
TIME-ANTS: An Innovative Temporal and Spatial Ant-b ased Vehicular
Routing Mechanism*

1Abstract— Increasing amounts of time is wasted due to

traffic congestion in both developed and developing countries.
This has severe negative effects, including drivers stress due to
increased time pressure, reduced usage efficiency of trucks and
other commercial vehicles, and increased gas emissions--
responsible for climate change and air pollution affecting
population health in densely populated areas. As existing
centralized approaches were neither efficient, nor scalable,
there is a need for alternative approaches. Social insects
provide many solutions for dealing with decentralized
problems. For instance ants choose their routes based on
pheromones left by previous ants. However, Ant Colony
Optimization is not directly applicable to vehicle routing, as
routing the vehicles to the same road would cause traffic
congestion. Yet, the traffic is broadly similar from work- to
work-day. This paper introduces an ant-colony optimization-
based algorithm called Time-Ants. Time-Ants considers that an
amount of “pheromone” or a traffic rating is assigned to each
road at any given time in the day. Using an innovative
algorithm the vehicle’s routes are chosen based on these traffic
ratings, aggregated in time. After several iterations this results
in a global optimum for the traffic system. Bottlenecks are
identified and avoided by machine learning. Time-Ants
outperforms another leading algorithm by up to 19% in terms
of percentage of vehicles to reach the destination within a given
time-frame.

Index Terms—Traffic congestion, Machine learning, Vehicle
routing, VANET

I. INTRODUCTION

Traffic congestion is a very serious problem both in
developed countries and increasingly in developing
countries. For instance Sao Paulo, Brazil is known to
experience the world’s worst traffic jams, with people stuck
in traffic for an average of two to three hours at a time
according to Jain et al. [1]. This report identified poor traffic
management as the leading cause of traffic congestion. All
countries have seen a surge in vehicle ownership;
developing countries also have poor existing infrastructure
and very little money to improve it. Austin et al. [2] states
that developing countries are much more dependent on
automobiles for transport due versatility, flexibility, and low
initial cost compared with other modes of transport. At the
same time pollutant levels in large developing cities’ air far
exceed those in the developed world. However both in

* Research supported by the Science Foundation Ireland grant to LERO, the

Irish Software Engineering Research Centre (grant no. 10/CE/I1855)
Ronan Doolan and Gabriel-Miro Muntean are with the Performance
Engineering Laboratory (PEL), RINCE Institute, Dublin City University
(email: ronan.doolan2@mail.dcu.ie and gabriel.muntean@dcu.ie)

developed and developing countries, the number of cars on
the road is increasing without a corresponding increase in
road capacity in urban areas. Despite the impact of the
global recession, the number of cars produced each year has
risen 33% since 1999 [3], further contributing to traffic
congestion and pollution.

One potential technology to be used for alleviating traffic
congestion is Vehicle Ad Hoc Networks (VANET).
VANETs use individual vehicles as nodes, which
communicate with each other wirelessly using Wi-Fi or
cellular. This paper considers the Wi-Fi standard IEEE
802.11p, a standard specifically designed to cope with the
highly mobile VANET nodes. VANETs communicate with
the Internet via Road Side Units (RSU). Messages are sent
from one vehicle to another or from one vehicle to a RSU
using multi-hop.

Existing traffic information systems such as Tomtom [4]
or Google maps traffic [5], take information from induction
loops. However these are expensive and not placed at every
junction. Collecting information from vehicles via VANETs
could provide traffic maps with far higher granularity.
VANET-based solutions could improve the efficiency of use
of the road network. Traffic congestion could easily be
detected and predicted without having to install many
induction loops or traffic cameras. The vehicles could be
instructed to avoid busy roads at certain times without having
to set up large expensive electronic signs. This would benefit
all the cities, but especially those which are experiencing
great increase in population and number of vehicles on the
road and have limited finances to invest in urban planning
and/or infrastructure upgrades.

Often nature presents the best solutions to problems, by
virtue of millions of years of evolution. Among these
solutions, swarm algorithms address the problem of
decentralized routing of units and Ant colony optimization
(ACO) presents a brilliant method for choosing the best
route. Each ant leaves some pheromone down when it walks
along. Other ants then follow and leave down more
pheromone, reinforcing the route. Although, ACO is not
directly applicable to vehicle routing, as if too many cars go
on the same road traffic congestion occurs, an innovative
ACO extension is beneficial.

