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1Abstract— Increasing amounts of time is wasted due to 

traffic congestion in both developed and developing countries. 
This has severe negative effects, including drivers stress due to 
increased time pressure, reduced usage efficiency of trucks and 
other commercial vehicles, and increased gas emissions--
responsible for climate change and air pollution affecting 
population health in densely populated areas. As existing 
centralized approaches were neither efficient, nor scalable, 
there is a need for alternative approaches. Social insects 
provide many solutions for dealing with decentralized 
problems. For instance ants choose their routes based on 
pheromones left by previous ants. However, Ant Colony 
Optimization is not directly applicable to vehicle routing, as 
routing the vehicles to the same road would cause traffic 
congestion. Yet, the traffic is broadly similar from work- to 
work-day. This paper introduces an ant-colony optimization-
based algorithm called Time-Ants. Time-Ants considers that an 
amount of “pheromone” or a traffic rating is assigned to each 
road at any given time in the day. Using an innovative 
algorithm the vehicle’s routes are chosen based on these traffic 
ratings, aggregated in time. After several iterations this results 
in a global optimum for the traffic system. Bottlenecks are 
identified and avoided by machine learning. Time-Ants 
outperforms another leading algorithm by  up to 19% in terms 
of percentage of vehicles to reach the destination within a given 
time-frame. 

Index Terms—Traffic congestion, Machine learning, Vehicle 
routing, VANET 

I. INTRODUCTION 

Traffic congestion is a very serious problem both in 
developed countries and increasingly in developing 
countries. For instance Sao Paulo, Brazil is known to 
experience the world’s worst traffic jams, with people stuck 
in traffic for an average of two to three hours at a time 
according to Jain et al. [1]. This report identified poor traffic 
management as the leading cause of traffic congestion. All 
countries have seen a surge in vehicle ownership; 
developing countries also have poor existing infrastructure 
and very little money to improve it. Austin et al. [2] states 
that developing countries are much more dependent on 
automobiles for transport due versatility, flexibility, and low 
initial cost compared with other modes of transport. At the 
same time pollutant levels in large developing cities’ air far 
exceed those in the developed world. However both in 
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developed and developing countries, the number of cars on 
the road is increasing without a corresponding increase in 
road capacity in urban areas. Despite the impact of the 
global recession, the number of cars produced each year has 
risen 33% since 1999 [3], further contributing to traffic 
congestion and pollution. 

One potential technology to be used for alleviating traffic 
congestion is Vehicle Ad Hoc Networks (VANET). 
VANETs use individual vehicles as nodes, which 
communicate with each other wirelessly using Wi-Fi or 
cellular. This paper considers the Wi-Fi standard IEEE 
802.11p, a standard specifically designed to cope with the 
highly mobile VANET nodes. VANETs communicate with 
the Internet via Road Side Units (RSU). Messages are sent 
from one vehicle to another or from one vehicle to a RSU 
using multi-hop.  

Existing traffic information systems such as Tomtom [4] 
or Google maps traffic [5], take information from induction 
loops. However these are expensive and not placed at every 
junction. Collecting information from vehicles via VANETs 
could provide traffic maps with far higher granularity. 
VANET-based solutions could improve the efficiency of use 
of the road network. Traffic congestion could easily be 
detected and predicted without having to install many 
induction loops or traffic cameras. The vehicles could be 
instructed to avoid busy roads at certain times without having 
to set up large expensive electronic signs. This would benefit 
all the cities, but especially those which are experiencing 
great increase in population and number of vehicles on the 
road and have limited finances to invest in urban planning 
and/or infrastructure upgrades. 

Often nature presents the best solutions to problems, by 
virtue of millions of years of evolution. Among these 
solutions, swarm algorithms address the problem of 
decentralized routing of units and Ant colony optimization 
(ACO) presents a brilliant method for choosing the best 
route. Each ant leaves some pheromone down when it walks 
along. Other ants then follow and leave down more 
pheromone, reinforcing the route. Although, ACO is not 
directly applicable to vehicle routing, as if too many cars go 
on the same road traffic congestion occurs, an innovative 
ACO extension is beneficial.  

This paper proposes Time-Ants, a novel ACO-based 
algorithm which determines optimum routes for vehicular 
traffic in both space and time dimensions. Rakha et al. [6] 
showed that US vehicle traffic is very similar for weekdays, 
but varies considerably on weekends as long as there are no 
incidents. The paper by Immers et al. [7] described how the 
traffic flow affects congestion, namely that when increasing 
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the number of vehicles in a road system, a tipping point is 
reached at some stage. When the number of vehicles goes 
above this point, the average speed of vehicles rapidly drops 
Time-Ants takes into account both these studies and 
optimizes the road use. 

