
Efficient Concurrent Multipath Transfer using
Network Coding in Wireless Networks

Zhuofeng Li1, Changqiao Xu1,2, Jianfeng Guan1, Hongke Zhang1,3 and Gabriel-Miro Muntean4
1Institute of Networking Technology, Beijing University of Posts and Telecommunications, Beijing, China

2Institute of Sensing Technology and Business, Beijing University of Posts and Telecommunications, Wuxi, Jiangsu, China
3National Engineering Lab. for Next Generation Internet Interconnect. Devices, Beijing Jiaotong University, Beijing, China

4Performance Engineering Lab., School of Electronic Engineering, Dublin City University, Dublin, Ireland

Abstract—Concurrent Multipath Transfer (CMT), enabled by
Stream Control Transmission Protocol (SCTP), is considered as
one preferred data-transport mode due to increased available
bandwidth. However, CMT performance degrades seriously in
terms of data reordering due to path dissimilarity and frequent
packet loss from wireless unreliability. Most relevant solutions
follow the packet sequence numbers and thereby focus on strict
in-order reception and packet-specific retransmission. Passively
adapting to the network conditions, those approaches are not
general and well enough responding to the dynamicity of wireless
environment. By applying Network Coding (NC) to CMT, this
paper proposes a progressive end-to-end solution (CMT-NC) to
those problems in heterogeneous wireless networks. CMT-NC is
capable of avoiding reordering and compensating lost packets.
Further, an innovative group-based transmission management
mechanism enhances the robustness and reliability of data trans-
fer. Simulation results show how by using CMT-NC significant
improvements in comparison to another state-of-the-art solution
are obtained.

I. INTRODUCTION

With the trend towards ubiquitous and heterogeneous mobile
internet access support, Concurrent Multipath Transfer (CMT)
based on Stream Control Transmission Protocol (SCTP) [1]
is rendered as one most-preferred transport-layer mode to
enhance data delivery [2], in order to meet the over-growing
demand for high-quality, efficient and convenient delivery of
various network services. CMT provides benefits of bandwidth
aggregation, fault tolerance and load balance that are very
attractive for network content distribution.

However, due to highly dissimilar path characteristics (e.g.
bandwidth, delay, loss rate), data from different paths arrived
out of order. The receiver needs to wait for delayed data on
slow paths, while placing the arrived data on fast paths into
its buffer, for subsequent reordering and satisfying in-order
delivery requirement. Hence, CMT is bound to buffer blocking
that leaves the connection idle [3]. Many works [2][4] focused
on alleviating this problem, thus had the challenge of data
scheduling. But they agreed to the strict in-order data reception
and still passively suffered from reordering in the probably
blocking receiver buffer.

Another concern is that, due to the unreliability of wireless
channels, packet loss and retransmission occur frequently.
For the sake of reliable data transfer, sometimes repeated
retransmission is needed for the same packet. In this context,

it is also important to analyze the loss reason due to either
congestion or wireless error [3], so as to take proper actions
responding to the loss reason. Some works [5][6] tried to
strengthen CMT reliability and save the cost of retransmission.
They considered the uniqueness of individual packets and
carried packet-specific loss detection. However, this hardly
reduced the retransmissions.

Recently, network coding [7] at transport layer emerges as
one elegant strategy to break the strong binding between data
packet and its transmission sequence number (TSN), which
has been the critical issue of in-order reliable data transfer.
Then, the receiver does not care about the actual packet arrival
order and there is no need of reordering. Further, the coded
packets can be replaced and supplemented with each other if
loss happens. Sundararajan et al. proposed a special online
ACK mechanism [8] to make network coding effective for
TCP. Later, Li et al. adopted that mechanism to Mutipath TCP
(MPTCP) [9] and revealed goodput improvement in multipath
scenarios [10]. However, their proposal did not pay attention
to optimizing the congestion control and identifying the packet
loss due to wireless error.