This paper proposes Time-Ants, a novel ACO-based
algorithm which determines optimum routes for vehicular
traffic in both space and time dimensions. Rakha et al. [6]
showed that US vehicle traffic is very similar for weekdays,
but varies considerably on weekends as long as there are no
incidents. The paper by Immers et al. [7] described how the
traffic flow affects congestion, namely that when increasing

Ronan Doolan and Gabriel-Miro Muntean, Member, IEEE

the number of vehicles in a road system, a tipping point is
reached at some stage. When the number of vehicles goes
above this point, the average speed of vehicles rapidly drops
Time-Ants takes into account both these studies and
optimizes the road use.

The paper is structured as follows. Section 2 presents the
related works. Section 3 describes the architecture of the
system, as well as how the algorithm works and how load
balancing is achieved. In section 4 the simulator model and
the simulation scenario are described. In section 5 the results
are presented and then commented on. Finally section 6
details the conclusions and future work.

II. RELATED WORKS

The related works are organized in three areas: VANET-
based routing algorithms, inter-vehicle coordination and
swarm algorithms.

A. VANET-based Routing Algorithms

Wu et al. [8] described a VANET-based routing
mechanism with several different flavors. The author named
this system Dynamic Navigation Algorithm (DNA). Four
metrics are considered to determine how good a road is
average speed on that road, inter-vehicle spacing, the road
type (motorway, side street etc...) and the length of the road.
The DNA flavors are described in more details in the
simulation and testing scenario section.

Senge et al. [9] proposed a VANET-based algorithm
based on bee swarm algorithms. The map is divided into
cells. Each vehicle acts as a bee foraging along to its
destination and sends a message back as to how it performed
along the way. Vehicles then follow good routes from cell to
cell till they reach their destination. The cellular setup
makes sure information is up-to-date as it is quite local. The
paper did not give enough information on the algorithm to
allow its implementation and usage during testing.

Collins et al. [10] proposed a vehicle routing solution
TraffCon which is based on the evaluation of a fitness
function for each road segment. The fitness function is made
up of weighted cost components consisting of road travel
time, road used capacity and road fuel consumption.

Doolan et al. [11] proposed a VANET-based routing
algorithm which considered traffic conditions and road
conditions, such as road roughness and gradient, in order to
route vehicles on a more fuel efficient route.

The advantage of Time-Ants over these solutions is the
innovative consideration of historical information, which
allows better prediction of future traffic conditions.

B. Inter-vehicle Coordination

Inter-vehicle coordination protocols help find the position
and velocity the vehicles should have relative to each other.
They do not choose which road segments the vehicles
should travel on, as in the case of vehicular routing
protocols. However, this area was studied to find ways of
using VANETs to reduce traffic congestion.

Chuah et al. [12] described a variable speed limit scheme
in order to smooth traffic flow. For instance, if there is an

accident and one lane is blocked on a highway, lowering the
speed limit improves the throughput, and provides a smooth
flow pattern.

Ferreira et al. [13] looked at using virtual traffic lights
based on vehicle to vehicle communication to improve
congestion. This requires not only a high level of accuracy
but also a penetration rate of 100% to prevent crashes.

Olaverri-Monreal et al. [14] gave instructions to the driver
to help him/her overtake. Video streaming is used to give
the driver a view of what is in front of the vehicle he/she is
overtaking. Although a very interesting idea, it is difficult to
simulate its effects. It would be difficult to determine with
current traffic micro simulators, how driver would react to
this new information source.

Reichardt et al. [15] focused on highway merging traffic.
Vehicular communication would be very useful as
misunderstandings between drivers cause many crashes in
this scenario. For instance, typical information which could
be exchanged includes vehicle trajectory, speed, length of
vehicle, etc.. This idea is difficult to simulate using current
traffic micro simulators.

Some ideas behind inter-vehicle coordination solutions
could be adapted to rerouting algorithms like Time-Ants in
order to improve travel times and safety.

C. Swarm Algorithms

A swarm is a decentralized system with quasi-
homogeneous units [16]. Each unit is called an agent. These
simple agents can solve complex tasks by interacting with
each other. Swarm algorithms model this interactive
behavior [17]. Several different types of swarm algorithms
were looked at including ant-based, bee-based, firefly-based
and particle-based.

1. Ant-based
Ant colony swarm theory is described by Teodorović et

al. [17]. In its journey, each ant leaves a pheromone trail
behind. When traveling, the ants naturally chose paths with
high pheromone levels. This behavior can be abstracted as a
learning algorithm, which when applied results in an
optimal path.

