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Abstract—Current telecom networks generate massive amounts of monitoring data consisting of observations on
network faults, configuration, accounting, performance and security. Due to the ever increasing degree of complexity
of networks, coupled with specific constraints (legal, regulatory, increasing scale of management in heterogeneous
networks), the traditional reactive management approaches are increasingly stretched beyond their capabilities. A
new network management paradigm is required that takes a pre-emptive rather than a reactive approach to network
management.

This work presents the design and specification of E-Stream, a predictive recommendation based solution to automated
network management. The architecture of E-Stream illustrates the challenges of leveraging vast volumes of manage-
ment data to identify pre-emptive corrective actions. Such design challenges are mitigated by the components of E-
Stream, which together form a single functional system. The E-Stream approach starts by abstracting trace information
to extract sequences of events relevant to interesting incidents in the network. After observing event sequences in
incoming event streams, specific appropriate actions are selected, ranked and recommended to pre-empt the predicted

incidents.

Index Terms—Telecommunications, Network, Management, Predictive, Recommender, Architecture.

1 INTRODUCTION

HE combined effect of the increase in users

and communicating devices, demand for
service quality and diversity, support for mo-
bility, and desire for social connectedness and
communication has driven unprecedented and
exponential growth in telecoms network man-
agement data. Following this growth of users
and devices, by 2020 the total number of con-
nected devices will reach up to 50 Billion [1].
Consequently, the number of Network Ele-
ments (NEs) to manage will increase signifi-
cantly. The amount of network management
data transmitted from these NEs is expected to
be at Exabyte levels. Also as heterogeneous net-
works are becoming a reality with the deploy-
ment of micro-, femto- and pico-cells [1] the
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complexity of the O&M tasks [2] scales-up ac-
cordingly. To maintain such complex networks
current O&M approaches need to be extended
in order to provide efficient and high quality
communication services to end users. This im-
pacts mostly on operating costs for operators as
today’s approaches for monitoring rapidly ex-
panding user and device volumes will require a
significant increase in management personnel,
which based on current approaches is economi-
cally unsustainable. Many of the tasks required
of human network managers are repetitive
and involve wading through huge amounts of
monitoring data. A new network management
paradigm is required that is capable of au-
tomating the monitoring and repetitive tasks,
and most importantly leverage massive vol-
umes of network trace information to deploy
a pre-emptive rather than reactive approach to
predict issues and suggest timely appropriate
remedial or preventative actions for network
management.

More automated approaches are required to
assist Network Operations Centre (NOC) op-
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Fig. 1. E-Stream components in different infor-
mation processing layers.

erators to manage complex network operation
scenarios. Intelligent techniques with the capa-
bility to decipher the recurrent nature of pre-
dictable network incidents can unravel the link
between predictive symptoms and the occur-
rence of a particular network scenario. More-
over, this insight into patterns of symptomatic
events can be leveraged to prescribe potential
solution(s) for particular scenarios. Integrating
these two functionalities into a single infor-
mation processing system is proposed in E-
Stream. E-Stream analyses the likelihood of
occurrence of potential network incidents and
recommends the most appropriate solution for
the incident. In addition to this, E-Stream gives
the human operator control to adopt decisions
while allowing the system to learn the deci-
sion recommendations over time and adapt
and evolve by assimilating response know-how
from the human expert.

From an operational point of view, E-Stream
takes the network traces as inputs and trans-
forms the massive volume of information into
simple prescriptive actions as the outputs. First,
E-Stream discards unnecessary, redundant and
noisy information in order to observe patterns
in the occurrence of the network incidents. Pat-
terns are then screened, indexed and associated
with the relevant network solutions. Finally,
the “pattern-solution” templates of similar in-

cidents are utilised to suggest proper correc-
tive actions for network scenarios similar to
those in which similar patterns were previously
observed. The performance of the components
at each phase is scaled by ingesting the in-
coming traces in an adaptive way, distributing
the processing resources, and parallelizing the
computational tasks.