This paper proposes a general SCTP CMT Network Coding-
based solution (CMT-NC) in order to achieve high data-
transport efficiency in heterogeneous wireless networks. Com-
pared with MPTCP guidelines, SCTP is a more sophisticated
protocol which has a full set of standards [11]. More im-
portantly, SCTP CMT provides some good features that are
very conducive to network coding, such as flexible multiple-
chunk packet format, Heartbeat mechanism and Selective ACK
(SACK) that we will apply in CMT-NC. As our distinct
contributions, CMT-NC employs new outstanding mechanisms
for refined path characteristics estimation, fast data distribution
and group-based transmission management. To the best of our
knowledge, CMT-NC is the first attempt to apply network
coding to SCTP and its CMT extension.

II. APPLYING NETWORK CODING TO SCTP CMT

The design principle of network coding is illustrated by
Fig. 1. The sender combines several data packets (S1−S4) for
encoding once (splicing them into one linear combination).

978-1-4799-3083-8/14/$31.00 c© 2014 IEEE

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

1 1 2 3
1 2 4 7
1 3 4 5
0 1 0 0

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷çè ø

Fig. 1. Example of network coding in CMT-NC

This batch of packets with DATA chunks1 and continuous
TSN that are encoded together is called a group (G). Then,
regardless of sending original or coded packets, they uniformly
have associated coding coefficients. As a result, they are no
longer carrying application data as before, but represent the
relationship within the original data. Hence, it is not necessary
to receive them in strict order, just buffer them and extract
the relationship information (coefficients). Additionally, the
information can be interchanged such that lost packets can
be supplemented by other packets. As long as the receiver
collects enough number of packets (4 in this example), it can
decode the original data correctly by Gauss-Jordan elimina-
tion, and the sender does not get concern about any other lost
packets or retransmissions. In summary, by means of network
coding, the data packets are not uniquely determined by their
TSN, the receiver needs no reordering and the sender reduce
retransmissions to a great extent.

A. Network Coding Operations

In our network coding design, the first question is how many
packets should be in one group, called group number (N). It
should be properly set a bit above the number of out-of-order
arrivals, trading off between low requirement of buffer space
and sufficient disorder compensation. N is updated according
to bandwidth, delay and loss rate when a retransmission event
happens, which indicates that this group number is hysteretic
for the variation of the multipath environment.

The delay factor is referred to as Round-Trip Time (RTT).
Since SCTP CMT allows replying SACK messages on differ-
ent paths from their corresponding DATA packets, the general
Smoothed RTT (SRTT) measurement may lead to incorrect
delay estimation. Fortunately, SCTP has the Heartbeat mech-
anism for path probing, which requires HEARTBEAT ACK
messages be replied on the same path as HEARTBEAT
packets [1]. When it is time to update the group number,
two HEARTBEAT packets are sent immediately; until both
HEARTBEAT ACK packets are received, we obtain two RTT
values for the probing and take the min as path Reference
RTT (RRTT). If SRTT is close to RRTT , meaning large
probability that SACK is replied on the same path as DATA,

1Packets with other types of chunks (i.e. control) will not be attributed to
any group for network coding, and just sent out as usual.

or the forward and backward paths are with similar delay, then
we use SRTT as path RTT because there are many samples
available thus the estimation is more accurate; otherwise, we
use RRTT to calibrate the path RTT . For any active path i,
we follow Eq. (1) to determine the path RTT :

RTTi =

{
SRTTi (if SRTTi ∈ [a ∗RRTTi, b ∗RRTTi])
RRTTi (otherwise)

(1)
where a < 1 and b > 1 are RTT boundary factors.

