum support 0.01 

 

 

 
 

Figure 8 Time consumption of Hadoop and Spark running 

partial PrefixSpan with minimum support 0.01 

 



 
Figure 9 Time consumption of Hadoop and Spark with 

different nodes with minimum support 0.004 

 
Figure 10 Time consumption of Hadoop and Spark running 

partial PrefixSpan with minimum support 0.004 

 

By analyzing these experiment results, it can be clearly seen 

that the performance of Spark advantages that of Hadoop. By 

storing all the necessary information inside memory instead 

of hard disk, Spark can rapidly fetch necessary information 

without extra time. Besides, the encapsulation of operation 

and storage could simplify the program model, and further 

reduce development cost.  

5 Conclusion 

In this paper, we proposed a novel method of implementing 

traditional data mining algorithm on distributed systems. With 

this method, we can extend traditional data mining algorithms 

like PrefixSpan to handle massive data, significantly 

increasing the capability of the traditional data mining 

algorithms. Secondly, by using platform Spark, we can make 

full use of system memory, which leads to a better 

performance than the common distributed system Hadoop. 

Furthermore, with the benefit of RDD, the structure of the 

program does not have to follow the MapReduce explicitly, 

so the mining algorithm can more easily be implemented and 

maintained.  

However, the experiment results also show that the 

performance does not scale linearly or more otherwise with 

the increase of number of working nodes, especially when the 

working node number increases to three and more. The reason 

may be that the overload of these distributed systems affects 

the system performance as well, which means the more nodes 

are included in the system, the more time and resources are 

spent on communication between these nodes. Future work 

may focus on the optimization towards specific mining 

algorithms, and the structure and procedure of the relevant 

implementations could be improved to fit the architecture of 

distributed system as well. 

Acknowledgements 

This work was funded by Enterprise Ireland Innovation 

Partnership Programme with Ericsson Ireland under grant 

agreement IP/2011/0135 [29].  

References 

[1]  Jian Pei, H Pinto, and Qiming Chen. “Prefixspan: 

Mining sequential patterns effciently by prefix-projected 

pattern growth”. Data Engineering, 2001. Proceedings. 

17th International Conference on, (2001). 

[2]  Jian Pei, Jiawei Han, and B Mortazavi-Asl. “Mining 

sequential patterns by pattern-growth: The prefixspan 

approach”. Knowledge and Data Engineering, IEEE 

Transactions on, pp. 1424-1440, (2004). 

[3]  LIU Pei-yu, Gong Wei, and JIA Xian. “An Improved 

PrefixSpan Algorithm Research for Sequential Pattern 

Mining”, IT in Medicine and Education (ITME), 2011 

International Symposium on. (1995).  

[4]  Jie Deng, Zhiguo Qu, Yongxu Zhu, Gabriel-Miro 

Muntean and Xiaojun Wang,"Performance Evaluation 

and Optimization of A Hybrid Temporal Pattern Mining 

Algorithm", Information Technology & 

Telecommunications Conference,(2014). 

[5]  Makoto Takaki, Keiichi Tamura, and Hajime Kitakami. 

“Dynamic Load Balancing Technique for Modifyed 

PrefixSpan on a Grid Environment with Distributed 

Worker Model”. PDPTA, (2006). 

[6]  Lina Wang, Xiaobin Tan, Jianfeng Pan, and Hongsheng 

Xi. “Application of PrefixSpan* Algorithm in Malware 

Detection Expert System”. 2009 First International 

Workshop on Education Technology and Computer 

Science, pp. 448-452, (2009). 

[7]  Qingsen Xie and Tianqi Yang. “Application of the 

improved PrefixSpan algorithm in Intrusion Detection”. 

In 2010 8th World Congress on Intelligent Control and 

Automation, pp. 6099-6103. IEEE, (2010). 

[8]  Avita Katal, Mohammad Wazid, and R. H. Goudar. “Big 

data: Issues, challenges, tools and Good practices”. 2013 

Sixth International Conference on Contemporary 

Computing (IC3), pp. 404-409, (2013). 

[9]  Z. Yuan and G.-M. Muntean, "A Prioritized Adaptive 

Scheme for Multimedia Services over IEEE 802.11 



WLANs", IEEE Transactions on Network and Service 

Management, no.4, vol.10, pp.340 - 355, (2013). 

[10]  Akinori Abe. “Curating and Mining (Big) Data”. 2013 

IEEE 13th International Conference on Data Mining 

Workshops, pp. 664-671, (2013). 