Autonomic Network Management (ANM)
[3] emerged as an approach to overcome the
ever increasing complexity of network manage-
ment within the Fault, Configuration, Account-
ing, Performance, Security (FCAPS) frame-
work. Efficient Fault Management (FM) tech-
niques proposed as part of an Autonomic Net-
work Management System (ANMS) should be
able to progressively learn and identify net-
work faults but do not present solutions [4]. A
similar approach [5] for pre-emptive detection
of critical events in the area of service manage-
ment proposed a process to discover potential
predictive patterns in the log files to detect
the occurrence of upcoming faults. Network
management based on preventative mainte-
nance and statistical process control (widely
used in manufacturing industries) was pro-
posed in [6]. However, the E-Stream approach
for predictions and recommendations is inno-
vative in two main aspects. First, it supports
processing events from heterogeneous sources,
and in this way overcomes classic problems of
FCAPS silos. Second, E-Stream addresses the
requirements of the Telecommunication Man-
agement Network (TMN) in terms of scale and
performance. E-Stream combines both aspects
into a holistic system design and implementa-
tion which addresses some of the challenges
the telecommunication industry is facing today.
Additionally the process of providing correc-
tive actions based on the predicted network in-
cidents, and with minimal human supervision,
is novel and very different than the approach
of gradually learning about the network faults
in ANMS.

This work is the result of a collaborative
Dublin City University-LM Ericsson Ireland
project which integrates results of data mining,
predictive analytics and recommender systems
research.
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2 E-STREAM CHALLENGES

The major challenge in designing E-Stream
is the complex granular structure inherent in
network data; such complex structures in the
data complicate efforts to automatically find
meaningful information from the data. The
task is to transform the incoming information
through different processing layers and finally
deliver the recommendations. It requires expert
knowledge on the deployment and manage-
ment of the resources in each layer. To do so
E-Stream is composed of several components
and each component addresses and mitigates
the challenges in processing the information
and transferring it to the next layer. In Figure 1
the components of the E-stream architecture are
placed in appropriate processing layers. The
challenges addressed by each component in
each layer are also indicated.

2.1

Stream of network traces (denoted as “e-
streams”) originate from the telecom networks
often arrive at extremely high rates straining
the I/O and computational ability of the sys-
tem. The traces consist of information patterns
that can be correlated to the underlying net-
work behaviour. E-streams are generated from
various sources, and report on a huge variety of
parameters, operations, warnings, and faults,
only some of which is relevant for any partic-
ular management use-case. Combined with a
potential for event storms, this in turn makes it
very difficult to extract meaningful knowledge
from the data within a limited time duration.
Data Dimension Reduction processes aim to
reduce the volume of data being ingested by
identifying and removing noise events, low
importance events, and periodic or repetitive
events. Dimension reduction processes there-
fore aim to identify the most important events,
and data within those events. Simple data re-
duction techniques can serve the purpose of
controlling the data ingestion, but it should be
capable of handling sizeable volume of data.
Parallelising the reduction process can address
this problem, but raises the possibility more
approximation errors. Event-based Stream Pro-
cessing (ESP) techniques holds most promise

Intelligent Data Collection

for parallelised event reduction processes with
low latency, but care must be taken to maintain
scalability [7].

2.2 Cross-Layer Network Correlation

Network traces (e-streams) are not static and
demonstrate burstiness, jitter, delay (out of or-
der arrival) and data loss. In order to explore
e-streams, the underlying individual sources
need to be analysed to discover, recognise and
match patterns across all the sources. These
patterns can be indicative of correlative scenar-
ios that are difficult to decipher from individual
sources. Pattern discovery is required to detect
the existence of patterns which have not been
previously observed. Pattern matching in the
event stream is required to indicate the occur-
rence of previously observed patterns. Pattern
recognition is required in order to determine
the likelihood of a candidate pattern becoming
an exact match and to allow the prediction
of and therefore the prevention of an incident
occurrence.

For event-based pattern matching, Complex
Event Processing (CEP) is a recognized tech-
nique. Topologically-aware reasoning (TAR)
addressed the problem of discovering and
matching patterns to identify the network
faults based on spatio-temporal patterns [8].
Automated profiling of network events by
modelling the event sequences is beneficial for
pattern matching [9].

2.3 Predicting Incidents

Predicting incidents is dependent on pattern
recognition accuracy, i.e. the probability of cor-
rectly identifying a complete pattern from first
symptom to incidence occurrence. Incidents
can be categorised at a high level with the
following characteristics: incidents occur fre-
quently or rarely in time; incidents are simple
or complex; incidents have a simple or complex
resolution. System behaviour (event-patterns)
characterising an incident can present as a
small number of symptoms in a single data set
or as a very large number of symptoms across
many data sets. Predicting incidents therefore
ranges from those which occur very often and
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have very simple analysis to those which oc-
cur rarely and involve very complex analysis.
Temporal analysis is constrained by the amount
of observation that can be supported in any
given time period, i.e. the available time for
observation is inversely proportional to the
volume of data being observed. The recogni-
tion accuracy is constrained by the number of
candidate (probable) patterns being observed.