2. Bee-based
Bees communicate via dancing (body movements). When

a bee returns from a food source it communicates the
distance, direction and quality to the other bees via dancing.
Bees use this information to choose the optimum food
source to visit. Bee colony swarm is described by
Teodorović et al. [17]. Initially the bees use a random walk
model to determine a partial solution. A local optimal is
determined which is communicated to the other bees; this
partial solution is then built on to determine a full solution.

3. Firefly-based
Fireflies light up to communicate to other fireflies. Real

fireflies use this lighting communication for mating
purposes, but in the firefly algorithm described in Yang et
al. [18] this is not the case. All the fireflies are drawn to
each other in this algorithm regardless of sex. The dimmer
firefly will be drawn to the brighter firefly. The brightness

decreases over distance and if a particular firefly cannot see
any others, it moves randomly. When using this algorithm to
solve problems, the brightness can be proportional to a
certain parameter or fitness function in order to attract the
nodes to a better location.

4. Particle swarm
Particle swarm is based on the behaviour of bird flocks

and fish schools. This set of algorithms is described by
Teodorović et al. [17]. A particle remembers its best
solution and that of the best solution obtained by any other
particle. In the next time step, the particle moves in the
direction of its best solution and the global best solution.

Figure 1 Time-Ants Architecture

III. TIME-ANTS ARCHITECTURE AND ALGORITHM

A. Architecture

Figure 1 illustrates the Time-Ants architecture, which is
composed of: vehicle models, road models, a time-
dependent traffic model and a current traffic model. The
vehicle model contains the vehicle’s speed and position. The
road model contains the traffic information for a road
segment that the vehicle is on. The current traffic model
contains the instantaneous traffic information in the area,
whereas the time-dependent traffic model contains the
traffic information collected throughout a whole day.

Each vehicle is equipped with a digital map and GPS
receiver to determine which road it is on. Information from
these sensors is fed into the Road Model. The road model
models the local area and the time to each junction

A server has a database with all the roads and their traffic
scores, for all the times throughout the previous day. This
information is used to form the time-dependent Traffic
Model.

The vehicle communicates with the server to retrieve the
traffic information on the roads at specific times, relevant to
the vehicle. The vehicle sends messages containing the road
and the time the vehicle will be on that road. The server then
responds with the traffic rating for that road at the indicated
time. This information on the traffic ratings at the required
times will allow the vehicle to construct a model of the
current traffic conditions, called the current Traffic Model.
The estimated traffic on each road is then entered into the
Time-Ants algorithm to compute the optimum route for the
vehicle. This route is then sent to the vehicle model in order
to reroute the vehicle.

A Vehicle Model contains information on vehicle position
and speed. The current position, speed and time from all the
vehicle models are sent to the server regularly. This allows
the server to build a new time-dependent traffic model.

The vehicle-server communications are achieved using
802.11p and the use of RSUs. If the vehicle is not in the
immediate range of an RSU, multi-hop communication, via
other vehicles, is used to reach the nearest RSU.

B. Algorithm Principle

Figure 2 Illustration of iterative improvement in Ti me-Ants

As traffic conditions are roughly similar from day to day

during weekdays, historical data can be used to make
decisions for routing and eventually the road network can
be more efficiently used.

Iterative use of the Time-Ants algorithm over several
days enables important benefits, as illustrated for instance
in figure 2. During Day 1 Route 2 is overused, so the next
day more vehicles are sent on other routes using Time-
Ants. This process continues from day to day. By Day 4 the
traffic is a lot smoother. Periodically, each vehicle
determines the traffic rating on the road it is travelling. The
road rating is determined by comparing the speed of the
vehicle divided by the speed limit of the road. The vehicles
then send this information over the VANET to a server.
This is recorded on the central server for that location and
time of day.

Each road segment then has a score or “pheromone”
amount for a given time in the day. As suggested in the
traffic flow theory by Immer et al. [7], vehicle speeds are
only affected by traffic congestion when vehicle numbers
increase above a certain point. Consequently, Time-Ants

load balancing is performed when the speed of vehicles on
a road dropped beneath congestion threshold of the speed
limit only.

If load balancing is not needed, the vehicles simply drive
on the fastest route. The fastest route is determined by
dividing the route length by the speed limit.