[11]  Seref Sagiroglu and Duygu Sinanc. “Big data: A 

review”. 2013 International Conference on 

Collaboration Technologies and Systems (CTS), pp. 42- 

47, (2013). 

[12]  Yang Song, Gabriel Alatorre, Nagapramod Mandagere, 

and Aameek Singh. “Storage Mining: Where IT 

Management Meets Big Data Analytics”. 2013 IEEE 

International Congress on Big Data, pp. 421-422, (2013). 

[13]  Xindong Wu, Xingquan Zhu, and Senior Member. “Data 

Mining with Big Data”. pp. 97-107, (2014). 

[14]  Firat Tekiner and John a. Keane. “Big Data Framework”. 

2013 IEEE International Conference on Systems, Man, 

and Cybernetics, pp. 1494-1499, (2013). 

[15]  Dan Garlasu, Virginia Sandulescu, Ionela Halcu, 

Giorgian Neculoiu, Oana Grigoriu, Mariana Marinescu, 

and Viorel Marinescu. “A big data implementation 

based on Grid computing”. 2013 11th RoEduNet 

International Conference, pp. 1-4, (2013). 

[16]  Hongyong Yu and Deshuai Wang. “Mass log data 

processing and mining based on Hadoop and cloud 

computing”. 2012 7th International Conference on 

Computer Science & Education (ICCSE), pp. 197-202, 

(2012). 

[17]  Faisal Zaman, Sebastian Robitzsch, Zhuo Wu, John 

Keeney, Sven van der Meer, and Gabriel-Miro 

Muntean."A Heuristic Correlation Algorithm for Data 

Reduction through Noise Detection in Stream-Based 

Communication Management Systems". 2014 Network 

Operations and Management Symposium, (2014). 

[18]  Antonia Azzini and Paolo Ceravolo. “Consistent Process 

Mining over Big Data Triple Stores”. 2013 IEEE 

International Congress on Big Data, pp. 54-61, (2013). 

[19]  Chun-Chieh Chen, Kuan-Wei Lee, Chih-Chieh Chang, 

De-Nian Yang, and Ming-Syan Chen. “Effecient large 

graph pattern mining for big data in the cloud”. 2013 

IEEE International Conference on Big Data, pp. 531-536, 

(2013). 

[20]  Hui Chen, TY Lin, Zhibing Zhang, and Jie Zhong. 

“Parallel Mining Frequent Patterns over Big 

Transactional Data in Extended MapReduce”. 

ieeexplore.ieee.org, (60763002) pp.43-48, (2013). 

[21]  Sandy Moens, Emin Aksehirli, and Bart Goethals. 

“Frequent Itemset Mining for Big Data. 2013 IEEE 

International Conference on Big Data”, pp. 111-118, 

(2013). 

[22]  Dijun Luo, Chris Ding, and Heng Huang. 

“Parallelization with Multiplicative Algorithms for Big 

Data Mining”. 2012 IEEE 12th International Conference 

on Data Mining, pp. 489-498, (2012). 

[23]  Yong-qing Wei, Dong Liu, and Lin-shan Duan. 

“Distributed PrefixSpan algorithm based on 

MapReduce”. 2012 International Symposium on 

Information Technologies in Medicine and Education, 

pp. 901-904, (2012). 

[24]  Cliff Engle, Antonio Lupher, and Reynold Xin. Shark: 

fast data analysis using coarse-grained distributed 

memory. . . . Management of Data, pp. 1-4, (2012). 

[25]  Matei Zaharia and Mosharaf Chowdhury. “Spark: 

cluster computing with working sets in cloud 

computing”, (2010). 

[26]  Zaharia, Matei, Mosharaf Chowdhury, Tathagata Das, 

Ankur Dave, Justin Ma, Murphy McCauley, Michael J. 

Franklin, Scott Shenker, and Ion Stoica. "Resilient 

distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing." In Proceedings of the 9th 

USENIX conference on Networked Systems Design and 

Implementation, pp. 2-2, (2012). 

[27]  THTDM Zaharia, Alexandre Bayen, P Abbeel, and 

Timothy Hunter. “Large-Scale Online Expectation 

Maximization with Spark Streaming”. eecs.berkeley.edu, 

pp. 1-5. 

[28]  IBM data generator: 

http://sourceforge.net/projects/ibmquestdatagen/ 

[29]  Dublin City University and Ericsson. EStream Project. 

 