The bandwidth factor is offered by bandwidth estimation.
As with SRTT , all typical methods based on ACK receipt,
such as Packet Pair and Westwood+ mentioned in [4], may
not be appropriate in this case. We try inversing the viewpoint
to the sending moment: the available bandwidth is equal to
the ratio between sending data amount and sending duration.
When the group number needs update, we collect one band-
width sample for path i according to Eq. (2):

BWsamplei =
sendsizei
T li − Tei

(2)

where sendsizei is the sending data amount since the last
sample collection, T li and Tei are the time of the last packet
leaving and the first packet entering the path i’s buffer during
that time, respectively. In order to eliminate oscillations, the
bandwidth samples should be further smoothed to give the
estimation result:

BWi =

[
1− exp

(
− (T li − Tei)

T0

)]
∗BWsamplei

+exp

(
− (T li − Tei)

T0

)
∗BWpreviousi

(3)

where T0 is the bandwidth smooth factor and BWpreviousi
is the last-time estimation result.

The loss rate factor relies on the feedback of group-based
transmission management that will be discussed later. Finally,
the group number is updated as:

N =


∑

RTTj>RTTi

BWj (1− pej)

MTU
∗ RTTj −RTTi

2

 (4)

where pej is loss rate of path j, MTU is the maximum
transmission unit, typically assumed identical across paths.

After identifying the group number, the sender fetches N
packets with continuous TSN S1−SN (where SN = S1 +N)
and hands them on to the Network Coder. The Network
Coder will randomly choose some packets for network coding,
such that the original and coded packets are scrambled in path
buffers. If Network Coder decides to encode one packet, it
chooses the coefficients a1, a2, ..., aN randomly from the finite
field GF (28) then generates the coded packet T as a linear
combination of S1−SN . As each ai(1 < i < N) can be
expressed as one byte and each packet is a set of bytes, the
generation is actually byte-to-byte addition and multiplication
[12], treating S1−SN as byte vectors:

T = a1S1 + a2S2 + ...+ aNSN (5)

Further, as shown in Fig. 2, for all DATA packets (original
and coded), we insert a new NC chunk with coding informa-
tion in front of the DATA chunk, including the range of the

Source Port Number Destination Port Number
Verification Tag

Checksum
Type Flags = 0 Length =

Group Start TSN = S1
Group End TSN = SN

a1 a2 a3 a4
…… …… …… ……
aN-1 aN Padding = 0

Type = 0 Reserved U B E Length
TSN

Stream Identifier Stream Sequence Number
Payload Protocol Identifier

User Data (Coded)

CommonHeader
NCChunk

DATAChunk

0 3216bit

 12 4 / 4N+ ∗   

Fig. 2. Data Packet format with the new NC chunk

group and coding coefficients. This NC chunk is to tell the
receiver how to handle the DATA packet. In this situation, the
payload size for “User Data” should be reduced 12+4∗dN/4e
bytes for all packets in this group.

B. Hybrid and Fast Data Distribution

Since network coding avoids reordering in the group, no
scheduling mechanism is needed. All we have to do is to
distribute maximum data amount to path buffers to send it
out in fast manner. An agile method is to stuff the effective
window, which determines the allowable sending quantity at
any one time. This effective window of path i is defined as:

effwndi = min {cwndi, arwnd} (6)

where cwndi is the congestion window of path i, arwnd is
the advertised receiver window declared in the newest SACK.
Next the space of path i for the packets to fill in is calculated
by Eq. (7):

spacei = (effwndi − outstandingi) (1− pei) (7)

where outstandingi is the outstanding data amount in path i.
Finally, we iteratively utilize Algorithm 1 to assign packets to
the path with most space.

For correct and fast decoding, the sender should insert some
redundant packets. Although the redundancy would increase
the sending data amount, it is valuable to guarantee enough
packets reaching the receiver and largely reduce retransmis-
sions. After distributing N packets in one group, the sender
appends some redundant packets to the tail of each path buffer.
These redundant packets must be coded as generated by the
same method as above, since they are containing information
of the whole group in favor of decoding. They would have
TSN equaling to the packet ahead of it in the same path, and
can be acknowledged by the “Duplicated TSN” fields [1] in
SACK.