2.4 Recommending Actions

Action recommendation is dependent on a
number of factors including context, audience,
existing action/responses, and validation.

Context: In a typical telecommunication sys-
tem when an incident occurs, one of a number
of formal and prescribed responses to the in-
cident is normally followed. This typically has
instructional and a procedural aspects, i.e. the
specific tasks to be carried out, the order or
priority of the action/response and the report-
ing and tracking of the incident through for
instance trouble ticketing systems.

Audience: A number of possible audiences
with different time/response characteristics in-
teract with the network management system:
human operators with different roles, authori-
ties and competence levels; various integrated
response systems such as trouble ticketing sys-
tems; workflow & process management sys-
tems. Each of these audiences require different
actions suited to their view of the system and
its behaviour. The system therefore needs to
be able to differentiate between audiences and
facilitate recommendations based on their in-
dividual time/response characteristics, the de-
gree of competence of the individual user and
the level of autonomy of the system.

Existing responses: The majority of re-
sponses are based on previously performed
best-practice responses, for example many
faults have detailed specific instructions which
are followed to resolve the issue. However,
it is important to realise that best-practice re-
sponses differ for different networks, opera-
tors and customers. For established networks
this knowledge covers a large percentage of
known faults and forms a body of pre-existing
responses to known incident types. However,

this body of knowledge of reactive actions may
not be effective for pre-emptively preventing
or dealing with incidents before they occur. In
addition where a specific response does not
exist or an incident occurs for the first small
number of times old this can be characterises
as a “cold start” problem.

Validation: When recommendations are sug-
gested, they have to be sanity checked by the
domain expert and the accuracy of the rec-
ommended actions has to be validated. The
accuracy of validation has to be a learning
component for future recommendations i.e. the
recommender has to weigh the correctness of
previous recommendations and adjust the pro-
duction and ranking of future recommenda-
tions accordingly. After initial training with the
domain expert the recommender systems must
learn and provide recommendations to a level
such that the operator reduces the degree of
supervision (eventually close to zero).

3 E-STREAM COMPONENTS

E-stream is a composite system to recommend
corrective solutions to network scenarios based
on predictive patterns leading up to network
incidences. These predictions and recommen-
dations are built up from several independent
components interacting in stages. Each compo-
nent is capable of carrying out different func-
tionalities:

1) Data reducer : reducing the incoming data

2) Correlator : filtering out irrelevant events
and correlating events

3) Pattern matcher: modelling and matching
patterns

4) Predictor: predicting future patterns

5) Recommender: recommending solutions

3.1

The Data Reducer and Correlator component
builds up smart reduction mechanism to ex-
tract ‘actionable insights” from network traces
which are utilised by other components in the
later stages. As discussed, the bursty nature
and inherent variability in the trace sources
further complicate the trace exploration. Data
reducer mitigated the challenge of data-deluge

Data Reducer and Correlator
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through controlled ingestion of event traces into
the I/O system and deploying scaled projection
to compress the event trace information. The
correlator examines the significance of events
analysing the inter-event relationship through
spectral distribution and temporal dependence
and envelopes the relevant events traces into
pseudo patterns. Accurately removing irrele-
vant and insignificant events from the raw data
stream increases the probability of accurately
finding coherent event types. Also running se-
quence mining techniques on reduced events is
computationally much cheaper than searching
for event associativity in raw data.

The functional architectures of the data re-
ducer and correlator are entwined as shown
in Figure 2. The data reducer is equipped
with window based dynamic load shedding
and Johnson-Lindenstrauss Theorem (JLT) [10]
based minimal-loss approximation function-
ality. The correlator operates with frequency
and spectral domain-based filters and with se-
quence mining techniques.

3.1.1

The concept of dynamic windowing is based
on controlled ingestion of data streams. This
entails feeding the processors with manageable
volumes of data while dealing with sudden
and extreme influxes of event traces. The ob-
jective of the dynamic windowing process is to
maintain a maximum end-to-end latency of the

Windowing

overall system. In this mechanism the volume
of incoming data is adaptively controlled based
on the data arrival rate (also defined as stream
burst rate) i.e., automatically change the data-
read rate (length of the window) based on the
stream burst rate. Leveraging the data arrival
rate distribution allows E-Stream to control
the volume of incoming data in line with the
capacity of the processors (buffer size).