The paper is structured as follows. Section 2 presents the 
related works. Section 3 describes the architecture of the 
system, as well as how the algorithm works and how load 
balancing is achieved. In section 4 the simulator model and 
the simulation scenario are described. In section 5 the results 
are presented and then commented on. Finally section 6 
details the conclusions and future work. 

  

II. RELATED WORKS 

The related works are organized in three areas: VANET-
based routing algorithms, inter-vehicle coordination and 
swarm algorithms. 

A. VANET-based Routing Algorithms 

Wu et al. [8] described a VANET-based routing 
mechanism with several different flavors. The author named 
this system Dynamic Navigation Algorithm (DNA). Four 
metrics are considered to determine how good a road is 
average speed on that road, inter-vehicle spacing, the road 
type (motorway, side street etc...) and the length of the road. 
The DNA flavors are described in more details in the 
simulation and testing scenario section. 

Senge et al. [9] proposed a VANET-based algorithm 
based on bee swarm algorithms. The map is divided into 
cells. Each vehicle acts as a bee foraging along to its 
destination and sends a message back as to how it performed 
along the way. Vehicles then follow good routes from cell to 
cell till they reach their destination. The cellular setup 
makes sure information is up-to-date as it is quite local. The 
paper did not give enough information on the algorithm to 
allow its implementation and usage during testing. 

Collins et al. [10] proposed a vehicle routing solution 
TraffCon which is based on the evaluation of a fitness 
function for each road segment. The fitness function is made 
up of weighted cost components consisting of road travel 
time, road used capacity and road fuel consumption.  

Doolan et al. [11] proposed a VANET-based routing 
algorithm which considered traffic conditions and road 
conditions, such as road roughness and gradient, in order to 
route vehicles on a more fuel efficient route. 

The advantage of Time-Ants over these solutions is the   
innovative consideration of historical information, which 
allows better prediction of future traffic conditions. 

 
B.     Inter-vehicle Coordination 

Inter-vehicle coordination protocols help find the position 
and velocity the vehicles should have relative to each other. 
They do not choose which road segments the vehicles 
should travel on, as in the case of vehicular routing 
protocols. However, this area was studied to find ways of 
using VANETs to reduce traffic congestion.  

Chuah et al. [12] described a variable speed limit scheme 
in order to smooth traffic flow. For instance, if there is an 

accident and one lane is blocked on a highway, lowering the 
speed limit improves the throughput, and provides a smooth 
flow pattern.  

Ferreira et al. [13] looked at using virtual traffic lights 
based on vehicle to vehicle communication to improve 
congestion. This requires not only a high level of accuracy 
but also a penetration rate of 100% to prevent crashes. 

Olaverri-Monreal et al. [14] gave instructions to the driver 
to help him/her overtake. Video streaming is used to give 
the driver a view of what is in front of the vehicle he/she is 
overtaking. Although a very interesting idea, it is difficult to 
simulate its effects. It would be difficult to determine with 
current traffic micro simulators, how driver would react to 
this new information source. 

Reichardt et al. [15] focused on highway merging traffic. 
Vehicular communication would be very useful as 
misunderstandings between drivers cause many crashes in 
this scenario. For instance, typical information which could 
be exchanged includes vehicle trajectory, speed, length of 
vehicle, etc.. This idea is difficult to simulate using current 
traffic micro simulators. 

Some ideas behind inter-vehicle coordination solutions 
could be adapted to rerouting algorithms like Time-Ants in 
order to improve travel times and safety. 

 

C. Swarm Algorithms 

A swarm is a decentralized system with quasi-
homogeneous units [16]. Each unit is called an agent. These 
simple agents can solve complex tasks by interacting with 
each other. Swarm algorithms model this interactive 
behavior [17]. Several different types of swarm algorithms 
were looked at including ant-based, bee-based, firefly-based 
and particle-based. 

1. Ant-based 
Ant colony swarm theory is described by Teodorović et 

al. [17]. In its journey, each ant leaves a pheromone trail 
behind. When traveling, the ants naturally chose paths with 
high pheromone levels. This behavior can be abstracted as a 
learning algorithm, which when applied results in an 
optimal path.  