Suppose Mi packets out of the N -packet group are already
allocated to path i, then the number of redundant packets for
path i should be:

Ri =

⌈
Mi ∗

pei
1− pei

⌉
,where N =

∑
i

Mi (8)

Since the transmission success rate is 1 − pei for path i,
this redundancy guarantees Mi packets reaching the receiver

Algorithm 1 Fast Data Distribution
/* When there is one DATA packet to send */
max space = 0; j =null; //initial traverse variables
for (∀ active Path i)

Calculate i.space according to Eq.(7);
if (i.space > max space)
j = i; max space = i.space; //find the path with largest space

else if (i.space == max space && i.BW > j.BW
&& max space > 0)

j = i; //if space is equal, select the path with larger bandwidth
end if

end for
if (j ==null) //no path is selected

Wait any Path p to free its p.effwnd and distribute the packet to p;
else

Distribute the packet to Path j;
end if

Fig. 3. Path buffer utilization in CMT-NC

side over this individual path, such that there can be totally N
packets over multiple paths. Fig. 3 shows the utilization of path
buffers. We can see that there is only one redundant packet in
each path for one group in most cases, because Algorithm 1
will distribute more packets to the path with lower loss rate,
such that the redundancy is balanced to minimum.

C. Group-Based Transmission Management

CMT-NC is creative to perform transmission management
in units of group instead of individual packet, including con-
gestion control, compulsory retransmission and path loss rate
recording. All are detailed by Algorithm 2. We define Group
Time-Out (GTO) as the Retransmission Time-Out (RTO) of
the first packet (S1) in this group. Two group pointers GC and
GP are maintained in the management.

GC is the current group not yet confirmed to complete
decoding by the receiver, whose packets are in the head of path
buffers and waiting for acknowledgements. GC has similar
usage for congestion control as outstanding packets in standard
SCTP. That is, if SACK reports one new TSN in GC, execute
slow start or congestion avoidance algorithm to update the
path cwnd; if GC’s missing report exceeds three, then carry
out fast retransmission; if GTO is expired, then carry out
GC’s timeout retransmission. What is distinguishing, since
the congestion control is based on overall group rather than
individual packet, the update of cwnd is reinforced, as well as
the tolerance for missing report or SACK timeout is enhanced
greatly. Therefore, cwnd can rapidly grow to sufficiency and
the retransmission is largely cut down.

Moreover, in case fast retransmission happens, the sender
chooses one path p with most outstanding packets in GC

Algorithm 2 Group-based Transmission Management
if (SACK is received in one GTO)
minGroup = the latest group sent; //track the earliest group
maxGroup = the current group GC; //track the latest group
/* Handling of the SACK */
for (∀ new or duplicated TSN x in the SACK)

Search the group G that x belongs to;
G.count++ and free x in G; G.missing report = 0;
if (G is before minGroup) minGroup = G; end if
if (G is after maxGroup) maxGroup = G; end if
if (G == GC) //current group ack

Find the Path p that x was sent over and then update p.cwnd;
if (GC.count ≥ GC.N) //grateful completion of GC decoding

Free all original and coded packets in GC;
Update the loss rate of all paths based on the past group GP ;
GP = GC and GC advances to the next group;

end if
end if

end for
/* Handling of fast retransmission */
for (∀ existing group G between minGroup and maxGroup)

if (there is no TSN in the SACK belong to G) //group gap ack
G.missing report++;
if (G.missing report > 3)