3.1.2 Minimal Loss Parallel Data Approxima-
tion (MLDA)

To mitigate against very high dimensional
bursty data streams, a computationally cheap
dimensionality reduction technique Minimal
Loss Parallel Data Approximation (MLDA) is
devised. MLDA reduces event traces while eftfi-
ciently approximating the degree of correlation
(distance) between the events.

The basic principle of data approximation in
MLDA is based on a Johnson-Lindenstrauss
Theorem approach. In simple terms JLT op-
erates according to the principle that if data
points of a high dimension vector space are
projected into a randomly selected subspace of
with sufficiently low dimensionality, then with
high probability the proportional distances be-
tween pairs of data points are preserved with a
certain level of approximation. Principal Com-
ponent Analysis (PCA), another state-of-the-art
statistical reduction technique is more accurate
in approximating the data and reducing dimen-
sions, but PCA is computationally infeasible
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for very high-dimensional data [11]. In order
to reduce the distortion of JLT, a minimal loss
approximation is proposed. The minimal loss
criterion is based on an extension of JLT by
combining a Chernoff bound: if the projection
is repeated O (log;) times, and the median of
the distance between the projections is taken,
the probability of accurate approximation is
increased to 1 —4. This procedure can be repre-
sented in terms of the Law of Large Numbers
(LLN), whereby performing an estimation pro-
cedure function multiple times (e.g. repeatedly
measure distance between sampled and origi-
nal points), this will increase the probability of
accurate estimation of the function.

In summary, MLDA embeds N events
recorded in L timeslots of length A, into a
space of lower dimension M, such that all dis-
tances are almost preserved through the trans-
formation operator ®. The scheme is shown
in Figure 3, where matrix A represents the
event. Iterating this procedure of approximat-
ing the distances multiple times following the
principle of Law of Large Numbers can pro-
duce more condensed stream of event traces
over which the correlation techniques can find
pseudo patterns of events more accurately [12].

3.1.3 Online filtering

The functionality of the event filtering is akin
to data reduction with the objectives to ab-
stract low-level event information in a more
structured way and to quantify the inter-
relationships between network event traces.
The events are reduced by finding correlated
events, defining cluster event prototypes, and
filtering out noise events. Isolated network
events such as periodic reporting events or

routine configuration events, appear in a stan-
dalone manner and are unrelated to other net-
work events, and so show low correlations with
other events around them, therefore they can
be identified and treated as noise events.

Based on this objective the following online
filters are deployed:

1) Spectral filter to find correlations and re-

move noise

2) Temporal filter to define cluster of events

based on the temporal distances of co-
occurrence

3) Periodicity filter to filter out periodic

events

The principle of the spectral filtering tech-
nique is based on Random Matrix Theory
(RMT). According to RMT a confidence band
derived from the eigen-value distribution of
random matrices can be utilised to separate
the true “signal” from the random “noise” of a
correlation matrix. The spectral filter analyses
the eigen-space (spectrum) of the correlation
matrix of the observed events and decompose
the matrix into two parts, one part exhibit-
ing “strong” correlative structure between the
events and another part with “weak” spectral
condition. The later part is treated as noise and
is removed from the stream by the spectral
filter. In this way the spectral filter acts as both
correlation and noise filter.

The temporal distance between symptoms
and effects of any network incident even
spread over several different windows are ap-
proximately homogeneous. Therefore, statisti-
cally, events appearing together within a spe-
cific time distance can be defined as cluster of
contiguous events. The temporal filter applies
temporal distance based clustering to find these
clusters in the correlated events.

In order to extend noise filtering with the
ability to detect event patterns with periodic
occurrences, a filter based on frequency domain
is embedded after the temporal filtering. Af-
ter noise is removed and the data density in-
creased, the final task is to define the sequential
relationships between the correlated events.

3.1.4 Sequence Miner

Correlated event traces reveal only the super-
ficial relationship between the events. In order
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to extract patterns from the correlated events
sequential mining techniques are applied. As-
sociation rule mining algorithms are capable of
exploring the sequential relationship between
the events to identify the order of occurrence
and degree of association between events. This
component employs association rule mining
techniques over the correlated event traces to
identify how event sequences are associated
with actual incidents and forms an event-
pattern. The magnitude of the association is
quantified by several metrics. Once association
rules between the events and incidents are
established, these pattern rules are stored in a
pattern library.

3.2 Pattern Matcher and Predictor

This component carries out two main tasks:

« encode and model patterns based on the
association probability metrics drawn from
the sequence miner.

o predict the occurrence of event patterns
based on matching the occurrence of some
of the events (the pattern ‘head’) in the
pattern.