When choosing a route, each vehicle estimates how long
it will take to get to each junction. It then sends a request to
the server for any ratings associated with the adjoining
roads near the time it will arrive there. After the vehicle
receives the information, one of these roads is chosen
according to the Time-Ants load balancing mechanism and
according to the road’s score. If there are no recorded
ratings stored on the server around the requested time, then
it is assumed that the road is empty at that time and then
rating is defined as the speed limit of that road.

C. Load Balancing
Time-Ants load balancing is performed based on a metric

determined from the ratio between the speed limit and the
actual speed on that road as discussed in the speed/flow
diagram by Immer et al. . Time-Ants applies load balancing
when the actual speed drops beneath 80% of the speed limit.

The load balancing algorithm should prevent flash
crowding on the roads with high scores. The number of
vehicles which choose to travel on a road at a junction is
proportional to its score. More vehicles will travel on the
roads with higher scores. The probability that a car will
drive on route Rxy from junction j is set to the average travel
time on that route to the power of 3 divided by the sum of
all travel times of the routes leaving that junction to the
power 3. This gives us the following equation.

��������	 =
(�
��_���)

3

∑ (�
��_���)
3

�
 (1)

TimeAnts extends Dijkstra lowest edge weight algorithm,

with load balancing along congested edges, to determine the
route. In other words the route with the lowest overall score
will be chosen, as long as none of the edges chosen have a
lower congestion score than the threshold. The congestion
score is determined from the speed of vehicles on an edge
divided by the speed limit of an edge. If there is a congested
edge, vehicles will be distributed to other edges at this point
leading to multiple good but sub-optimal routes for vehicles
to follow.

A full graph search, from the origin to the destination, is
performed. The fastest edges are chosen in this fashion,
unless an edge is congested; in this case load balancing is
performed near this edge. This graph search is described in
Algorithm 1. The algorithm makes use of the following
functions: no_following() – returns the number of edges
following an edge; traffic_congestion() returns the traffic
congestion expected on an edge; traveltime() returns the
expected travel time on an edge; assign_random() returns an
edge determined by equation 1 from the random number
generated R, the travel times and the following edges.

Algorithm 1 TimeAnts Algorithm - Pseudo Code

//from Origin (O) to Destination (D)
route_list.clear()
//loop: through edges on map
for all edge[i] in Map
//if destination reached exit
if (edge[i] == D)
{

exit
}
//return number of edges leading from this edge
int n = no_following(edge[i])
total_travel_time = 0
float edge_traveltime = max_traveltime
//loop through following edges
for all edges[j] following edge[i]
{

total_travel_time = total_travel_time +
 (traveltime(edge[j])^3)
//if this edge is faster than previous ones consider it as
fast edge
if (edge_traveltime > traveltime(edge[j]))
{

fast_edge = edge[j]
edge_traveltime = traveltime(edge[j])

}
}
//return traffic congestion on edge
TC = traffic_congestion(fast_edge)
//check if edge is congested with traffic
if (TC < threshold)

route_list.add(fast_edge)
else
{

//Load balance here according to equation 1
R = rand() % (total_travel_time)
Rand_edge = assign_random(R, total_traveltime,

edge[i])
route_list.add(rand_edge)

}

IV. SIMULATION -BASED TESTING

A. Simulation environment and scenario description
Modeling and simulations were performed on the

iTETRIS[19] platform. iTETRIS uses in conjunction both
the road traffic simulator SUMO [20] and the wireless
network simulator NS-3 [21]. iTETRIS is specially designed
to support VANET simulations, allowing for dynamic
rerouting, and the use of the IEEE 802.11p protocol.
iTETRIS is an open source simulator funded by the EU
seventh framework programme.

A map similar to the one described in Wu et al. [8] and
illustrated in Figure 3 was employed in these simulation-
based testing. In this map there are 5 junctions (J1-J5), and
each of the junctions is connected to the others by six road

segments (Road0-Road5). The road segment lengths vary
between 500m and 2000m. The speed limits on these
segments vary between 11 m/s (~40kmph) and 35 m/s
(~125kmph). Each junction has a set of traffic lights.