Select the Path p with most outstanding packets in G;
Adjust p.ssthresh and p.cwnd according to Eq.(9) and (10);
Retransmit one different coded DATA packet in G;

end if
end if

end for
else //GTO is time-out

/* Handling of time-out retransmission */
for (∀ Path i with RTO time-out TSN in GC)
i.ssthresh = max (i.cwnd/2, 4 ∗MTU); i.cwnd = MTU ;

end for
Retransmit GC.N −GC.count coded DATA packets in GC;

end if

for the adjustment. We exploit the relation between BWp

and cwndp/RTTp as the discrimination of loss reasons: if
cwndp/RTTp < BWp holds, meaning the path is not con-
gested, consider the loss is due to wireless error and then do
not adjust cwndp; otherwise, attribute the loss to congestion
and reduce cwndp size.

ssthreshp = max(BWp ∗RTTp, cwndp/2, 4 ∗MTU) (9)

cwndp =

{
cwndp (if cwndp/RTTp < BWi)
min (cwndp, ssthreshp) (otherwise)

(10)

where ssthreshp is the slow-start threshold of path p. It
should be adjusted by one more factor BWp ∗RTTp aligning
to our bandwidth estimation. In case timeout retransmission
unhappily happens, we just enforce the adjustment similar to
standard SCTP. All retransmitted packets should be coded with
TSN equaling to the last packet (SN) in the group, which can
also be detected by the “Duplicated TSN” fields in SACK.
Finally, those packets should be retransmitted on another path
q with maximum BWq (1− peq) as soon as possible.
GP is the past group one before GC, whose packets are

already released but remembering the reception state. GP
is used for computing the path loss rate (pe). As SACK is
applied, GP can record how many packets (including redun-
dant and retransmitted packets) are sent over each path and
know exactly which packets are successfully received. When
GC is completely decoded, the sender collects the packet un-
acknowledged percentage per path from GP , regards it as one

TABLE I
PARAMETER SETTINGS FOR TWO PATH SCENARIO

Parameters Path A Path B
Access bandwidth 6Mbps 6Mbps
Queue length (model) 50 (Droptail) 50 (Droptail)
Default delay 50ms 55ms
Delay variation fixed 5-105ms
Default loss rate (model) 0.05 (Uniform) 0.05 (Uniform)
Loss rate variation fixed 0-0.1ms

sample and then uses Confidence Interval [2] for statistical
update of the path loss rate. Finally, it feedbacks the new set
of path loss rate to the group number calculation. Both GC
and GP advance to the next group for Algorithm 2 iterations.

III. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CMT-NC
on bulk data transmissions. As we have demonstrated that
CMT-QA is an outsanding data-schceduling based scheme and
outperforms classic CMT with round-robin scheduler [2], this
section compares CMT-NC with the state-of-the-art CMT-QA
to reveal the advantages in terms of throughput, delay and
retransmission times. Beforehand, a series of dedicated tests
have found out that in the group number calculation, RTT
boundary factors a = 0.9, b = 1.1 and bandwidth smooth
factor T0 = 1s work the best for CMT-NC.

A. Parameter-Controlled Two Path Scenario

This simulation has been carried out on NS-2.35 that
includes lastest SCTP (CMT) module developed by the Uni-
versity of Delaware. CMT-NC and CMT-QA are implemented
based on this module. We arrange two mobile terminals
directly connecting with each other via two independent paths
(denoted Path A and B) using WiFi (IEEE 802.11a). The
parameter setting of both paths is listed in Table I. As they are
very similar in default, we change one specific parameter of
Path B, while fixing Path A, to produce variation and dissim-
ilarity. The receiver buffer is set to default 64KB, whereas
the sender buffer is set to large enough. Other parameters
use the SCTP suggested values. All results presented are the
average of 100 trials with confident level 95% to guarantee
the accuracy of the measurement.

Firstly, we change the delay parameter of Path B from 5ms
to 105ms and obtain the throughput comparison in Fig. 4(a).
CMT-NC has significant throughput improvement with respect
to CMT-QA. This is because the strategy of network coding
frees data reception from strict in-order delivery requirements,
eliminates packet reordering and mitigates buffer blocking. So
CMT-NC has powerful ability countering path dissimilarity.
Additionally, our fast data distribution design has resulted in
high utilization of path bandwidth resources.