3.2.1 Pattern Modelling

This component uses the pattern definitions
(association rules) and their associativity met-
rics from the sequence miner to formulate
pattern models. Firstly, statistical similarity
analysis is used to discover the relevance
between the event sequences in the pattern
definitions. The similarity between the event
sequence(s) preceding a response (result or
consequence) sequence provides the semantics
to define a pattern model. This information
about the relationships between antecedent-
response sequences is important later for the
recommender to assess the accuracy of the
recommended actions for the predicted inci-
dents. Hamming distance-based Locally Sensi-
tive Hashing (LSH) is used here to compute the
similarity between the pattern models.
Conventional associativity metrics, support,
confidence and lift are computed for each event-
pattern to characterize the formulated pattern
model. The support counts the frequency of an

event-pattern, confidence computes the proba-
bility of a specific antecedent-response forming
an event-pattern, lift calculates the likelihood of
co-occurrence of a specific antecedent-response
pair. The knowledge provided by the metrics
can be leveraged to determine the probability
of a certain event sequence and incident form-
ing a pattern model and hence accurately pre-
dict that incident whenever the event sequence
is observed.

3.2.2 Pattern Recognition and Matching

Pattern definitions or rules of association
between the set of event sequences of a
pattern model are exported into Extensible
Markup Language (XML) using Predictive
Model Markup Language (PMML). These pat-
tern definitions are then matched in the incom-
ing stream using an off-the-shelf CEP engine
Esper!. When an exact match occurs (i.e. 100%
probability that an incident has occurred), a
notification is sent to the recommender with
the details of the incident.

3.2.3 Prediction

The metric values along with the antecedent-
response pairs characterise each pattern model,
and these are used as attributes of the mod-
els. Running a supervised learning paradigm
over these attributes of the pattern models can
identify appropriate ‘tail” event sequences for
a given sequence ‘head’ of a pattern model
[13]. As each event in a pattern is observed
in the pattern models, the supervised models
should be able to predict the pattern tails with
increasing probability.

3.3 From Predictions to Recommendations

When an incident occurs, or its pattern
tail/response is predicted, all relevant infor-
mation is forwarded to the Recommender. The
Action Selector then selects a set of candidate
corrective actions from the action catalogue,
informed by relevant and similar antecedent-
response pairs and associated human-informed
actions that were previously applied. The ac-
tion list is then sorted and ranked by the action

1. EsperTech: http://esper.codehaus.org
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information

ranker based on ranking parameters derived
from guidelines of best practice and/or the
historical adoption of similar actions in re-
sponse to similar past incident indications. A
ranked list of suggested actions may then be
further manipulated, e.g. select only the highest
ranked suggestions. Because more than one
recommendation is presented, but the recom-
mendations are ranked, the management agent
can quickly see alternative recommendations to
a given incident or incident prediction, and the
degree to which those recommendations are
deemed suitable. The manager then retains the
authority to re-rank the list, select one or more
of the recommendations, ignore all recommen-
dations, or explicitly select, define or refine a
different action. This step provides feedback
to the recommendation system to adjust or
extend its action catalogue and refine its rank-
ing parameters. Using this continuous feedback
process, the recommender system learns and
evolves. This feedback mechanism provides a
way to deal with the “cold start” problem
inherent in all recommender systems. This ap-
proach also provides a mechanism to evolve as
the network, context, institutional knowledge,

or business priorities for the network evolves.

4 INFORMATION PROCESSING

E-stream components perform online process-
ing of incoming information (the e-streams),
transfers outputs to the next component in turn
for further processing, and finally recommends
the solutions to various network incidents and
incident predictions. Each processing step is
designed to run on appropriate computing
platforms to maintain scalability of E-stream as
an end-to-end system. The flow and transfor-
mation of the traces is depicted in Figure 4. In
the figure, the processes running on different
computing platforms are indicated with sepa-
rate colours.

4.1

Streamed trace information flows through each
component and undergoes different transfor-
mation to finally trigger an action (or a set of
actions). Based on the objective and function-
ality of the components, the transformation of
the traces can be categorized into three phases.