2. Bee-based 
Bees communicate via dancing (body movements). When 

a bee returns from a food source it communicates the 
distance, direction and quality to the other bees via dancing. 
Bees use this information to choose the optimum food 
source to visit. Bee colony swarm is described by 
Teodorović et al. [17]. Initially the bees use a random walk 
model to determine a partial solution. A local optimal is 
determined which is communicated to the other bees; this 
partial solution is then built on to determine a full solution.  

3. Firefly-based 
Fireflies light up to communicate to other fireflies. Real 

fireflies use this lighting communication for mating 
purposes, but in the firefly algorithm described in Yang et 
al. [18] this is not the case. All the fireflies are drawn to 
each other in this algorithm regardless of sex. The dimmer 
firefly will be drawn to the brighter firefly. The brightness 



decreases over distance and if a particular firefly cannot see 
any others, it moves randomly. When using this algorithm to 
solve problems, the brightness can be proportional to a 
certain parameter or fitness function in order to attract the 
nodes to a better location.  

4. Particle swarm 
Particle swarm is based on the behaviour of bird flocks 

and fish schools. This set of algorithms is described by 
Teodorović et al. [17]. A particle remembers its best 
solution and that of the best solution obtained by any other 
particle. In the next time step, the particle moves in the 
direction of its best solution and the global best solution. 

 

Figure 1 Time-Ants Architecture 

 

III.  TIME-ANTS ARCHITECTURE AND ALGORITHM  

A. Architecture 

Figure 1 illustrates the Time-Ants architecture, which is 
composed of: vehicle models, road models, a time-
dependent traffic model and a current traffic model. The 
vehicle model contains the vehicle’s speed and position. The 
road model contains the traffic information for a road 
segment that the vehicle is on. The current traffic model 
contains the instantaneous traffic information in the area, 
whereas the time-dependent traffic model contains the 
traffic information collected throughout a whole day. 

Each vehicle is equipped with a digital map and GPS 
receiver to determine which road it is on. Information from 
these sensors is fed into the Road Model. The road model 
models the local area and the time to each junction 

A server has a database with all the roads and their traffic 
scores, for all the times throughout the previous day. This 
information is used to form the time-dependent Traffic 
Model.  

The vehicle communicates with the server to retrieve the 
traffic information on the roads at specific times, relevant to 
the vehicle. The vehicle sends messages containing the road 
and the time the vehicle will be on that road. The server then 
responds with the traffic rating for that road at the indicated 
time. This information on the traffic ratings at the required 
times will allow the vehicle to construct a model of the 
current traffic conditions, called the current Traffic Model. 
The estimated traffic on each road is then entered into the 
Time-Ants algorithm to compute the optimum route for the 
vehicle. This route is then sent to the vehicle model in order 
to reroute the vehicle. 

A Vehicle Model contains information on vehicle position 
and speed. The current position, speed and time from all the 
vehicle models are sent to the server regularly. This allows 
the server to build a new time-dependent traffic model.  

The vehicle-server communications are achieved using 
802.11p and the use of RSUs. If the vehicle is not in the 
immediate range of an RSU, multi-hop communication, via 
other vehicles, is used to reach the nearest RSU. 

 
B. Algorithm Principle 

 
Figure 2 Illustration of iterative improvement in Ti me-Ants 
 
As traffic conditions are roughly similar from day to day 

during weekdays, historical data can be used to make 
decisions for routing and eventually the road network can 
be more efficiently used.  

Iterative use of the Time-Ants algorithm over several 
days enables important benefits, as illustrated for instance 
in figure 2. During Day 1 Route 2 is overused, so the next 
day more vehicles are sent on other routes using Time-
Ants. This process continues from day to day. By Day 4 the 
traffic is a lot smoother. Periodically, each vehicle 
determines the traffic rating on the road it is travelling. The 
road rating is determined by comparing the speed of the 
vehicle divided by the speed limit of the road. The vehicles 
then send this information over the VANET to a server. 
This is recorded on the central server for that location and 
time of day.  

Each road segment then has a score or “pheromone” 
amount for a given time in the day. As suggested in the 
traffic flow theory by Immer et al. [7], vehicle speeds are 
only affected by traffic congestion when vehicle numbers 
increase above a certain point. Consequently, Time-Ants 



load balancing is performed when the speed of vehicles on 
a road dropped beneath congestion threshold of the speed 
limit only.  