Next, we modify the loss rate parameter of Path B from 0 to
0.1. Fig. 4(b) also presents throughput improvement of CMT-
NC. The throughput variations demonstrate that the throughput
of CMT-NC decreases linearly but CMT-QA suffers higher-
order decrement with the loss rate of Path B growing, although
the two schemes has similar throughput for zero loss rate. That
proves CMT-NC is more robust and reliable for data transport

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 10 20 30 40 50 60 70 80 90 100 110

av
er

ag
e

 t
h

ro
u

gh
p

ut
 (

K
b

p
s)

delay of Path B (ms)

CMT-NC
CMT-QA

(a) delay variation

0

500

1000

1500

2000

2500

3000

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

av
er

ag
e

 t
h

ro
u

gh
p

ut
 (

K
b

p
s)

loss rate of Path B

CMT-NC
CMT-QA

(b) loss rate variation

Fig. 4. Throughput comparison with variations in Path B

in lossy wireless environment. The reason lies in the group-
based transmission management which protects the window
growing and reduces retransmissions.

B. Simulated Vehicular Network Scenario

This simulation is to apply CMT-NC into practical network
scenario and observe how it accommodates the dynamic and
unreliable wireless environment. As shown in Fig. 5, we
design a heterogonous (vehicular) network topology for the
experiments based on our previous work [2][13]. The vehicle
is downloading multimedia data (FTP, HTTP, video streaming
and etc.) from the server via three independent paths (denoted
Path A, B and C) with configurations listed in Table II.

In real deployment, the data rate is mainly constrained by
the narrow bandwidth of the wireless access links. So the
wired links bandwidth is set to 100Mbps in order not to
limit the transmission in the core network (but to introduce
delay). To simulate wireless error, we attach to each wireless
links the Uniform loss model to represent distributed loss due
to random contention, wireless interference or link handoff,
plus the Two-State Markov loss model to represent infrequent
continuous loss due to signal fading, transient failure or stream
burst. Moreover, cross traffic is injected through the network
to simulate the Internet background as [2] did. The aggregate
cross traffic on each path varies randomly between 0−50%
of the access link bandwidth. All the wired and wireless links
are set to 50 packets queue limit with Droptail queuing model,
such that any saturated link would drop new incoming packets
to simulate congestion loss.

In the simulation, the receiver buffer is varied to observe
the performance of CMT-NC and CMT-QA, while the sender
buffer is set to large enough. Other parameters use the SCTP

Fig. 5. Vehicular network topology in the simulation

TABLE II
PARAMETER SETTINGS IN THE VEHICULAR NETWORK SCENARIO

Parameters Path A Path B Path C
Wireless technology LTE release 8 IEEE 802.11b IEEE 802.11p
Access bandwidth 2Mbps 11Mbps 6Mbps
Access link delay 20ms 20ms 20ms
Core network delay 200ms 100ms 50ms
Uniform loss rate 0.01-0.02 0.01-0.1 0.1-0.2
Markov loss rate 0.01 0.01 0.01

suggested values. Each scheme starts at 5.0s, whereas the
background traffic always starts at 0.0s. All results presented
are the average of 100 trials with confident level 95%, which
ensure the results not influenced by any stochastic factors.

Fig. 6(a) illustrates the average throughput of CMT-NC
and CMT-QA. As expected, the two schemes have higher
throughput with larger buffer size, since the tolerance for
path dissimilarity is mainly determined by the receiver buffer
capacity. CMT-NC outperforms CMT-QA all along, having
significant 49.4%, 59.2%, 73.6% and 64.9% improvements in
32KB, 64KB, 128KB and 256KB buffer sizes, respectively.
The reason is the same as Fig. 4(a) before.