Figure 3 Map used for simulations

400 passenger cars are considered, which start driving
into the map at time = 0; a new one appears on the map
every second. If no rerouting mechanism is employed, the
cars take the first turn at each junction. Time-Ants was
deployed according to the description in the previous
section. The congestion threshold was set to 80% for these
simulations. The Time-Ants algorithm was tested against a
mechanism which does not employ rerouting (the cars drive
on the first turn on each junction – labeled None in Figure 4
and Table 2), Dijkstra lowest edge weight algorithm set to
determine the fastest route (this will become congested if all
the cars drive on it), the Dynamic rerouting algorithm
(DNA) (described in the paper Wu et al. [8]) and an
algorithm from Sommer et al.[22]

DNA is a VANET-based rerouting algorithm based on the
fact that each vehicle communicates its speed and the
distance to the car in front of it to all the other vehicles. This
information is used to determine the edge weights for
determining the best route using the Dijkstra algorithm.

DNA uses equation (2) to score each road segment, in
which Sri is the score of the segment (graph edge), �̅i
reflects the average vehicle speed on the road segment). �� i -
the inter-vehicle distance, �� i - the road type and �̅ i - the road
segment length. kj are weights.

��� = � ��̅ + �"��� + �#��� + �$�̅� (2)

Four DNA flavours are used in these tests, with the
weights k1 through k4 indicated in Table 1.

Table 1 DNA flavor weights

Flavor Weights

DNA1 1,0,0,0

DNA2 0,1,0,0

DNA3 0.5,0.5,0,0

DNA4 0,0,0,1

B. Testing Results
Figure 4 and Table 2 show the results for various

iterations of Time-Ants when compared against different
flavors of DNA, Dijkstra, the mechanism with no rerouting
(None) and Sommer’s algorithm.

The average travel time of a scheme can be lower, but
fewer vehicles might get to their destination. So in order
judge the effectiveness of the different schemes, the
percentage of the vehicles which got to their destination
within the time frame were recorded.

As can be seen from Figure 4, the proposed Time-Ants
outperforms the other solutions in all simulations in terms of
percentage of the vehicles which reach destination. For
instance, the best performing DNA flavors, DNA1was
outperformed by Time-Ants by 15% after the first iteration
and 18% after the fourth iteration. Time-Ants also
outperformed the mechanism which employs no rerouting
by 16% after the first iteration and 19% after the fourth
iteration.

The DNA4 algorithm performed poorly as it sent all the
vehicles along the shortest route distance-wise, without
regard to speed limits or traffic congestion.

Figure 4 Percentage of vehicles which reached destination during

simulation

Table 2 Percentage of vehicles to reach destination during simulation

Iterations 2 3 4 5

Dijkstra 0.515 0.515 0.515 0.515

None 0.4875 0.4875 0.4875 0.4875

Time-Ants 0.565 0.5825 0.5725 0.58

DNA1 0.49 0.49 0.49 0.49

DNA2 0.49 0.49 0.49 0.49

DNA3 0.49 0.49 0.49 0.49

DNA4 0.485 0.485 0.485 0.485

Sommer 0.49 0.49 0.49 0.49

The positive results of the Time-Ants algorithm are

expected as, it considers load balancing, unlike the
algorithm described in Wu et al. [8], for instance Hence
Time-Ants makes better use of the full road network.

0.45

0.47

0.49

0.51

0.53

0.55

0.57

0.59

1 2 3 4

%
 o

f
 v

e
h

ic
le

s
 w

h
ic

h
 r

e
a

c
h

e
d

 d
e

s
ti

n
a

ti
o

n

Iterations

Time-Ants Dijkstra None

DNA1 DNA2 DNA3

DNA4 Sommer

V. CONCLUSION AND FUTURE WORKS

This paper proposed Time-Ants a VANET-based ant-
colony optimization algorithm which uses historical traffic
data to improve traffic flows; this is a unique approach to
dealing with traffic congestion. The simulation-based testing
performed has compared Time-Ants against a number of
other VANET-based routing techniques. Time-Ants
outperformed the next best approach by 19% after four days
of running the algorithm.

Future work will consider emissions as a parameter in a
green extension of Time-Ants, which would minimize
emissions instead of travel times. Also a more realistic
vehicle trace will be used, such as the one from the
TAPASCologne project [23], a 24 h vehicle trace of the city
of Cologne, Germany. Simulation will also be run using
vehicle counts from Dublin provided by Dublin City
Council [24]. Note Time-Ants has to be updated to account
for weekends which have different traffic patterns than week
days.

REFERENCES
[1] V. Jain, A. Sharma, and L. Subramanian, “Road traffic congestion in

the developing world,” in Proceedings of the 2nd ACM Symposium
on Computing for Development, 2012, p. 11.

[2] J. Austin, Brimblecombe, P, and Struges, W, Air pollution Science
for the 21st Century. Chapter 7 New directions: Air pollution and
road traffic in developing countries. .