If load balancing is not needed, the vehicles simply drive 
on the fastest route. The fastest route is determined by 
dividing the route length by the speed limit. 

When choosing a route, each vehicle estimates how long 
it will take to get to each junction. It then sends a request to 
the server for any ratings associated with the adjoining 
roads near the time it will arrive there. After the vehicle 
receives the information, one of these roads is chosen 
according to the Time-Ants load balancing mechanism and 
according to the road’s score.  If there are no recorded 
ratings stored on the server around the requested time, then 
it is assumed that the road is empty at that time and then 
rating is defined as the speed limit of that road.  

 
C. Load Balancing 
Time-Ants load balancing is performed based on a metric 

determined from the ratio between the speed limit and the 
actual speed on that road as discussed in the speed/flow 
diagram by Immer et al. . Time-Ants applies load balancing 
when the actual speed drops beneath 80% of the speed limit. 

The load balancing algorithm should prevent flash 
crowding on the roads with high scores. The number of 
vehicles which choose to travel on a road at a junction is 
proportional to its score. More vehicles will travel on the 
roads with higher scores. The probability that a car will 
drive on route Rxy from junction j is set to the average travel 
time on that route to the power of 3 divided by the sum of 
all travel times of the routes leaving that junction to the 
power 3. This gives us the following equation.  
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TimeAnts extends Dijkstra lowest edge weight algorithm, 

with load balancing along congested edges, to determine the 
route. In other words the route with the lowest overall score 
will be chosen, as long as none of the edges chosen have a 
lower congestion score than the threshold. The congestion 
score is determined from the speed of vehicles on an edge 
divided by the speed limit of an edge. If there is a congested 
edge, vehicles will be distributed to other edges at this point 
leading to multiple good but sub-optimal routes for vehicles 
to follow. 

A full graph search, from the origin to the destination, is 
performed. The fastest edges are chosen in this fashion, 
unless an edge is congested; in this case load balancing is 
performed near this edge. This graph search is described in 
Algorithm 1. The algorithm makes use of the following 
functions: no_following() – returns the number of edges 
following an edge; traffic_congestion() returns the traffic 
congestion expected on an edge; traveltime() returns the 
expected travel time on an edge; assign_random() returns an 
edge determined by equation 1 from the random number 
generated R, the travel times and the following edges. 
 

Algorithm 1 TimeAnts Algorithm - Pseudo Code 
 

 
//from Origin (O) to Destination (D) 
route_list.clear() 
//loop: through edges on map 
for all edge[i] in Map 
//if destination reached exit 
if (edge[i] == D) 
{ 

exit 
} 
//return number of edges leading from this edge 
int n = no_following(edge[i]) 
total_travel_time = 0 
float edge_traveltime = max_traveltime 
//loop through following edges 
for all edges[j] following edge[i] 
{ 

total_travel_time = total_travel_time + 
 (traveltime(edge[j])^3) 
//if this edge is faster than previous ones consider it as 
fast edge 
if (edge_traveltime > traveltime(edge[j])) 
{ 

fast_edge = edge[j] 
edge_traveltime = traveltime(edge[j]) 

} 
} 
//return traffic congestion on edge 
TC = traffic_congestion(fast_edge) 
//check if edge is congested with traffic 
if (TC < threshold) 

route_list.add(fast_edge) 
else 
{ 

//Load balance here according to equation 1 
R = rand() % (total_travel_time) 
Rand_edge = assign_random(R, total_traveltime, 

edge[i]) 
route_list.add(rand_edge) 

} 
 

       

IV.  SIMULATION -BASED TESTING 

A. Simulation environment and scenario description 
Modeling and simulations were performed on the 

iTETRIS[19] platform. iTETRIS uses in conjunction both 
the road traffic simulator SUMO [20] and the wireless 
network simulator NS-3 [21]. iTETRIS is specially designed 
to support VANET simulations, allowing for dynamic 
rerouting, and the use of the IEEE 802.11p protocol. 
iTETRIS is an open source simulator funded by the EU 
seventh framework programme. 

A map similar to the one described in Wu et al. [8] and 
illustrated in Figure 3 was employed in these simulation-
based testing. In this map there are 5 junctions (J1-J5), and 
each of the junctions is connected to the others by six road 



segments (Road0-Road5). The road segment lengths vary 
between 500m and 2000m. The speed limits on these 
segments vary between 11 m/s (~40kmph) and 35 m/s 
(~125kmph). Each junction has a set of traffic lights.  