Information flow
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Event abstraction phase: In this phase high
volume event traces (e-streams) originating
from different network management sources
are compressed into an abstract form defined as
patterns. At each step of this phase, the volume
of data is reduced and abstracted by data re-
ducer, filters and sequential miner components
of E-Stream. Event information is extracted
from the input raw data using event map-
ping. Events are matched with the respective
sources and normalised. The data reduction
procedure then synopsizes the events incurring
minimal data information loss. Filtering tech-
niques then correlate events, remove noise and
cluster similar event types. The ordering of the
filtering tasks is based on the context of the
trace; removing noise increases the probability
of accurately finding relevant event types. The
final outcomes of this phase are the discovered
event sequences incorporating association rules
and the event relationship metrics.

Pattern handling phase: In this phase pat-
terns stored in the pattern library are used
to recognize patterns and build pattern models.
The patterns are then matched in the incoming
streams. The association rules and relationship
metrics from the pattern models are then used
to calculate the increasing likelihood of ear-
lier events in a pattern being able to predict
later events in each particular pattern. In the
supervised learning framework, an incident is
predicted whenever the probability is higher
than a predefined threshold of certainty.

Recommendation phase: In the third and
last phase actions are suggested for known
patterns which are successfully recognized,
matched and predicted in the previous phase.
For matched patterns specific actions are rec-
ommended from the action library; for the
predicted patterns the actions from the library
are first ranked based on the action-response
relationship and then the top actions are rec-
ommended. Event sequences without any prior
profile (or unrecognised patterns) are defined
as novel patterns. Actions for these patterns are
tirst selected based on the proximity with other
pattern models in the pattern library. Then
these set of actions are validated in order to be
able to recommend most appropriate actions.

4.2 Scalability and optimization of informa-
tion processing

Online information processing has 3 limiting
factors: scale, precision, and timeliness. To ad-
dress scale, components are designed to ex-
ploit parallel computation and distributed pro-
cessing tools. We consider two different as-
pects of parallel computing here: (a) pipeline
parallelism and (b) partial parallelism to ex-
ecute the tasks of each component. Based on
the throughput, tasks are implemented on in-
memory and off-memory processing platforms
to facilitate restricted latencies. In Figure 4, the
processes running on in-memory are coloured
light-blue and the processes running on off-
memory are coloured yellow.

a. in-memory processing: In E-stream, data
reduction, filtering, pattern matching and ac-
tion recommendation for matched patterns re-
quire the data structure to be preserved, for
information to be passed quickly and easily
through access points, and finally need to
process the information in near real-time. In-
memory processing is most suitable for these
complex and time-sensitive tasks to achieve
increasing speed and reliability to deliver the
output within a limited time-delay.

b. off-memory processing: off-memory pro-
cessing is typically disk-based, meaning the
application queries data stored on off-RAM. In
contrast to in-memory, off-memory processing
can deal with huge amounts of data. The se-
quential pattern discovery task is specifically
implemented to utilize disk based processing
for high throughput. Due to the data inten-
sive nature of pattern recognition tasks, pattern
model building for matching patterns, and pre-
diction of patterns, these task are required run
off-memory.

Among the analytical tasks (coloured in yel-
low in Figure 4), data reduction and filtering
are realised using the Storm? stream computing
framework. Pattern matching is realized us-
ing the Hadoop-MapReduce framework which
leverage the MapReduce computing frame-
work for the exact matching tasks.

2. http:/ /storm-project.net/
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5 CONCLUSION

Large complex systems such as telecommuni-
cations networks are very difficult and costly to
manage. Predicting, preventing, mitigating and
fixing problems as early in the discovery cycle
as possible is a key strategy in reducing Op-
erational Expenditure (OPEX). The Predict &
Recommend approach presented in this paper
has the advantage that the network manage-
ment system benefits from automated analysis
and from learning human experts” approaches.
Human operators should retain the ultimate
decision to ignore or select from recommen-
dations presented, until the system provides
accurate and confident predictions with high-
value benefits. Thus the recommender system
starts as an assistant, but can later have author-
ity to perform automated tasks delegated or
revoked. This allows human operators to con-
centrate on high-value cases, exceptions and
critical situations not yet sufficiently learned by
the prediction and recommender systems.

Using prediction and recommender systems
as presented in this paper will support faster
resolution of network issues by presenting can-
didate solutions, rather than simply presenting
a list of incidents. As the system learns, tuning
“best practice” for a given network deploy-
ment and behaviour characteristics, the amount
of mundane troubleshooting required by the
NOC personnel for day-to-day operation and
maintenance of the network is reduced, thus re-
ducing cost, improving management through-
put, and freeing up time and resources for
the managers to concentrate on more strategic
management issues.
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Fig. 5. E-Stream components in different information processing layers.
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