[3] “WorldOMeters.” [Online]. Available:
http://www.worldometers.info/cars/.

[4] “TomTom.” [Online]. Available: http://www.tomtom.com/en_ie/.
[5] “Google Maps.” [Online]. Available: http://maps.google.ie/.
[6] H. Rakha and M. Van Aerde, “Statistical analysis of day-to-day

variations in real-time traffic flow data,” Transportation research
record, pp. 26–34, 1995.

[7] L. H. Immers and S. Logghe, “Traffic flow theory,” Faculty of
Engineering, Department of Civil Engineering, Section Traffic and
Infrastructure, Kasteelpark Arenberg, vol. 40, 2002.

[8] Y.-J. Wu and W.-C. Sung, “A dynamic navigation scheme for
vehicular ad hoc networks,” in Networked Computing and Advanced
Information Management (NCM), 2010 Sixth International
Conference on, 2010, pp. 231–235.

[9] S. Senge and H. F. Wedde, “2-Way evaluation of the distributed
BeeJamA vehicle routing approach,” in Intelligent Vehicles
Symposium (IV), 2012 IEEE, 2012, pp. 205–210.

[10] K. Collins and G.-M. Muntean, “A vehicle route management
solution enabled by Wireless Vehicular Networks,” in INFOCOM
Workshops 2008, IEEE, 2008, pp. 1–6.

[11] R. Doolan and G.-M. Muntean, “VANET-enabled Eco-friendly Road
Characteristics-aware Routing for Vehicular Traffic,” in IEEE
Vehicular Technology Conference, 2013, pp. 1–5.

[12] C. N. Chuah, H. Du, D. Ghosal, B. Khorashadi, B. Liu, C. Smith, and
H. M. Zhang, “Distributed vehicular traffic control and safety
applications with VGrid,” in Wireless Hive Networks Conference,
2008. WHNC 2008. IEEE, 2008, pp. 1–5.

[13] M. Ferreira and P. M. d’ Orey, “On the impact of virtual traffic lights
on carbon emissions mitigation,” Intelligent Transportation Systems,
IEEE Transactions on, vol. 13, no. 1, pp. 284–295, 2012.

[14] C. Olaverri-Monreal, P. Gomes, R. Fernandes, F. Vieira, and M.
Ferreira, “The See-Through System: A VANET-enabled assistant for
overtaking maneuvers,” in Intelligent Vehicles Symposium (IV), 2010
IEEE, 2010, pp. 123–128.

[15] D. Reichardt, M. Miglietta, L. Moretti, P. Morsink, and W. Schulz,
“CarTALK 2000: Safe and comfortable driving based upon inter-
vehicle-communication,” in Intelligent Vehicle Symposium, 2002.
IEEE, 2002, vol. 2, pp. 545–550.

[16] G. Beni, “From swarm intelligence to swarm robotics,” in Swarm
Robotics, Springer, 2005, pp. 1–9.

[17] D. Teodorović, “Swarm intelligence systems for transportation
engineering: Principles and applications,” Transportation Research
Part C: Emerging Technologies, vol. 16, no. 6, pp. 651–667, Dec.
2008.

[18] X.-S. Yang, “Firefly algorithms for multimodal optimization,” in
Stochastic algorithms: foundations and applications, Springer, 2009,
pp. 169–178.

[19] M. Rondinone, J. Maneros, D. Krajzewicz, R. Bauza, P. Cataldi, F.
Hrizi, J. Gozalvez, V. Kumar, M. Röckl, and L. Lin, “iTETRIS: a
modular simulation platform for the large scale evaluation of
cooperative ITS applications,” Simulation Modelling Practice and
Theory, vol. 34, pp. 99–125, 2013.

[20] “SUMO.” [Online]. Available: sumo.sourceforge.net.
[21] “Network simulator-3.” [Online]. Available: www.nsnam.org.
[22] C. Sommer, R. Krul, R. German, and F. Dressler, “Emissions vs.

travel time: simulative evaluation of the environmental impact of
ITS,” in Vehicular Technology Conference (VTC 2010-Spring), 2010
IEEE 71st, 2010, pp. 1–5.

[23] “TAPASCologne.” [Online]. Available: http://kolntrace.project.citi-
lab.fr/.

[24] “Dublin City Council.” [Online]. Available:
http://www.dublinked.ie/datastore/datastore.php.