Further with larger buffer size than 256KB, we observe
that CMT-NC does not have an evident rise in throughput,
whereas CMT-QA approaches CMT-NC performance. In this
sense, CMT-NC requires 256KB receiver buffer to achieve
stable throughput (a similar situation happens in [10]). On
the other hand, CMT-QA still utilizes receiver buffer to store
out-of-order packets for reordering. And larger buffer size
means more powerful scheduling and reordering capabilities.
Eventually the stable throughput is reached when using 4MB
buffer size. However, even in the case of the 8MB buffer,
CMT-NC still has 17.7% higher (stable) throughput than CMT-
QA. This reflects the essential advantage of network coding
in terms of throughput.

Fig. 6(b) reveals that CMT-NC has lower delivery delay
than CMT-QA. As network coding has substituted its decoding
operation for classic reordering in the receiver buffer, these
results demonstrate that this kind of substitution is able to
reduce the time spent in the receiver buffer and accelerate data
delivery. In addition, the arrival of redundant packets can speed
up the decoding, also helping reduce this delay. Meanwhile,
the fast data distribution collaborates well with the properties
of network coding and distributes more data over the faster
path, which has reduced the transmission delay. When the
buffer reaches some size, the delay also becomes stable and
no longer decreases, as shown in the 128KB to 256KB buffer

0

200

400

600

800

1000

1200

1400

32 64 128 256 512 1024 2048 4096 8192

av
er

ag
e

th
ro

ug
hp

ut
 (

K
bp

s)

receiver buffer size (KB)

CMT-NC
CMT-QA

(a)

0

50

100

150

200

250

300

350

400

450

32KB 64KB 128KB 256KB

av
er

ag
e

pa
ck

et
 d

el
ay

 (
m

s)

receiver buffer size

CMT-NC
CMT-QA

(b)

0

500

1000

1500

2000

2500

32KB 64KB 128KB 256KB

R
tx

.
pa

ck
et

 n
um

be
r

reciever buffer size

CMT-NC Timeout Rtx.
CMT-NC Fast Rtx.
CMT-QA Timeout Rtx.
CMT-QA Fast Rtx.

(c)

Fig. 6. Performance comparison between CMT-NC and CMT-QA with different receiver buffer sizes

size tests. Again, CMT-NC’s stable delay is better than that
of CMT-QA, which reflects the essential benefits provided in
terms of delivery delay by CMT-NC.

Fig. 6(c) shows the retransmission times when the two
schemes separately transport one 150MB file. Each histogram
differentiates two types of retransmission (fast and time-out).
Larger buffer size will not only give rise to transmission rate,
but also the probability of congestion and wireless error that
lead to more retransmissions. Therefore, it is not a surprise
that retransmission number increases as the buffer size grows
for the two schemes. Obviously, CMT-NC has much less
retransmission than CMT-QA for all buffer sizes, especially
for 32KB and 64KB, even though it has higher throughput.
In addition, CMT-NC has no timeout retransmissions, while
CMT-QA has fair number of them.

There are three reasons for this: the first is the injected
redundancy that can make up for the lost packets; the second
is the principle of network coding that each packet can be
supplemented by other packets in the same group, including
redundant packets; the final and the most important is our
design of group-based transmission management mechanism.
It basically prevents timeout retransmission as long as the
network is reachable and allows SACK replying. It also greatly
suppresses fast retransmission by group-based control. The
composite effect is to enhance the robustness and reliability of
data transport in heterogeneous and lossy wireless networks.

IV. CONCLUSION AND FUTURE WORK

This paper proposes an outstanding SCTP-based CMT Net-
work Coding solution (CMT-NC) for efficient data delivery in
heterogeneous wireless networks. CMT-NC takes advantage
of network coding to free data delivery from strict in-order
transmission requirements and packet-specific retransmissions.
CMT-NC includes a hybrid fast data distribution mechanism
which increases path resource utilization and reduces coding
redundancy. The CMT-NC group-based transmission manage-
ment enhances the robustness and reliability of data transport.
Simulation results reveal how CMT-NC is able to improve the
throughput, reduce the delivery delay, cut down retransmission
times and lower buffer requirements in comparison to another
state-of-the-art solution CMT-QA. Considering these excellent
improvements, our future work targets fitting CMT-NC to

multimedia delivery with specific quality requirements and
mobility management in the future mobile Internet.