 

Figure 3 Map used for simulations 
 

400 passenger cars are considered, which start driving 
into the map at time = 0; a new one appears on the map 
every second. If no rerouting mechanism is employed, the 
cars take the first turn at each junction. Time-Ants was 
deployed according to the description in the previous 
section. The congestion threshold was set to 80% for these 
simulations. The Time-Ants algorithm was tested against a 
mechanism which does not employ rerouting (the cars drive 
on the first turn on each junction – labeled None in Figure 4 
and Table 2), Dijkstra lowest edge weight algorithm set to 
determine the fastest route (this will become congested if all 
the cars drive on it), the Dynamic rerouting algorithm 
(DNA) (described in the paper Wu et al. [8]) and an 
algorithm from Sommer et al.[22]  

DNA is a VANET-based rerouting algorithm based on the 
fact that each vehicle communicates its speed and the 
distance to the car in front of it to all the other vehicles. This 
information is used to determine the edge weights for 
determining the best route using the Dijkstra algorithm. 

DNA uses equation (2) to score each road segment, in 
which Sri is the score of the segment (graph edge), �̅i 
reflects the average vehicle speed on the road segment). �� i - 
the inter-vehicle distance, �� i - the road type and �̅ i - the road 
segment length. kj are weights. 
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Four DNA flavours are used in these tests, with the 
weights k1 through k4 indicated in Table 1. 

Table 1 DNA flavor weights 

Flavor Weights 

DNA1 1,0,0,0 

DNA2 0,1,0,0 

DNA3 0.5,0.5,0,0 

DNA4 0,0,0,1 

 
 

B. Testing Results 
Figure 4 and Table 2 show the results for various 

iterations of Time-Ants when compared against different 
flavors of DNA, Dijkstra, the mechanism with no rerouting 
(None) and Sommer’s algorithm.  

The average travel time of a scheme can be lower, but 
fewer vehicles might get to their destination. So in order 
judge the effectiveness of the different schemes, the 
percentage of the vehicles which got to their destination 
within the time frame were recorded.  

As can be seen from Figure 4, the proposed Time-Ants 
outperforms the other solutions in all simulations in terms of 
percentage of the vehicles which reach destination. For 
instance, the best performing DNA flavors, DNA1was 
outperformed by Time-Ants by 15% after the first iteration 
and 18% after the fourth iteration. Time-Ants also 
outperformed the mechanism which employs no rerouting 
by 16% after the first iteration and 19% after the fourth 
iteration. 

The DNA4 algorithm performed poorly as it sent all the 
vehicles along the shortest route distance-wise, without 
regard to speed limits or traffic congestion. 

 

 
Figure 4 Percentage of vehicles which reached destination during 

simulation 

 

Table 2 Percentage of vehicles to reach destination during simulation 

Iterations 2 3 4 5 

Dijkstra 0.515 0.515 0.515 0.515 

None 0.4875 0.4875 0.4875 0.4875 

Time-Ants 0.565 0.5825 0.5725 0.58 

DNA1 0.49 0.49 0.49 0.49 

DNA2 0.49 0.49 0.49 0.49 

DNA3 0.49 0.49 0.49 0.49 

DNA4 0.485 0.485 0.485 0.485 

Sommer 0.49 0.49 0.49 0.49 

 
The positive results of the Time-Ants algorithm are 

expected as, it considers load balancing, unlike the 
algorithm described in Wu et al. [8], for instance Hence 
Time-Ants makes better use of the full road network.  
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V. CONCLUSION AND FUTURE WORKS 

This paper proposed Time-Ants a VANET-based ant-
colony optimization algorithm which uses historical traffic 
data to improve traffic flows; this is a unique approach to 
dealing with traffic congestion. The simulation-based testing 
performed has compared Time-Ants against a number of 
other VANET-based routing techniques. Time-Ants 
outperformed the next best approach by 19% after four days 
of running the algorithm.  

Future work will consider emissions as a parameter in a 
green extension of Time-Ants, which would minimize 
emissions instead of travel times. Also a more realistic 
vehicle trace will be used, such as the one from the 
TAPASCologne project [23],  a 24 h vehicle trace of the city 
of Cologne, Germany. Simulation will also be run using 
vehicle counts from Dublin provided by Dublin City 
Council [24]. Note Time-Ants has to be updated to account 
for weekends which have different traffic patterns than week 
days.  
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