ACKNOWLEDGEMENT

This work was supported in part by the National Key Basic
Research Program of China (973 Program) under Grant No.
2013CB329102; the National Science Foundation of China
(NSFC) under Grants No. 61372112 and 61232017; the Bei-
jing Natural Science Foundation of China under Grant No.
4142037; the Natural Science Foundation of Jiangsu Province
under Grant No. BK2011171.

REFERENCES

[1] R. Stewart, “Stream Control Transmission Protocol,” RFC 4960, IETF,
Sept. 2007.

[2] C. Xu, T. Liu, J. Guan, H. Zhang and G. Muntean, “CMT-QA: Quality-
aware Adaptive Concurrent Multipath Data Transfer in Heterogeneous
Wireless Networks,” IEEE Trans. on Mobile Computing, vol.12, no.11,
pp.2193-2205, Sept. 2013.

[3] T.D. Wallace and A. Shami, “A Review of Multihoming Issues Using the
Stream Control Transmission Protocol,” IEEE Communications Surveys
& Tutorials, vol.14, no.2, pp.565-578, June 2011.

[4] F. Perotto, C. Casetti and G. Galante, “SCTP-based Transport Protocols
for Concurrent Multipath Transfer,” in Proc. IEEE WCNC, Mar. 2007.

[5] M. Allman, K. Avrachenkov, U. Ayesta, J. Blanton and P. Hurtig, “Early
Retransmit for TCP and Stream Control Transmission Protocol (SCTP),”
RFC 5827, IETF, Apr. 2010.

[6] C.-M. Huang and M. Lin, “Fast Retransmission for Concurrent Multi-
path Transfer (CMT) over Vehicular Networks,” IEEE Communications
Letters, vol.15, no.4, pp.386-388, Apr. 2011.

[7] R. Ahlswede, N. Cai, S. Li and R. Yeung, “Network information flow,”
IEEE Trans. on Info. Theory, vol.46, no.4, pp.1204-1216, July 2000.

[8] J. Sundararajan, D. Shah, M. Medard, S. Jakubczak, M. Mitzenmacher
and J. Barros, “Network Coding Meets TCP: Theory and Implementa-
tion,” Proceedings of the IEEE, vol.99, no.3, pp.490-512, Mar. 2011.

[9] A. Ford, C. Raiciu, M. Handley, S. Barre and J. Iyengar, “Architectural
Guidelines for Multipath TCP Development,” RFC 6182, IETF, Mar.
2011.

[10] M. Li, A. Lukyanenko and Y. Cui, “Network Coding Based Multipath
TCP,” in Proc. IEEE INFOCOM Workshop, Mar. 2012.

[11] T. Dreibholz, E. Rathgeb, I. Rungeler, R. Seggelmann, M. Tuxen and
R. Stewart, “Stream Control Transmission Protocol: Past, Current and
Future Standardization Activities,” IEEE Communications Magazine,
vol.49, no.4, pp.82-88, Apr. 2011.

[12] N. Wagner (2003), The Laws of Cryptography With Java Code. [Online].
Available: http://www.cs.utsa.edu/∼wagner/lawsbookcolor/laws.pdf

[13] C. Xu, F. Zhao, J. Guan, H. Zhang and G. Muntean, “QoE-driven
User-centric VoD Services in Urban Multi-homed P2P-based Vehicular
Networks,” IEEE Trans. on Vehicular Technology, vol.62, no.5, pp.2273-
2289, June 2013.

